Exploring Spin-Crossover Cobalt(II) Single-Ion Magnets as Multifunctional and Multiresponsive Magnetic Devices: Advancements and Prospects in Molecular Spintronics and Quantum Computing Technologies †
Abstract
:1. Introduction and Background
- (i)
- It provides an ideal platform for studying and understanding the fundamental principles of spintronics;
- (ii)
- It enables the creation of devices governed by quantum mechanics;
- (iii)
- It achieves the ultimate level of miniaturization for spintronic devices;
- (iv)
- It leverages a broad range of chemical tools to optimize quantum properties for various device architectures and applications, and, most importantly;
- (v)
- It paves the way for retrieving information from dynamic devices integrated into computers or sensors, facilitating a clear and efficient information read-out process.
1.1. SCO Complexes as Spin Quantum Nanodevices in SMS
1.2. SIMs as Spin Quantum Nanodevices in SMS
2. Current Trends and Future Directions
2.1. CoII SCO-SIMs as Spin Quantum Nanodevices in SMS and QIP
2.1.1. Molecular Spin Quantum Capacitors and Supercapacitors
2.1.2. Molecular Spin Quantum Chemo-, Electro-, or Photo-Switches
2.1.3. Chemo- and Electro-Switchable Molecular Spin Quantum Machines
2.2. Addressing of CoII SCO-SIMs as Spin Quantum Nanodevices in SMS
- (i)
- Electrode-based junctions: Placing molecules between two electrodes and measuring the conductance across the device.
- (ii)
- Scanning tunneling microscopy (STM): Depositing molecules on a surface and using an STM tip as a lead to measure the electron transport properties across the individual molecule.
- (iii)
- Nanostructure integration: Anchoring molecules to carbon-based nanostructures through supramolecular interactions, using molecules for their spin, while electron transport occurs through the quantum dot or the carbon nanostructure.
2.2.1. Molecular Spin Quantum Transistors in Gold Molecular Junctions
2.2.2. Molecular Spin Quantum Filters in Gold Surfaces
- (i)
- The sulfur atoms have a large affinity for various metallic substrates.
- (ii)
- The spin dynamic properties can be tuned when an external magnetic field is applied, similar to the behavior of bulk materials.
- (iii)
- The electrochemical activity associated with metal oxidation can work as an ON–OFF switch for the spin filter device.
2.2.3. Molecular Spin Quantum Valves in Carbon-Based Nanostructures
2.3. Scaling of CoII SCO-SIMs as Spin Quantum Nanodevices in QIP
- (i)
- Designing qubits with exceptional quantum coherence;
- (ii)
- Scaling up to implement double qubit-based quantum gates (QGs);
- (iii)
- Conceiving a quantum computing device as a multiqubit 2D array capable of storing and processing quantum information.
- (i)
- Pinpointing the primary sources of quantum decoherence in cobalt(II) SCO-SIMs;
- (ii)
- Building supramolecular arrays of cobalt(II) SCO-SIMs with increasing complexity, featuring non-negligible feeble and potentially switchable intermolecular interactions;
- (iii)
- Effectively addressing suitable cobalt(II) SCO-SIMs and their supramolecular arrays on surfaces and other solid supports.
2.3.1. Molecular Spin Quantum Bits
2.3.2. Optically, Chemically or Electrochemically, and Electrically or Magnetically Addressable Molecular Spin Quantum Bits
- (i)
- Light is an environmentally green stimulus;
- (ii)
- They can be remotely controlled with precision timing and positioning;
- (iii)
- They enable straightforward single-spin readout and initialization;
- (iv)
- They can be orthogonally coupled with other switchable entities in a single-spin configuration to build complex logic multitaskers.
2.3.3. Exotic Arrays of Molecular Spin Quantum Bits in Soft Matter
2.3.4. Molecular Spin Quantum Bits in Porous MOF-Based Materials
2.3.5. MOFs and MCOFs as Entangled and Potentially Switchable Ordered Arrays of Molecular Spin Quantum Bits
3. Conclusions and Outlook
4. Epilog
Author Contributions
Funding
Conflicts of Interest
List of Abbreviations
References
- Moore, G.E. Cramming more components onto integrated circuits. Electron. Mag. 1965, 38, 114–117. [Google Scholar] [CrossRef]
- Feynman, R.P. There’s plenty of room at the bottom: An invitation to enter a new field of physics. Eng. Sci. 1960, 23, 22–36. [Google Scholar]
- Baibich, M.N.; Broto, J.M.; Fert, A.; Nguyen Van Dau, F.; Petroff, F.; Etienne, P.; Creuzet, G.; Friederich, A.; Chazelas, J. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 1988, 61, 2472–2475. [Google Scholar] [CrossRef] [PubMed]
- Binash, G.; Grünberg, P.; Saurenbach, F.; Zinn, W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 1989, 39, 4828–4830. [Google Scholar] [CrossRef]
- Awschalom, D.D.; Bassett, L.C.; Dzurak, A.S.; Hu, E.L.; Petta, J.R. Quantum spintronics: Engineering and manipulating atom-like spins in semiconductors. Science 2013, 339, 1174–1179. [Google Scholar] [CrossRef]
