Magnetic CuFe2O4 Nanoparticles Immobilized on Modified Rice Husk-Derived Zeolite for Chlorogenic Acid Adsorption
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. SiO2 Extraction from Rice Husks
2.3. Zeolite Synthesis
2.4. Zeolite Modification with Silane Agents
2.5. Synthesis of Copper Ferrite
2.6. Zeolite:CuFe2O4 Magnetic Nanocomposites
2.7. Characterizations
2.8. CGA Adsorption Tests
2.9. Germination Test
2.10. Magnetic Mass Recovery
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mader, A.E.; Holtman, G.A.; Welz, P.J. Treatment Wetlands and Phyto-Technologies for Remediation of Winery Effluent: Challenges and Opportunities. Sci. Total Environ. 2022, 807, 150544. [Google Scholar] [CrossRef] [PubMed]
- Cuffaro, D.; Bertolini, A.; Bertini, S.; Ricci, C.; Cascone, M.G.; Danti, S.; Saba, A.; Macchia, M.; Digiacomo, M. Olive Mill Wastewater as Source of Polyphenols with Nutraceutical Properties. Nutrients 2023, 15, 3746. [Google Scholar] [CrossRef] [PubMed]
- Hamimed, S.; Kthiri, A. Potential Valorization of Polyphenols from Olive Mill Wastewater on Sheep Rumen Function. Int. J. Environ. Sci. Technol. 2022. [Google Scholar] [CrossRef]
- Athanasiadis, V.; Voulgaris, A.; Katsoulis, K.; Lalas, S.I.; Roussis, I.G.; Gortzi, O. Development of Enriched Oil with Polyphenols Extracted from Olive Mill Wastewater. Foods 2023, 12, 497. [Google Scholar] [CrossRef]
- Sas, O.G.; Castro, M.; Domínguez, Á.; González, B. Removing Phenolic Pollutants Using Deep Eutectic Solvents. Sep. Purif. Technol. 2019, 227, 115703. [Google Scholar] [CrossRef]
- Ramos, L.F.; Pluschke, J.; Bernardes, A.M.; Geißen, S.-U. Polyphenols in Food Processing Wastewaters: A Review on Their Identification and Recovery. Clean. Circ. Bioeconomy 2023, 5, 100048. [Google Scholar] [CrossRef]
- Dawidowicz, A.L.; Typek, R. The Influence of PH on the Thermal Stability of 5-O-Caffeoylquinic Acids in Aqueous Solutions. Eur. Food Res. Technol. 2011, 233, 223–232. [Google Scholar] [CrossRef]
- Hernández-Padilla, E.S.; Zárate-Guzmán, A.I.; González-Ortega, O.; Padilla-Ortega, E.; Gómez-Durán, A.; Delgado-Sánchez, P.; Aguilar-Aguilar, A.; Cortés, F.B.; Ocampo-Pérez, R. Elucidation of Adsorption Mechanisms and Mass Transfer Controlling Resistances during Single and Binary Adsorption of Caffeic and Chlorogenic Acids. Environ. Sci. Pollut. Res. 2022, 29, 26297–26311. [Google Scholar] [CrossRef]
- Wang, L.; Pan, X.; Jiang, L.; Chu, Y.; Gao, S.; Jiang, X.; Zhang, Y.; Chen, Y.; Luo, S.; Peng, C. The Biological Activity Mechanism of Chlorogenic Acid and Its Applications in Food Industry: A Review. Front. Nutr. 2022, 9, 943911. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, S.; Wu, J.; Li, N.; Wang, J. Separation and Purification of Chlorogenic Acid from Lonicera Japonica Thunb. Leaves Exact with Macroporous Resins. J. Med. Plants Res. 2013, 7, 1784–1792. [Google Scholar] [CrossRef]
- Shen, Z.; Ji, X.; Yao, S.; Zhang, H.; Xiong, L.; Li, H.; Chen, X.; Chen, X. Study on the Adsorption Behavior of Chlorogenic Acid from Eucommia Ulmoides Oliver Leaf Extract by a Self-Synthesized Resin. Ind. Crops Prod. 2023, 197, 116585. [Google Scholar] [CrossRef]