- Arute, F.; Arya, K.; Babbush, R.; Bacon, D.; Bardin, J.C.; Barends, R.; Biswas, R.; Boixo, S.; Brandao, F.G.S.L.; Buell, D.A.; et al. Quantum supremacy using a programmable superconducting processor. Nature 2019, 574, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.-S.; Wang, H.; Deng, Y.-H.; Chen, M.-C.; Peng, L.-C.; Luo, Y.-H.; Qin, J.; Wu, D.; Ding, X.; Hu, P.; et al. Quantum computational advantage using photons. Science 2020, 370, 1460–1463. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.-C.; Wu, D.; Zhong, H.-S.; Luo, Y.-H.; Li, Y.; Hu, Y.; Jiang, X.; Chen, M.-C.; Li, L.; Liu, N.-L.; et al. Cloning of quantum entanglement. Phys. Rev. Lett. 2020, 125, 210502. [Google Scholar] [CrossRef]
- Coronado, E. Molecular magnetism: From chemical design to spin control in molecules, materials and devices. Nat. Rev. Mater. 2020, 5, 87–104. [Google Scholar] [CrossRef]
- Fert, A. Nobel lecture: Origin, development, and future of spintronics. Rev. Mod. Phys. 2008, 8, 1517–1530. [Google Scholar] [CrossRef]
- Shor, P.W. Algorithms for quantum computation: Discrete logarithms and factoring. In Proceedings of the 35nd Annual Symposium on Foundations of Computer Science, Santa Fe, NM, USA, 20–22 November 1994; Goldwasser, S., Ed.; IEEE Computer Society Press: Los Alamitos, CA, USA, 1994; pp. 124–134. [Google Scholar]
- Grover, L.K. Quantum computers can search arbitrarily large databases by a single query. Phys. Rev. Lett. 1997, 79, 4709–4712. [Google Scholar] [CrossRef]
- Kloeffel, C.; Loss, D. Prospects for spin-based quantum computing in quantum dots. Annu. Rev. Condens. Matter Phys. 2013, 4, 51–81. [Google Scholar] [CrossRef]
- Sanvito, S. Molecular spintronics. Chem. Soc. Rev. 2011, 40, 3336–3355. [Google Scholar] [CrossRef]
- Sanvito, S. Injecting and controlling spins in organic materials. J. Mater. Chem. 2007, 17, 4455–4459. [Google Scholar] [CrossRef]
- Affronte, M.; Troiani, F.; Ghirri, A.; Candini, A.; Evangelisti, M.; Corradini, V.; Carretta, S.; Santini, P.; Amoretti, G.; Tuna, F.; et al. Single molecule magnets for quantum computation. J. Phys. D Appl. Phys. 2007, 40, 2999–3004. [Google Scholar] [CrossRef]
- Bogani, L.; Wernsdorfer, W. Molecular spintronics using single-molecule magnets. Nat. Mater. 2008, 7, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Winpenny, R.E.P. Quantum information processing using molecular nanomagnets as qubits. Angew. Chem. Int. Ed. 2008, 47, 7992–7994. [Google Scholar] [CrossRef]
- Lehmann, J.; Gaita-Ariño, A.; Coronado, E.; Loss, D. Quantum computing with molecular spin systems. J. Mater. Chem. 2009, 19, 1672–1677. [Google Scholar] [CrossRef]
- Stamp, P.C.E.; Gaita-Ariño, A. Spin-based quantum computers made by chemistry: Hows and whys. J. Mater. Chem. 2009, 19, 1718–1730. [Google Scholar] [CrossRef]
- Affronte, M. Molecular nanomagnets for information technologies. J. Mater Chem. 2009, 19, 1731–1737. [Google Scholar] [CrossRef]
- Ardavan, A.; Blundell, S.J. Storing quantum information in chemically engineered nanoscale magnets. J. Mater. Chem. 2009, 19, 1754–1760. [Google Scholar] [CrossRef]
- Dei, A.; Gatteschi, D. Molecular (nano)magnets as test grounds of quantum mechanics. Angew. Chem. Int. Ed. 2011, 50, 11852–11858. [Google Scholar] [CrossRef]
- Timco, G.A.; Faust, T.B.; Tuna, F.; Winpenny, R.E.P. Linking heterometallic rings for quantum information processing and amusement. Chem. Soc. Rev. 2011, 40, 3067–3075. [Google Scholar] [CrossRef]
- Troiani, F.; Affronte, M. Molecular spins for quantum information technologies. Chem. Soc. Rev. 2011, 40, 3119–3129. [Google Scholar] [CrossRef]
- Aromí, G.; Aguilà, D.; Gamez, P.; Luis, F.; Roubeau, O. Design of magnetic coordination complexes for quantum computing. Chem. Soc. Rev. 2012, 41, 537–546. [Google Scholar] [CrossRef] [PubMed]
- Ghirri, A.; Troiani, F.; Affronte, M. Quantum computation with molecular nanomagnets: Achievements, challenges, and new trends. Struct. Bond. 2015, 164, 383–430. [Google Scholar]
- Sessoli, R. Toward the quantum computer: Magnetic molecules back in the race. ACS Cent. Sci. 2015, 1, 473–474. [Google Scholar] [CrossRef]
- Gaita-Ariño, A.; Luis, F.; Hill, S.; Coronado, E. Molecular spins for quantum computation. Nat. Chem. 2019, 11, 301–309. [Google Scholar] [CrossRef]
- Figgins, P.E.; Busch, D.H. Complexes of iron(II), cobalt(II) and nickel(II) with biacetyl-bis-methylimine, 2-pyridinal-methylimine and 2,6-pyridindial-bis-methylimine. J. Am. Chem. Soc. 1960, 82, 820–824. [Google Scholar] [CrossRef]
- Goodwin, H.A. Spin transitions in six-coordinate iron(II) complexes. Coord. Chem. Rev. 1976, 18, 293–325. [Google Scholar] [CrossRef]
- Gütlich, P. Spin crossover in iron(II) complexes. Struct. Bond. 1981, 44, 83–195. [Google Scholar]
- König, E.; Ritter, G.; Kulshreshtha, S.K. The nature of spin-state transitions in solid complexes of iron(II) and the interpretation of some associated phenomena. Chem. Rev. 1985, 85, 219–234. [Google Scholar] [CrossRef]
- Boillot, M.L.; Sour, A.; Delhaes, P.; Mingotaud, C.; Soyer, H. A photomagnetic effect for controlling spin states of iron(II) complexes in molecular materials. Coord. Chem. Rev. 1999, 190–192, 47–59. [Google Scholar] [CrossRef]
- Krivokapic, I.; Zerara, M.; Daku, M.L.; Vargas, A.; Enachescu, C.; Ambrus, C.; Tregenna-Piggott, P.; Amstutz, N.; Krausz, E.; Hauser, A. Spin-crossover in cobalt(II) imine complexes. Coord. Chem. Rev. 2007, 251, 364–378. [Google Scholar] [CrossRef]
- Real, J.A.; Gaspar, A.B.; Muñoz, M.C. Thermal, pressure and light switchable spin-crossover materials. Dalton Trans. 2005, 2062–2079. [Google Scholar] [CrossRef] [PubMed]
- Bousseksou, A.; Molnár, G.; Salmon, L.; Nicolazzi, W. Molecular spin crossover phenomenon: Recent achievements and prospects. Chem. Soc. Rev. 2011, 40, 3313–3335. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, E. Charge transport properties of spin crossover systems. Phys. Chem. Chem. Phys. 2014, 16, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Bertoni, R.; Cammarata, M.; Lorenc, M.; Matar, S.F.; Matar, J.-F.; Létard, J.F.; Lemke, E.; Collet, H.T. Ultrafast light-induced spin-state trapping photophysics investigated in Fe(phen)2(NCS)2 spin-crossover crystal. Acc. Chem. Res. 2015, 48, 774–781. [Google Scholar] [CrossRef]
- Harding, D.J.; Harding, P.; Phonsri, W. Spin crossover in iron(II) complexes. Coord. Chem. Rev. 2016, 313, 38–61. [Google Scholar] [CrossRef]
- Khusniyarov, M.M. How to switch spin-crossover metal complexes at constant room temperature. Chem. Eur. J. 2016, 22, 15178–15191. [Google Scholar] [CrossRef]
- Halcrow, M.A. Structure: Function relationships in molecular spin-crossover complexes. Chem. Soc. Rev. 2011, 40, 4119–4142. [Google Scholar] [CrossRef] [PubMed]
- Halcrow, M.A. Spin-crossover compounds with wide thermal hysteresis. Chem. Lett. 2014, 43, 1178–1188. [Google Scholar] [CrossRef]
- Halcrow, M.A. The effect of ligand design on metal ion spin state-Lessons from spin crossover complexes. Crystals 2016, 6, 58. [Google Scholar] [CrossRef]
- Mallah, T.; Cavallini, M. Surfaces, thin films and patterning of spin crossover compounds. C. R. Chimie 2018, 21, 1270–1286. [Google Scholar] [CrossRef]
- Molnár, G.; Rat, S.; Salmon, L.; Nicolazzi, W.; Bousseksou, A. Spin crossover nanomaterials: From fundamental concepts to devices. Adv. Mater. 2018, 30, 17003862. [Google Scholar] [CrossRef]
- Molnár, G.; Mikolasek, M.; Ridier, K.; Fahs, A.; Nicolazzi, W.; Bousseksou, A. Molecular spin crossover materials: Review of the lattice dynamical properties. Ann. Phys. 2019, 531, 1900076. [Google Scholar] [CrossRef]
- Cirera, J.; Ruiz, E.; Alvarez, S.; Neese, F.; Kortus, J. How to build molecules with large magnetic anisotropy. Chem. Eur. J. 2009, 15, 4078–4087. [Google Scholar]
- Neese, F.; Pantazis, D.A. What is not required to make a single molecule magnet. Faraday Discuss. 2011, 148, 229–238. [Google Scholar] [PubMed]
- Atanasov, M.; Aravena, D.; Suturina, E.; Bill, E.; Maganas, D.; Neese, F. First principles approach to the electronic structure, magnetic anisotropy and spin relaxation in mononuclear 3d-transition metal single molecule magnets. Coord. Chem. Rev. 2015, 289–290, 177–214. [Google Scholar]
- Gomez-Coca, S.; Aravena, D.; Morales, R.; Ruiz, E. Large magnetic anisotropy in mononuclear metal complexes. Coord. Chem. Rev. 2015, 289–290, 379–392. [Google Scholar] [CrossRef]
- Chibotaru, L.F. Theoretical understanding of anisotropy in molecular nanomagnets. Struct. Bond. 2015, 164, 185–229. [Google Scholar]
- Craig, G.A.; Murrie, M. 3d Single-ion magnets. Chem. Soc. Rev. 2015, 44, 2135–2147. [Google Scholar] [CrossRef] [PubMed]
- Frost, J.M.; Harriman, K.L.M.; Murugesu, M. The rise of 3-d single-ion magnets in molecular magnetism: Towards materials from molecules? Chem. Sci. 2016, 7, 2470–2491. [Google Scholar] [CrossRef]
- Bar, A.K.; Pichon, C.; Sutter, J.-P. Magnetic anisotropy in two- to eight-coordinated transition-metal complexes: Recent developments in molecular magnetism. Coord. Chem. Rev. 2016, 308, 346–380. [Google Scholar] [CrossRef]
- Meng, Y.-S.; Jiang, S.-D.; Wang, B.-W.; Gao, S. Understanding the magnetic anisotropy toward single-ion magnets. Acc. Chem. Res. 2016, 49, 2381–2389. [Google Scholar] [CrossRef]
- Feng, M.; Tong, M.-L. Single-ion magnets from 3d to 5f: Developments and strategies. Chem. Eur. J. 2018, 24, 7574–7594. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Pineda, E.; Wernsdorfer, W. Measuring molecular magnets for quantum technologies. Nat. Rev. Phys. 2021, 3, 645–659. [Google Scholar] [CrossRef]
- Zabala-Lekuona, A.; Seco, J.M.; Colacio, E. Single-molecule magnets: From Mn12-ac to dysprosium metallocenes. A travel in time. Coord. Chem. Rev. 2021, 441, 213984. [Google Scholar] [CrossRef]
- Chilton, N.F. Molecular Magnetism. Annu. Rev. Matter. Res. 2022, 52, 79–101. [Google Scholar] [CrossRef]
- Park, J.; Pasupathy, A.N.; Goldsmith, J.I.; Chang, C.; Yaish, Y.; Petta, J.R.; Rinkoski, M.; Sethna, J.P.; Abruña, H.D.; McEuen, P.L.; et al. Coulomb blockade and the kondo effect in single-atom transistors. Nat. Mater. 2002, 417, 722–725. [Google Scholar] [CrossRef] [PubMed]
- Parks, J.J.; Champagne, A.R.; Costi, T.A.; Shum, W.W.; Pasupathy, A.N.; Neuscamman, E.; Flores-Torres, S.; Cornaglia, P.S.; Aligia, A.A.; Balseiro, C.A.; et al. Mechanical control of spin states in spin-1 molecules and the underscreened kondo effect. Science 2010, 328, 1370–1373. [Google Scholar] [CrossRef]