- Rodriguez-Lopez, A.D.; Reig, M.; Mayor, L.; Ortiz-Climent, M.; Garcia-Castello, E.M. Characterization of Ionic Exchange and Macroporous Resins for Their Application on the Separation and Recovery of Chlorogenic Acid from the Wastewater of Artichoke Blanching. Sustainability 2021, 13, 8928. [Google Scholar] [CrossRef]
- Mora-Villalobos, J.A.; Aguilar, F.; Carballo-Arce, A.F.; Vega-Baudrit, J.R.; Trimino-Vazquez, H.; Villegas-Peñaranda, L.R.; Stöbener, A.; Eixenberger, D.; Bubenheim, P.; Sandoval-Barrantes, M.; et al. Tropical Agroindustrial Biowaste Revalorization through Integrative Biorefineries—Review Part I: Coffee and Palm Oil by-Products. Biomass Convers. Biorefinery 2023, 13, 1469–1487. [Google Scholar] [CrossRef]
- Tapia-Quirós, P.; Montenegro-Landívar, M.F.; Reig, M.; Vecino, X.; Cortina, J.L.; Saurina, J.; Granados, M. Recovery of Polyphenols from Agri-Food By-Products: The Olive Oil and Winery Industries Cases. Foods 2022, 11, 362. [Google Scholar] [CrossRef] [PubMed]
- Ijanu, E.M.; Kamaruddin, M.A.; Norashiddin, F.A. Coffee Processing Wastewater Treatment: A Critical Review on Current Treatment Technologies with a Proposed Alternative. Appl. Water Sci. 2020, 10, 11. [Google Scholar] [CrossRef]
- Paris, E.C.; Malafatti, J.O.D.; Musetti, H.C.; Manzoli, A.; Zenatti, A.; Escote, M.T. Faujasite Zeolite Decorated with Cobalt Ferrite Nanoparticles for Improving Removal and Reuse in Pb2+ Ions Adsorption. Chin. J. Chem. Eng. 2020, 28, 1884–1890. [Google Scholar] [CrossRef]
- Meirelles, M.R.; Malafatti, J.O.D.; Escote, M.T.; Pinto, A.H.; Paris, E.C. Magnetic Adsorbent Based on Faujasite Zeolite Decorated with Magnesium Ferrite Nanoparticles for Metal Ion Removal. Magnetochemistry 2023, 9, 136. [Google Scholar] [CrossRef]
- Malamis, S.; Katsou, E. A Review on Zinc and Nickel Adsorption on Natural and Modified Zeolite, Bentonite and Vermiculite: Examination of Process Parameters, Kinetics and Isotherms. J. Hazard. Mater. 2013, 252–253, 428–461. [Google Scholar] [CrossRef]
- Lee, J.B.; Ahmed, I.; Lee, G.; Kim, T.W.; Kim, C.U.; Jhung, S.H. Synthesis of SSZ-13 Zeolites Using Calcined Rice Husk as Silica Source for Propylene Production from Ethylene and Carbon Dioxide Adsorption. J. Ind. Eng. Chem. 2023, 128, 443–449. [Google Scholar] [CrossRef]
- Cheng, Y.; Xu, L.; Jiang, Z.; Liu, C.; Zhang, Q.; Zou, Y.; Chen, Y.; Li, J.; Liu, X. Feasible Low-Cost Conversion of Red Mud into Magnetically Separated and Recycled Hybrid SrFe12O19@NaP1 Zeolite as a Novel Wastewater Adsorbent. Chem. Eng. J. 2021, 417, 128090. [Google Scholar] [CrossRef]
- Ponce, J.; da Silva Andrade, J.G.; dos Santos, L.N.; Bulla, M.K.; Barros, B.C.B.; Favaro, S.L.; Hioka, N.; Caetano, W.; Batistela, V.R. Alkali Pretreated Sugarcane Bagasse, Rice Husk and Corn Husk Wastes as Lignocellulosic Biosorbents for Dyes. Carbohydr. Polym. Technol. Appl. 2021, 2, 100061. [Google Scholar] [CrossRef]
- Durand, K.; Daassi, R.; Rodrigue, D.; Stevanovic, T. Study of Biopolymers and Silica Recovery from Pre-Hydrolyzed Rice Husks. Biomass Convers. Biorefinery 2024. [Google Scholar] [CrossRef]