- Meded, V.; Bagrets, A.; Fink, K.; Chandrasekar, R.; Ruben, M.; Evers, F.; Bernand-Mantel, A.; Seldenthuis, J.S.; Beukman, A.; van der Zant, H.S.J. Electrical control over the Fe(II) spin crossover in a single molecule: Theory and experiment. Phys. Rev. B 2011, 83, 245415. [Google Scholar] [CrossRef]
- Harzmann, G.D.; Frisenda, R.; van der Zant, H.S.J.; Mayor, M. Single-molecules spin switch based on voltage-triggered distortion of the coordination sphere. Angew. Chem. Int. Ed. 2015, 54, 13425–13430. [Google Scholar] [CrossRef]
- Devid, E.J.; Martinho, P.N.; Kamalakar, M.V.; Salitros, I.; Prendergast, Ú.; Dayen, J.-F.; Meded, V.; Lemma, T.; González-Pietro, R.; Evers, F.; et al. Spin transition in arrays of gold nanoparticles and spin crossover molecules. ACS Nano 2015, 9, 4486–4507. [Google Scholar] [CrossRef]
- Aravena, D.; Ruiz, E. Coherent transport through spin-crossover single molecules. J. Am. Chem. Soc. 2012, 134, 777–779. [Google Scholar] [CrossRef]
- Aragonès, A.C.; Aravena, D.; Cerdá, J.I.; Acís-Castillo, Z.; Li, H.; Real, J.A.; Sanz, F.; Hihath, J.; Ruiz, E.; Díez-Pérez, I. Large conductance switching in a single-molecule device through room temperature spin-dependent transport. Nano Lett. 2016, 16, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Katsnelson, M.I. Graphene: Carbon in two dimensions. Mater. Today 2007, 10, 20–27. [Google Scholar] [CrossRef]
- Konstantinov, N.; Tauzin, A.; Noumbé, U.N.; Dragoe, D.; Kundys, B.; Majjad, H.; Brosseau, A.; Lenertz, M.; Singh, A.; Berciaud, S.; et al. Electrical read-out of light-induced spin transition in thin film spin crossover/graphene heterostructures. J. Mater. Chem. C 2021, 9, 2712–2720. [Google Scholar] [CrossRef]
- Lee, C.W.; Kim, O.Y.; Lee, J.Y. Organic materials for organic electronic devices. J. Ind. Eng. Chem. 2014, 20, 1198–1208. [Google Scholar] [CrossRef]
- Komeda, T.; Isshiki, H.; Liu, J.; Zhang, Y.-F.; Lorente, N.; Katoh, K.; Breedlove, B.K.; Yamashita, M. Observation and electric current control of a local spin in a single-molecule magnet. Nat. Commun. 2011, 2, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Kyatskaya, S.; Galán-Mascarós, J.R.; Bogani, L.; Hennrich, F.; Kappes, M.; Wernsdorfer, W.; Ruben, M. Anchoring of rare-earth-based single-molecule magnets on single-walled carbon nanotubes. J. Am. Chem. Soc. 2009, 131, 15143–15151. [Google Scholar] [CrossRef] [PubMed]
- Urdampilleta, M.; Klyatskaya, S.; Cleuziou, J.-P.; Ruben, M.; Wernsdorfer, W. Supramolecular spin valves. Nat. Mater. 2011, 10, 502–506. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, M.C.; Real, J.A. Thermo-, piezo-, photo- and chemo-switchable spin crossover iron(II)-metallocyanate based coordination polymers. Coord. Chem. Rev. 2011, 255, 2068–2093. [Google Scholar] [CrossRef]
- Goodwin, H.A. Spin crossover in cobalt(II) systems. Top. Curr. Chem. 2004, 234, 23–47. [Google Scholar]
- Cowan, M.G.; Olguín, J.; Narayanaswamy, S.; Tallon, J.L.; Brooker, S. Reversible switching of a cobalt complex by thermal, pressure, and electrochemical stimuli: Abrupt, complete, hysteretic spin crossover. J. Am. Chem. Soc. 2012, 134, 2892–2894. [Google Scholar] [CrossRef] [PubMed]
- Kahn, O. Molecular Magnetism; VCH Publishers: New York, NY, USA, 1993. [Google Scholar]
- Ishikawa, N.; Sugita, M.; Ishikawa, T.; Koshihara, S.Y.; Kaizu, Y. Lanthanide double-decker complexes functioning as magnets at the single-molecular level. J. Am. Chem. Soc. 2003, 125, 8694–8695. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, N.; Sugita, M.; Okubo, T.; Tanaka, N.; Lino, T.; Kaizu, Y. Determination of ligand-field parameters and f-electronic structures of double-decker bis(phthalocyaninato)lanthanide complexes. Inorg. Chem. 2003, 42, 2440–2446. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, N.; Sugita, M.; Ishikawa, T.; Koshihara, S.-Y.; Kaizu, Y. Mononuclear lanthanide complexes with a long magnetisation relaxation time at high temperatures: A new category of magnets at the single-molecular level. J. Phys. Chem. B 2004, 108, 11265–11271. [Google Scholar] [CrossRef]
- Vallejo, J.; Castro, I.; Ruiz-García, R.; Cano, J.; Julve, M.; Lloret, F.; De Munno, G.; Wernsdorfer, W.; Pardo, E. Field-induced slow magnetic relaxation in a six-coordinate mononuclear cobalt(II) complex with a positive anisotropy. J. Am. Chem. Soc. 2012, 134, 15704–15707. [Google Scholar] [CrossRef] [PubMed]
- Gaspar, A.B.; Ksenofontov, V.; Seredyuk, M.; Gutlich, P. Multifunctionality in spin crossover materials. Coord. Chem Rev. 2005, 249, 2661–2676. [Google Scholar] [CrossRef]
- Bousseksou, A.; Molnár, G.; Demont, P.; Menegotto, J. Observation of a thermal hysteresis loop in the dielectric constant of spin crossover complexes: Towards molecular memory devices. J. Mater. Chem. 2003, 13, 2069–2071. [Google Scholar] [CrossRef]
- Kumar, K.S.; Ruben, M. Emerging trends in spin crossover (SCO) based functional materials and devices. Coord. Chem. Rev. 2017, 346, 176–205. [Google Scholar] [CrossRef]
- Gutlich, P.; Hauser, A. Thermal and light-induced spin crossover in iron(II) complexes. Coord. Chem. Rev. 1990, 97, 1–22. [Google Scholar] [CrossRef]
- Hayami, S.; Komatsu, Y.; Shimizu, T.; Kamihata, H.; Lee, Y.H. Spin-crossover in cobalt(II) compounds containing terpyridine and its derivatives. Coord. Chem. Rev. 2011, 255, 1981–1990. [Google Scholar] [CrossRef]
- Galet, A.; Gaspar, A.B.; Muñoz, M.C.; Real, J.A. Influence of the counterion and the solvent molecules in the spin crossover system [Co(4-terpyridone)2]Xp·nH2O. Inorg. Chem. 2006, 45, 4413–4422. [Google Scholar] [CrossRef]
- Murrie, M. Cobalt(II) single-molecule magnets. Chem. Soc. Rev. 2010, 39, 1986–1995. [Google Scholar] [CrossRef]
- Ding, Y.-S.; Deng, Y.-F.; Zheng, Y.-Z. The rise of single-ion magnets as spin qubits. Magnetochemistry 2016, 2, 40. [Google Scholar] [CrossRef]
- Zadrozny, J.M.; Long, J.R. Slow magnetic relaxation at zero field in the tetrahedral complex [Co(SPh)4]2−. J. Am. Chem. Soc. 2011, 133, 20732–20734. [Google Scholar] [CrossRef] [PubMed]
- Lloret, F.; Julve, M.; Cano, J.; Ruiz-García, R.; Pardo, E. Magnetic properties of six-coordinated high-spin cobalt(II) complexes: Theoretical background and its application. Inorg. Chim. Acta 2008, 361, 3432–3445. [Google Scholar] [CrossRef]
- Herchel, R.; Váhovská, L.; Potocnák, I.; Trávnícek, Z. Slow magnetic relaxation in octahedral cobalt(II) field-induced single-ion magnet with positive axial and large rhombic anisotropy. Inorg. Chem. 2014, 53, 5896–5898. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Oyarzabal, I.; Vallejo, J.; Cano, J.; Colacio, E.; Bauza, A.; Frontera, A.; Kirillov, A.M.; Drew, M.G.B.; Das, S. Two polymorphic forms of a six-coordinate mononuclear cobalt(II) complex with easy-plane anisotropy: Structural features, theoretical calculations, and field-induced slow relaxation of the magnetisation. Inorg. Chem. 2016, 55, 8502–8513. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.-Y.; Meng, Y.-S.; Xiao, Y.; Zhang, Y.-Q.; Zhu, Y.-Y.; Gao, S. Probing the influence of molecular symmetry on the magnetic anisotropy of octahedral cobalt(II) complexes. Inorg. Chem. Front. 2017, 4, 1909–1916. [Google Scholar] [CrossRef]
- Wu, Y.; Tian, D.; Ferrando-Soria, J.; Cano, J.; Yin, L.; Ouyang, Z.; Wang, Z.; Luo, S.; Liu, X.; Pardo, E. Modulation of the magnetic anisotropy of octahedral cobalt(II) single-ion magnets by fine-tuning the axial coordination microenvironment. Inorg. Chem. Front. 2019, 6, 848–856. [Google Scholar] [CrossRef]
- Cen, P.; Yuan, W.; Tan, M.; Chen, B.; Song, W.; Wang, Z.; Liu, X. Field-induced slow magnetic relaxation in an octahedral high-spin Co(II) complex. Inorg. Chem. Commun. 2019, 99, 195–198. [Google Scholar] [CrossRef]
- Palion-Gazda, J.; Machura, B.; Kruszynski, R.; Grancha, T.; Moliner, N.; Lloret, F.; Julve, M. Spin crossover in double salts containing six- and four-coordinate cobalt(II) ions. Inorg. Chem. 2017, 56, 6281–6296. [Google Scholar] [CrossRef] [PubMed]
- Shao, D.; Deng, L.-D.; Shi, L.; Wu, D.-Q.; Wei, X.-Q.; Yang, S.-R.; Wang, X.-Y. Slow magnetic relaxation and spin crossover behaviour in a bicomponent ion-pair cobalt(II) complex. Eur. J. Inorg. Chem. 2017, 2017, 3862–3867. [Google Scholar] [CrossRef]
- Cui, H.-H.; Wang, J.; Chen, X.-T.; Xue, Z.-L. Slow magnetic relaxation in five-coordinate spin-crossover cobalt(II) complexes. Chem. Commun. 2017, 53, 9304–9307. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Song, J.; Zhao, W.; Yi, G.; Zhou, Z.; Yuan, A.; Song, Y.; Wang, Z.; Ouyang, Z.-W. A mononuclear five-coordinate Co(II) single molecule magnet with a spin crossover between the S = 1/2 and 3/2 states. Dalton Trans. 2018, 47, 16596–16602. [Google Scholar] [CrossRef]
- Xu, M.-X.; Liu, Z.; Dong, B.-W.; Cui, H.-H.; Wang, Y.-X.; Su, J.; Wang, Z.; Song, Y.; Chen, X.-T.; Jiang, S.-D.; et al. Single-crystal study of a low spin Co(II) molecular qubit: Observation of anisotropic rabi cycles. Inorg. Chem. 2019, 58, 2330–2335. [Google Scholar] [CrossRef] [PubMed]
- Shao, D.; Shi, L.; Yin, J.; Wang, B.-L.; Wang, Z.-X.; Zhang, Y.-Q.; Wang, X.-Y. Reversible on-off switching of both spin crossover and single-molecule magnet behaviours via a crystal-to-crystal transformation. Chem. Sci. 2018, 9, 7986–7991. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, F.; Komatsumaru, Y.; Akiyoshi, R.; Nakamura, M.; Zhang, Y.; Lindoy, L.F.; Hayami, S. Water molecule-induced reversible magnetic switching in a bis-terpyridine cobalt(II) complex exhibiting coexistence of spin crossover and orbital transition behaviors. Inorg. Chem. 2020, 59, 16843–16852. [Google Scholar] [CrossRef] [PubMed]
- Rabelo, R.; Toma, L.; Moliner, N.; Julve, M.; Lloret, F.; Pasán, J.; Ruiz-Pérez, C.; Ruiz-García, R.; Cano, J. Electro-switching of the single-molecule magnet behaviour in an octahedral spin crossover cobalt(II) complex with a redox-active pyridinediimine ligand. Chem. Commun. 2020, 56, 12242–12245. [Google Scholar] [CrossRef]