- Joshi, U.; Roy, R.; Bhosale, P.; Nikam, S.; Kamble, T.; Satsangi, P.G. Sustainable Economic Production of Silica Nanoparticles from Rice Husks for Adsorptive Removal of Anionic and Cationic Dyes. Bioresour. Technol. Rep. 2023, 24, 101685. [Google Scholar] [CrossRef]
- Chanda, R.; Islam, M.S.; Biswas, B.K. N and P Removal from Wastewater Using Rice Husk Ash-Derived Silica-Based Fe-ZSM-5 Zeolite. Clean. Eng. Technol. 2023, 16, 100675. [Google Scholar] [CrossRef]
- Hamidi, R.; Tai, L.; Paglia, L.; Scarsella, M.; Damizia, M.; De Filippis, P.; Musivand, S.; de Caprariis, B. Hydrotreating of Oak Wood Bio-Crude Using Heterogeneous Hydrogen Producer over Y Zeolite Catalyst Synthesized from Rice Husk. Energy Convers. Manag. 2022, 255, 115348. [Google Scholar] [CrossRef]
- Sangsuradet, S.; Tobarameekul, P.; Worathanakul, P. Modified Hierarchical Zeolite X Derived from Riceberry Rice Husk for Propionic Acid Adsorption. Mater. Chem. Phys. 2022, 282, 125933. [Google Scholar] [CrossRef]
- Qin, Z.; Yuan, P.; Yang, S.; Liu, D.; He, H.; Zhu, J. Silylation of Al13-Intercalated Montmorillonite with Trimethylchlorosilane and Their Adsorption for Orange II. Appl. Clay Sci. 2014, 99, 229–236. [Google Scholar] [CrossRef]
- Bonaccorsi, L.; Bruzzaniti, P.; Calabrese, L.; Proverbio, E. Organosilanes Functionalization of Alumino-Silica Zeolites for Water Adsorption Applications. Microporous Mesoporous Mater. 2016, 234, 113–119. [Google Scholar] [CrossRef]
- Kadja, G.T.M.; Dwihermiati, E.; Sagita, F.; Mukhoibibah, K.; Umam, K.; Ledyastuti, M.; Radiman, C.L. Mercapto Functionalized–Natural Zeolites/PVDF Mixed Matrix Membrane for Enhanced Removal of Methylene Blue. Inorg. Chem. Commun. 2023, 157, 111263. [Google Scholar] [CrossRef]
- Mascarenhas, B.C.; Tavares, F.A.; Paris, E.C. Functionalized Faujasite Zeolite Immobilized on Poly(Lactic Acid) Composite Fibers to Remove Dyes from Aqueous Media. J. Appl. Polym. Sci. 2020, 137, 48561. [Google Scholar] [CrossRef]
- Hashemi, M.S.H.; Eslami, F.; Karimzadeh, R. Organic Contaminants Removal from Industrial Wastewater by CTAB Treated Synthetic Zeolite Y. J. Environ. Manag. 2019, 233, 785–792. [Google Scholar] [CrossRef] [PubMed]
- Rather, S.; Bamufleh, H.S.; Alhumade, H.; Taimoor, A.A.; Saeed, U.; Al-Zahrani, A.A.; Lemine, O.M. Morphological, Structural, Surface, Thermal, Chemical, and Magnetic Properties of Al-Doped Nanostructured Copper Ferrites. Ceram. Int. 2023, 49, 20261–20272. [Google Scholar] [CrossRef]
- Tudorache, F. Investigations on Microstructure, Electrical and Magnetic Properties of Copper Spinel Ferrite with WO3 Addition for Applications in the Humidity Sensors. Superlattices Microstruct. 2018, 116, 131–140. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, L.; Wang, H.; Li, J.; Zhang, E.; Wu, E.; Wang, H.; Wang, X. Synthesis of a Novel Magnetic CuFe2O4/Zeolite Composite Catalyst and Its Catalytic Oxidation Performance. Mater. Lett. 2023, 350, 134908. [Google Scholar] [CrossRef]
- Tripathy, A.; Nine, M.J.; Silva, F.S. Biosensing Platform on Ferrite Magnetic Nanoparticles: Synthesis, Functionalization, Mechanism and Applications. Adv. Colloid Interface Sci. 2021, 290, 102380. [Google Scholar] [CrossRef]