- Rabelo, R.; Toma, L.; Moliner, N.; Julve, M.; Lloret, F.; Inclán, M.; García-España, E.; Pasán, J.; Ruiz-García, R.; Cano, J. pH-Switching of the luminescent, redox, and magnetic properties in a spin crossover cobalt(II) molecular nanomagnet. Chem. Sci. 2023, 14, 8850. [Google Scholar] [CrossRef] [PubMed]
- Rabelo, R.; Toma, L.; Julve, M.; Lloret, F.; Pasán, J.; Cangussu, D.; Ruiz-García, R.; Cano, J. How the spin state tunes the slow magnetic relaxation field dependence in spin crossover cobalt(II) complexes. Dalton Trans. 2024, 53, 5507–5520. [Google Scholar] [CrossRef] [PubMed]
- Rabelo, R.; Toma, L.; Julve, M.; Lloret, F.; Pasán, J.; Cangussu, D.; Ruiz-García, R.; Cano, J. Multi-electron transfer and field-induced slow magnetic relaxation in spin crossover cobalt(II) complexes: Structure-function correlations. Inorg. Chem. Front. 2024, 11, 6028–6043. [Google Scholar] [CrossRef]
- Canton, S.E.; Biednov, M.; Pápai, M.; Lima, F.A.; Choi, T.-K.; Otte, F.; Jiang, Y.; Frankenberger, P.; Knoll, M.; Zalden, P.; et al. Ultrafast Jahn-Teller photoswitching in cobalt single-ion magnets. Adv. Sci. 2023, 10, 2206880. [Google Scholar] [CrossRef]
- Urtizberea, A.; Roubeau, O. Switchable slow relaxation of magnetization in the native low temperature phase of a cooperative spin crossover compound. Chem. Sci. 2017, 8, 2290–2295. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Mathonière, C.; Jeon, I.-R.; Rouzières, M.; Ozarowski, A.; Aubrey, M.L.; Gonzalez, M.I.; Clérac, R.; Long, J.R. Tristability in a light-actuated single-molecule magnet. J. Am. Chem. Soc. 2013, 135, 15880–15884. [Google Scholar] [CrossRef]
- Mathonière, C.; Lin, H.-J.; Siretanu, D.; Clérac, R.; Smith, J.M. Photoinduced single-molecule magnet properties in a four-coordinate iron(II) spin crossover complex. J. Am. Chem. Soc. 2013, 135, 19083–19086. [Google Scholar] [CrossRef] [PubMed]
- Ferrando-Soria, J.; Vallejo, J.; Castellano, M.; Martínez-Lillo, J.; Pardo, E.; Cano, J.; Castro, I.; Lloret, F.; Ruiz-García, R.; Julve, M. Molecular magnetism, quo vadis? A historical perspective from a coordination chemist viewpoint. Coord. Chem. Rev. 2017, 339, 17–103. [Google Scholar] [CrossRef]
- Ruben, M.; Rojo, J.; Romero-Salguero, F.J.; Uppadine, L.H.; Lehn, J.-M. Grid-type metal ion architectures: Functional metallosupramolecular arrays. Angew. Chem. Int. Ed. 2004, 43, 3644–3662. [Google Scholar] [CrossRef] [PubMed]
- Moriuchi, T.; Hirao, T. Design and redox function of conjugated complexes with polyanilines or quinonediimines. Acc. Chem. Res. 2012, 45, 347–360. [Google Scholar] [CrossRef]
- Mansoor, I.F.; Wozniak, D.I.; Wu, Y.; Lipke, M.C. A delocalized cobaltoviologen with seven reversibly accessible redox states and highly tunable electrochromic behaviour. Chem. Commun. 2020, 56, 13864–13867. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Liu, X.; Shi, C.; Zhang, Y.; Feng, X.; Cheng, M.-L.; Su, S.; Gu, J. A copper-based layered coordination polymer: Synthesis, magnetic properties and electrochemical performance in supercapacitors. Dalton Trans. 2015, 44, 19175–19184. [Google Scholar] [CrossRef]
- Zhang, Q.; Uchaker, E.; Candelaria, S.L.; Cao, G. Nanomaterials for energy conversion and storage. Chem. Soc. Rev. 2013, 42, 3127–3171. [Google Scholar] [CrossRef] [PubMed]
- Durfee, W.S.; Pierpont, C.G. Complexes of quinone-functionalised chelating ligands for multiple electron/proton transfer reduction reactions. Inorg. Chem. 1993, 32, 493–494. [Google Scholar] [CrossRef]
- Malwitz, J.; Alkire, N.; Durfee, W. Quinone-functionalized transition metal complexes for multi-electron transfer. the electrochemistry of a bis-naphthoquinone-functionalized schiff base Ni(II) complex. J. Coord. Chem. 2010, 55, 641–650. [Google Scholar] [CrossRef]
- Roux, C.; Zarembowitch, J.; Gallois, B.; Granier, T.; Claude, R. Toward ligand-driven light-induced spin changing. influence of the configuration of 4-styrylpyridine (stpy) on the magnetic properties of FeII(stpy)4(NCS)2 complexes. Crystal Structures of the spin-crossover species Fe(trans-stpy)4(NCS)2 and of the high-spin species Fe(cis-stpy)4(NCS)2. Inorg. Chem. 1994, 33, 2273–2279. [Google Scholar]
- Dietrich-Buchecker, C.O.; Sauvage, J.-P.; Kintzinger, J.-P. Une nouvelle famille de molécules: Les métallo-caténanes. Tetrahedron Lett. 1983, 24, 5095–5098. [Google Scholar] [CrossRef]
- Mohr, B.; Sauvage, J.-P.; Grubbs, R.H.; Weck, M. High-yield synthesis of [2]catenanes by intramolecular ring-closing metathesis. Angew. Chem. Int. Ed. 1997, 36, 1308–1310. [Google Scholar] [CrossRef]
- Hruby, J.; Vavrecková, S.; Masaryk, L.; Sojka, A.; Navarro-Giraldo, J.; Bartos, M.; Herchel, R.; Moncol, J.; Nemec, I.; Neugebauer, P. Deposition of tetracoordinate Co(II) complex with chalcone ligands on graphene. Molecules 2020, 25, 5021. [Google Scholar] [CrossRef] [PubMed]
- Hruby, J.; Dvorák, D.; Squillantini, L.; Mannini, M.; van Slageren, J.; Herchel, R.; Nemec, I.; Neugebauer, P. Co(II)-based single-ion magnets with 1,1′-ferrocenediyl-bis(diphenylphosphine) metalloligands. Dalton Trans. 2020, 49, 11697–11707. [Google Scholar] [CrossRef] [PubMed]