- Wang, J.; Deng, Q.; Li, M.; Jiang, K.; Zhang, J.; Hu, Z.; Chu, J. Copper Ferrites@reduced Graphene Oxide Anode Materials for Advanced Lithium Storage Applications. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef]
- Ghosh, S.; Das, P.S.; Biswas, M.; Samajdar, S.; Mukhopadhyay, J. Z-Scheme Ferrite Nanoparticle/Graphite Carbon Nitride Nanosheet Heterojunctions for Photocatalytic Hydrogen Evolution. Int. J. Hydrogren Energy 2024. [Google Scholar] [CrossRef]
- Kharazi, P.; Rahimi, R.; Rabbani, M. Copper Ferrite-Polyaniline Nanocomposite: Structural, Thermal, Magnetic and Dye Adsorption Properties. Solid State Sci. 2019, 93, 95–100. [Google Scholar] [CrossRef]
- Malafatti, J.O.D.; Tavares, F.A.; Neves, T.R.; Mascarenhas, B.C.; Quaranta, S.; Paris, E.C. Modified Silica Nanoparticles from Rice Husk Supported on Polylactic Acid as Adsorptive Membranes for Dye Removal. Materials 2023, 16, 2429. [Google Scholar] [CrossRef]
- Dang, V.L.; Kieu, T.T.; Nguyen, T.T.T.; Truong, T.T.T.; Hoang, D.T.; Vu, T.L.C.; Nguyen, T.M.T.; Le, T.S.; Doan, T.H.Y.; Pham, T.D. Surface Modification of Zeolite by Cationic Surfactant and the Application on Adsorptive Removal of Azo Dye Ponceau 4R. J. Mol. Struct. 2024, 1304, 137619. [Google Scholar] [CrossRef]
- Tang, B.; Guo, D.; Li, Y.; Yang, H.; Huang, Y.; Li, H. Separation and Quantitation of Isomeric Caffeoylquinic Acids in Honeysuckle Products by Low-PH Microemulsion Electrokinetic Chromatography Using Tartrate as a Chiral Selector. Anal. Methods 2016, 8, 189–196. [Google Scholar] [CrossRef]
- Renda, C.G.; Ruellas, T.M.D.O.; Malafatti, J.O.D.; Araújo, C.S.S.; Silva, G.L.d.; Figueira, B.A.M.; Quaranta, S.; Paris, E.C. A “Zero-Cost” Adsorbing Hydroxyapatite-Based Material from Amazon Fishery Waste for Water Remediation and Nutrient Release for Agriculture. Physchem 2023, 3, 34–60. [Google Scholar] [CrossRef]
- Dominic, C.D.M.; Neenu, K.V.; Begum, P.M.S.; Joseph, R.; Rosa, D.d.S.; Duan, Y.; Balan, A.; Ajithkumar, T.G.; Soumya, M.; Shelke, A.; et al. Nanosilica from Averrhoa Bilimbi Juice Pre-Treated Rice Husk: Preparation and Characterization. J. Clean. Prod. 2023, 413, 137476. [Google Scholar] [CrossRef]
- Erans, M.; Arencibia, A.; Sanz-Pérez, E.S.; Sanz, R. Amine-Bridged Periodic Mesoporous Organosilica Adsorbents for CO2 Capture. J. Environ. Chem. Eng. 2023, 11, 111590. [Google Scholar] [CrossRef]
- Jinde, P.D.; Gudiyawar, M.Y. Synthesis, Characterization, and Thermal Behavior of Silica Aerogel-Embedded PVDF-HFP Nanofibers. J. Mater. Res. 2024, 39, 1396–1410. [Google Scholar] [CrossRef]
- Nzereogu, P.U.; Omah, A.D.; Ezema, F.I.; Iwuoha, E.I.; Nwanya, A.C. Silica Extraction from Rice Husk: Comprehensive Review and Applications. Hybrid Adv. 2023, 4, 100111. [Google Scholar] [CrossRef]
- Sari Yilmaz, M.; Piskin, S. Evaluation of Novel Synthesis of Ordered SBA-15 Mesoporous Silica from Gold Mine Tailings Slurry by Experimental Design. J. Taiwan Inst. Chem. Eng. 2015, 46, 176–182. [Google Scholar] [CrossRef]
- Fu, P.; Yang, T.; Feng, J.; Yang, H. Synthesis of Mesoporous Silica MCM-41 Using Sodium Silicate Derived from Copper Ore Tailings with an Alkaline Molted-Salt Method. J. Ind. Eng. Chem. 2015, 29, 338–343. [Google Scholar] [CrossRef]
- Santana Costa, J.A.; Paranhos, C.M. Systematic Evaluation of Amorphous Silica Production from Rice Husk Ashes. J. Clean. Prod. 2018, 192, 688–697. [Google Scholar] [CrossRef]
- Belviso, C.; Kharchenko, A.; Agostinelli, E.; Cavalcante, F.; Peddis, D.; Varvaro, G.; Yaacoub, N.; Mintova, S. Red Mud as Aluminium Source for the Synthesis of Magnetic Zeolite. Microporous Mesoporous Mater. 2018, 270, 24–29. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, H.; Wang, X.; Zhang, M.; Chen, Y.; Zhai, C.; Song, H.; Deng, J.; Sun, J.; Zhang, C. Utilization of NaP Zeolite Synthesized with Different Silicon Species and NaAlO2 from Coal Fly Ash for the Adsorption of Rhodamine B. J. Hazard. Mater. 2021, 415, 125627. [Google Scholar] [CrossRef] [PubMed]
- Maatoug, N.; Delahay, G.; Tounsi, H. Valorization of Vitreous China Waste to EMT/FAU, FAU and Na-P Zeotype Materials. Waste Manag. 2018, 74, 267–278. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Zhang, Q.; Li, S.; Zhang, Y.; Liu, M.; He, B.; Mei, Y.; Zu, Y. Maximizing the Utilization of Calcium Species in the Supercages of CaNa-FAU Zeolite for Efficient CO2 Capture. Chem. Eng. J. 2024, 481, 148661. [Google Scholar] [CrossRef]
- Bunmai, K.; Osakoo, N.; Deekamwong, K.; Kosri, C.; Khemthong, P.; Wittayakun, J. Fast Synthesis of Zeolite NaP by Crystallizing the NaY Gel under Microwave Irradiation. Mater. Lett. 2020, 272, 127845. [Google Scholar] [CrossRef]
- Joseph, I.V.; Tosheva, L.; Doyle, A.M. Simultaneous Removal of Cd(II), Co(II), Cu(II), Pb(II), and Zn(II) Ions from Aqueous Solutions via Adsorption on FAU-Type Zeolites Prepared from Coal Fly Ash. J. Environ. Chem. Eng. 2020, 8, 103895. [Google Scholar] [CrossRef]
- Sousa, D.N.R.; Insa, S.; Mozeto, A.A.; Petrovic, M.; Chaves, T.F.; Fadini, P.S. Equilibrium and Kinetic Studies of the Adsorption of Antibiotics from Aqueous Solutions onto Powdered Zeolites. Chemosphere 2018, 205, 137–146. [Google Scholar] [CrossRef]
- Alsafari, I.A.; Munir, S.; Zulfiqar, S.; Saif, M.S.; Warsi, M.F.; Shahid, M. Synthesis, Characterization, Photocatalytic and Antibacterial Properties of Copper Ferrite/MXene (CuFe2O4/Ti3C2) Nanohybrids. Ceram. Int. 2021, 47, 28874–28883. [Google Scholar] [CrossRef]
- Azadi, F.; Pourahmad, A.; Sohrabnezhad, S.; Nikpassand, M. Synthesis of Zeolite Y @ Metal–Organic Framework Core@shell. J. Coord. Chem. 2020, 73, 3412–3419. [Google Scholar] [CrossRef]
- Bohács, K.; Faitli, J.; Bokányi, L.; Mucsi, G. Control of Natural Zeolite Properties by Mechanical Activation in Stirred Media Mill. Arch. Metall. Mater. 2017, 62, 1399–1406. [Google Scholar] [CrossRef]
- Mohana, S.; Sumathi, S. Agaricus Bisporus Mediated Synthesis of Cobalt Ferrite, Copper Ferrite and Zinc Ferrite Nanoparticles for Hyperthermia Treatment and Drug Delivery. J. Clust. Sci. 2023, 35, 129–142. [Google Scholar] [CrossRef]