- Juráková, J.; Midlíková, J.D.; Hruby, J.; Kliuikov, A.; Santana, V.T.; Pavlik, J.; Moncol, J.; Cizmár, E.; Orlita, M.; Mohelsky, I.; et al. Pentaccordinate cobalt(II) single ion magnets with pendant alkyl chains: Shall we go for chloride or bromide? Inorg. Chem. Front. 2022, 9, 1179–1194. [Google Scholar] [CrossRef]
- Juráková, J.; Fellner, O.F.; Schlittenhardt, S.; Vavrecková, S.; Nemec, I.; Herchel, R.; Cizmár, E.; Santana, V.T.; Orlita, M.; Gentili, D.; et al. Neutral cobalt(II)-bis(benzimidazole)pyridine field-induced single-ion magnets for surface deposition. Inorg. Chem. Front. 2023, 10, 5406–5419. [Google Scholar] [CrossRef]
- Navarro-Giraldo, J.; Hruby, J.; Vavrecková, S.; Fellner, O.F.; Havlicek, L.; Henry, D.; de Silva, S.; Herchel, R.; Bartos, M.; Salitros, I.; et al. Tetracoordinate Co(II) complexes with semi-coordination as stable single-ion magnets for deposition on graphene. Phys. Chem. Chem. Phys. 2023, 25, 29516–29530. [Google Scholar] [CrossRef]
- García-López, V.; Giaconi, N.; Poggini, L.; Calbo, J.; Juhin, A.; Cortigiani, B.; Herrero-Martín, J.; Ortí, E.; Mannini, M.; Clemente-León, M.; et al. Spin-crossover grafted monolayer of a Co(II) terpyridine derivative functionalized with carboxylic acid groups. Adv. Func. Mater. 2023, 33, 2300351. [Google Scholar] [CrossRef]
- Bloom, B.P.; Paltiel, Y.; Naaman, R.; Waldeck, D.H. Chiral Induced Spin Selectivity. Chem. Rev. 2024, 124, 1950–1991. [Google Scholar] [CrossRef] [PubMed]
- Torres-Cavanillas, R.; Escorzia-Ariza, G.; Brotons-Alcázar, I.; Sanchis-Gual, R.; Mondal, P.C.; Rosaleny, L.E.; Giménez-Santamarina, S.; Sessolo, M.; Galbiati, M.; Tatay, S.; et al. Reinforced Room-Temperature Spin Filtering in Chiral Paramagnetic Metallopeptides. J. Am. Chem. Soc. 2020, 142, 17572–17580. [Google Scholar] [CrossRef] [PubMed]
- Cardona-Serra, S.; Rosaleny, L.E.; Giménez-Santamarina, S.; Martínez-Gil, L.; Gaita-Ariño, A. Towards peptide-based tunable multistate memristive materials. Phys. Chem. Chem. Phys. 2021, 23, 1802–1810. [Google Scholar] [CrossRef] [PubMed]
- Zadrozny, J.M.; Niklas, J.; Poluektov, O.G.; Freedman, D.E. Multiple quantum coherences form hyperfine transitions in a vanadium(IV) complex. J. Am. Chem. Soc. 2014, 136, 15841–15844. [Google Scholar] [CrossRef]
- Zadrozny, J.M.; Freedman, D.E. Qubit control limited by spin-lattice relaxation in a nuclear spin-free iron(III) complex. Inorg. Chem. 2015, 54, 12027–12031. [Google Scholar] [CrossRef] [PubMed]
- Fataftah, M.S.; Zadrozny, J.M.; Coste, S.C.; Graham, M.J.; Rogers, D.M.; Freedman, D.E. Employing forbidden transitions as qubits in a nuclear spin-free chromium complex. J. Am. Chem. Soc. 2016, 138, 1344–1348. [Google Scholar] [CrossRef]
- Yu, C.J.; Graham, M.J.; Zadrozny, J.M.; Niklas, J.; Krzyaniak, M.; Wasielewski, M.R.; Poluektov, O.G.; Freedman, D.E. Long coherence times in nuclear spin-free vanadyl qubits. J. Am. Chem. Soc. 2016, 138, 14678–14685. [Google Scholar] [CrossRef]
- Bader, K.; Dengler, D.; Lenz, S.; Endeward, B.; Jiang, S.-D.; Neugebauer, P.; van Slageren, J. Room temperature quantum coherence in a potential molecular qubit. Nat. Commun. 2014, 5, 5304–5308. [Google Scholar] [CrossRef]
- Atzori, M.; Tesi, L.; Morra, E.; Chiesa, M.; Sorace, L.; Sessoli, R. Room-temperature quantum coherence and rabi oscillations in vanadyl phthalocyanine: Toward multifunctional molecular spin qubits. J. Am. Chem. Soc. 2016, 138, 2154–2157. [Google Scholar] [CrossRef]
- Bader, K.; Winkler, M.; van Slageren, J. Tuning of molecular qubits: Very long coherence and spin–lattice relaxation times. Chem. Commun. 2016, 52, 3623–3626. [Google Scholar] [CrossRef]
- Carbonell-Vilar, J.M. Estudio de Propiedades Magnéticas en Compuestos de Coordinación Multifuncionales. Ph.D. Thesis, Universitat de València, Valencia, Spain, 2021. [Google Scholar]
- Rabelo, R. Spin Crossover Cobalt(II) Molecular Nanomagnets as Dynamic Molecular Systems. Ph.D. Thesis, Universitat de València, Valencia, Spain, 2022. [Google Scholar]
- Soyer, H.; Mingotaud, C.; Boillot, M.L.; Delhaes, P. Spin crossover of a langmuir−blodgett film based on an amphiphilic iron(II) complex. Langmuir 1998, 14, 5890–5895. [Google Scholar] [CrossRef]
- Soyer, H.; Mingotaud, C.; Boillot, M.L.; Delhaes, P. Spin-crossover complex stabilized on a formamide/water subphase. Thin Solid Films 1998, 329, 435–438. [Google Scholar] [CrossRef]
- Luo, Y.-H.; Liu, Q.-L.; Yang, L.-J.; Sun, Y.; Wang, J.-W.; You, C.-Q.; Sun, B.-W. Magnetic observation of above room-temperature spin transition in vesicular nano-spheres. J. Mater. Chem. C 2016, 4, 8061–8069. [Google Scholar] [CrossRef]
- Hayami, S.; Shigeyoshi, Y.; Akita, M.; Inoue, K.; Kato, K.; Osaka, K.; Takata, M.; Kawajiri, R.; Mitani, T.; Maeda, Y. Reverse spin transition triggered by a structural phase transition. Angew. Chem. Int. Ed. 2005, 44, 4899–4903. [Google Scholar] [CrossRef] [PubMed]
- Kitagawa, S.; Kitaura, R.; Noro, S.I. Functional porous coordination polymers. Angew. Chem. Int. Ed. 2004, 43, 2334–2375. [Google Scholar] [CrossRef] [PubMed]
- Kitagawa, S.; Matsuda, R. Chemistry of coordination space of porous coordination polymers. Coord. Chem. Rev. 2007, 251, 2490–2509. [Google Scholar] [CrossRef]