- Barola, C.E.C.; Dusaban, I.F.C.; Olegario-Sanchez, E.M.; Mendoza, H.D. The Effect on the Zeta Potential of Surface Modified Philippine Natural Zeolites (SM-PNZ) for the Adsorption of Anionic Solutions. IOP Conf. Ser. Mater. Sci. Eng. 2019, 478, 012039. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Khakzad Siuki, M.M.; Bakavoli, M.; Eshghi, H. Eco-Friendly Magnetic Clinoptilolite Containing Cu(0) Nanoparticles (CuNPs/MZN): As a New Efficient Catalyst for the Synthesis of Propargylamines via A3 and KA2 Coupling Reactions. Appl. Organomet. Chem. 2018, 32, e4290. [Google Scholar] [CrossRef]
- Tan, M.; Li, X.; Feng, Y.; Wang, B.; Han, L.; Bao, W.; Chang, L.; Wang, J. Fly Ash-Derived Mesoporous Silica with Large Pore Volume for Augmented CO2 Capture. Fuel 2023, 351, 128874. [Google Scholar] [CrossRef]
- Avellaneda, G.L.; Denoyel, R.; Beurroies, I. CO2/H2O Adsorption and Co-Adsorption on Functionalized and Modified Mesoporous Silicas. Microporous Mesoporous Mater. 2024, 363, 112801. [Google Scholar] [CrossRef]
- Patil, D.J.; Behera, S.N. Synthesizing Nanoparticles of Zinc and Copper Ferrites and Examining Their Potential to Remove Various Organic Dyes through Comparative Studies of Kinetics, Isotherms, and Thermodynamics. Environ. Monit. Assess. 2023, 195, 591. [Google Scholar] [CrossRef]
- Amorim, C.O.; Mohseni, F.; Dumas, R.K.; Amaral, V.S.; Amaral, J.S. A Geometry-Independent Moment Correction Method for the MPMS3 SQUID-Based Magnetometer. Meas. Sci. Technol. 2021, 32, 105602. [Google Scholar] [CrossRef]
- Paris, E.C.; Malafatti, J.O.D.; Sciena, C.R.; Junior, L.F.N.; Zenatti, A.; Escote, M.T.; Moreira, A.J.; Freschi, G.P.G. Nb2O5 Nanoparticles Decorated with Magnetic Ferrites for Wastewater Photocatalytic Remediation. Environ. Sci. Pollut. Res. 2021, 28, 23731–23741. [Google Scholar] [CrossRef]
- Zhu, X.; Ma, C.; Yuan, X.; Zhao, J.; Hou, X. Synthesis of Magnetic NaY Zeolite for Plasma Proteomics Application. Mater. Today Commun. 2023, 35, 106219. [Google Scholar] [CrossRef]
- Belviso, C.; Agostinelli, E.; Belviso, S.; Cavalcante, F.; Pascucci, S.; Peddis, D.; Varvaro, G.; Fiore, S. Synthesis of Magnetic Zeolite at Low Temperature Using a Waste Material Mixture: Fly Ash and Red Mud. Microporous Mesoporous Mater. 2015, 202, 208–216. [Google Scholar] [CrossRef]
- Zhang, L.; Guan, Q.; Tang, L.; Jiang, J.; Sun, K.; Manirafasha, E.; Zhang, M. Effect of Cu2+ and Al3+ on the Interaction of Chlorogenic Acid and Caffeic Acid with Serum Albumin. Food Chem. 2023, 410, 135406. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Song, K.; Guo, J.; Liu, S.; Zhou, X.; He, J. Adsorption Behavior of Amino Functionalized MCM-41 on Chlorogenic Acid from Eucommia Ulmoides Leaves. J. Porous Mater. 2023, 30, 71–81. [Google Scholar] [CrossRef]
- Cheng, Y.; Xu, L.; Liu, C. NaP1 Zeolite Synthesized via Effective Extraction of Si and Al from Red Mud for Methylene Blue Adsorption. Adv. Powder Technol. 2021, 32, 3904–3914. [Google Scholar] [CrossRef]
- Phouthavong, V.; Hagio, T.; Park, J.H.; Nijpanich, S.; Srihirunthanon, T.; Chantanurak, N.; Duangkhai, K.; Rujiravanit, R.; Chounlamany, V.; Phomkeona, K.; et al. Utilization of Agricultural Waste to Herbicide Removal: Magnetic BEA Zeolite Adsorbents Prepared by Dry-Gel Conversion Using Rice Husk Ash–Derived SiO2 for Paraquat Removal. Arab. J. Chem. 2023, 16, 104959. [Google Scholar] [CrossRef]
- Vandevoort, A.R.; Arai, Y. Macroscopic Observation of Soil Nitrification Kinetics Impacted by Copper Nanoparticles: Implications for Micronutrient Nanofertilizer. Nanomaterials 2018, 8, 927. [Google Scholar] [CrossRef]
- Gu, W.; Li, X.; Xing, M.; Fang, W.; Wu, D. Removal of Phosphate from Water by Amine-Functionalized Copper Ferrite Chelated with La(III). Sci. Total Environ. 2018, 619–620, 42–48. [Google Scholar] [CrossRef]
- Hassan, A.F.; El-Naggar, G.A.; Braish, A.G.; El-Latif, M.M.A.; Shaltout, W.A.; Elsayed, M.S. Utilization of Synthesized Copper Ferrite/Calcium Alginate Nanocomposite for Adsorption and Photocatalytic Degradation of Malachite Green. J. Inorg. Organomet. Polym. Mater. 2024, 34, 190–206. [Google Scholar] [CrossRef]
Samples | SSABET (m2 g−1) | Amicropore (m2 g−1) | Dpore (nm) |
---|---|---|---|
Z18 | 218 | 208 | 27.5 |
CuFe2O4 | 28 | 4 | 12.2 |
Z18:CuFe2O4 | 162 | 144 | 16.0 |
Z18 M:CuFe2O4 | 39 | 22 | 15.7 |
Experimental | Pseudo-First-Order | Pseudo-Second-Order | |||||
---|---|---|---|---|---|---|---|
Nanocomposites | qe (mg g−1) | qe (mg g−1) | k1 (min−1) | R2 | qe (mg g−1) | k2 (g mg−1 min−1) | R2 |
Z18:CuFe2O4 | 5.14 | 4.46 | 0.0684 | 0.9694 | 7.13 | 0.0099 | 0.7713 |
Z18 M:CuFe2O4 | 9.56 | 0.57 | 0.0094 | 0.4244 | 9.43 | 0.5140 | 0.9995 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neves, T.R.; Schildt, L.F.L.; Silva, M.L.L.S.e.; Vasconcelos, V.V.V.; Di Conzo, C.; Mura, F.; Rossi, M.; Varvaro, G.; Abdolrahimi, M.; Quaranta, S.; et al. Magnetic CuFe2O4 Nanoparticles Immobilized on Modified Rice Husk-Derived Zeolite for Chlorogenic Acid Adsorption. Magnetochemistry 2024, 10, 87. https://doi.org/10.3390/magnetochemistry10110087
Neves TR, Schildt LFL, Silva MLLSe, Vasconcelos VVV, Di Conzo C, Mura F, Rossi M, Varvaro G, Abdolrahimi M, Quaranta S, et al. Magnetic CuFe2O4 Nanoparticles Immobilized on Modified Rice Husk-Derived Zeolite for Chlorogenic Acid Adsorption. Magnetochemistry. 2024; 10(11):87. https://doi.org/10.3390/magnetochemistry10110087
Chicago/Turabian StyleNeves, Tainara Ramos, Letícia Ferreira Lacerda Schildt, Maria Luiza Lopes Sierra e Silva, Vannyla Viktória Viana Vasconcelos, Corrado Di Conzo, Francesco Mura, Marco Rossi, Gaspare Varvaro, Maryam Abdolrahimi, Simone Quaranta, and et al. 2024. "Magnetic CuFe2O4 Nanoparticles Immobilized on Modified Rice Husk-Derived Zeolite for Chlorogenic Acid Adsorption" Magnetochemistry 10, no. 11: 87. https://doi.org/10.3390/magnetochemistry10110087
APA StyleNeves, T. R., Schildt, L. F. L., Silva, M. L. L. S. e., Vasconcelos, V. V. V., Di Conzo, C., Mura, F., Rossi, M., Varvaro, G., Abdolrahimi, M., Quaranta, S., Ferreira, S. A. D., & Paris, E. C. (2024). Magnetic CuFe2O4 Nanoparticles Immobilized on Modified Rice Husk-Derived Zeolite for Chlorogenic Acid Adsorption. Magnetochemistry, 10(11), 87. https://doi.org/10.3390/magnetochemistry10110087