- Férey, G.; Serre, C. Large breathing effects in three-dimensional porous hybrid matter: Facts, analyses, rules and consequences. Chem. Soc. Rev. 2009, 38, 1380–1399. [Google Scholar] [CrossRef] [PubMed]
- Mon, M.; Bruno, R.; Ferrando-Soria, J.; Armentano, D.; Pardo, E. Metal–organic framework technologies for water remediation: Towards a sustainable ecosystem. J. Mat. Chem. A 2018, 6, 4912–4947. [Google Scholar] [CrossRef]
- Viciano-Chumillas, M.; Mon, M.; Ferrando-Soria, J.; Corma, A.; Leyva-Pérez, A.; Armentano, D.; Pardo, E. Metal–organic frameworks as chemical nanoreactors: Synthesis and stabilisation of catalytically active metal species in confined spaces. Acc. Chem. Res. 2020, 53, 520–531. [Google Scholar] [CrossRef]
- Ferrando-Soria, J.; Ruiz-García, R.; Cano, J.; Stiriba, S.-E.; Vallejo, J.; Castro, I.; Julve, M.; Lloret, F.; Amorós, P.; Pasán, J.; et al. Reversible solvatomagnetic switching in a spongelike manganese(II)–copper(II) 3D open framework with a pillared square/octagonal layer architecture. Chem. Eur. J. 2012, 18, 1608–1617. [Google Scholar] [CrossRef] [PubMed]
- Abhervé, A.; Grancha, T.; Ferrando-Soria, J.; Clemente-León, M.; Coronado, E.; Waerenborgh, J.C.; Lloret, F.; Pardo, E. Spin-crossover complex encapsulation within a magnetic metal–organic framework. Chem. Commun. 2016, 52, 7360–7363. [Google Scholar] [CrossRef] [PubMed]
- Mon, M.; Pascual-Álvarez, A.; Grancha, T.; Cano, J.; Ferrando-Soria, J.; Lloret, F.; Gascon, J.; Pasán, J.; Armentano, D.; Pardo, E. Solid-state molecular nanomagnet inclusion into a magnetic metal–organic framework: Interplay of the magnetic properties. Chem. Eur. J. 2016, 22, 539–545. [Google Scholar] [CrossRef]
- Graham, M.J.; Zadrozny, J.M.; Fataftah, M.S.; Freedman, D.E. Forging solid-state qubit design principles in a molecular furnace. Chem. Mater. 2017, 29, 1885–1897. [Google Scholar] [CrossRef]
- Yaghi, O.M.; O’Keeffe, M.; Eddaoudi, M.; Chae, K.; Kim, J.; Ockwing, N.W. Reticular synthesis and the design of new materials. Nature 2003, 423, 705–714. [Google Scholar] [CrossRef]
- Long, J.R.; Yaghi, O.M. The pervasive chemistry of metal–organic frameworks. Chem. Soc. Rev. 2009, 38, 1213–1214. [Google Scholar] [CrossRef]
- Castellano, M.; Ferrando-Soria, J.; Moliner, N.; Cano, J.; Julve, M.; Lloret, F. Growth of thin films of single-chain magnets on functionalized silicon surfaces. J. Coord. Chem. 2018, 71, 725–736. [Google Scholar] [CrossRef]
- Castellano, M.; Moliner, N.; Cano, J.; Lloret, F. Magnetic phase thransition and magneic bistability in oxamato-based CoIICuII bimetallic MOF thin films. Polyhedron 2019, 170, 7–11. [Google Scholar] [CrossRef]
- Geng, K.; He, T.; Liu, R.; Dalapati, S.; Tan, K.T.; Li, Z.; Tao, S.; Gong, Y.; Jiang, Q.; Jiang, D. Covalent organic frameworks: Design, synthesis, and functions. Chem. Rev. 2020, 120, 8814–8933. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Han, X.; Liu, Y.; Li, H.; Cui, Y. Metal–Covalent Organic Frameworks (MCOFs): A bridge between metal–organic frameworks and covalent organic frameworks. Angew. Chem. Int. Ed. 2020, 59, 13722–13733. [Google Scholar] [CrossRef] [PubMed]
- August, D.P.; Dryfe, R.A.W.; Haigh, S.J.; Kent, P.R.C.; Leigh, D.A.; Lemonnier, J.-F.; Li, Z.; Muryn, C.A.; Leoni, I.; Song, Y.; et al. Self-assembly of a layered two-dimensional molecularly woven fabric. Nature 2020, 588, 429–435. [Google Scholar] [CrossRef]
- Zao, Y.; Guo, L.; Gándara, F.; Ma, Y.; Liu, Z.; Zhu, C.; Lyu, H.; Trickett, C.A.; Kasputin, E.A.; Terasaki, O.; et al. A synthetic route for crystals of woven structures, uniform nanocrystals, and thin films of imine covalent organic frameworks. J. Am. Chem. Soc. 2017, 139, 13166–13172. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rabelo, R.; Toma, L.M.; Bentama, A.; Stiriba, S.-E.; Ruiz-García, R.; Cano, J. Exploring Spin-Crossover Cobalt(II) Single-Ion Magnets as Multifunctional and Multiresponsive Magnetic Devices: Advancements and Prospects in Molecular Spintronics and Quantum Computing Technologies. Magnetochemistry 2024, 10, 107. https://doi.org/10.3390/magnetochemistry10120107
Rabelo R, Toma LM, Bentama A, Stiriba S-E, Ruiz-García R, Cano J. Exploring Spin-Crossover Cobalt(II) Single-Ion Magnets as Multifunctional and Multiresponsive Magnetic Devices: Advancements and Prospects in Molecular Spintronics and Quantum Computing Technologies. Magnetochemistry. 2024; 10(12):107. https://doi.org/10.3390/magnetochemistry10120107
Chicago/Turabian StyleRabelo, Renato, Luminita M. Toma, Abdeslem Bentama, Salah-Eddine Stiriba, Rafael Ruiz-García, and Joan Cano. 2024. "Exploring Spin-Crossover Cobalt(II) Single-Ion Magnets as Multifunctional and Multiresponsive Magnetic Devices: Advancements and Prospects in Molecular Spintronics and Quantum Computing Technologies" Magnetochemistry 10, no. 12: 107. https://doi.org/10.3390/magnetochemistry10120107
APA StyleRabelo, R., Toma, L. M., Bentama, A., Stiriba, S.-E., Ruiz-García, R., & Cano, J. (2024). Exploring Spin-Crossover Cobalt(II) Single-Ion Magnets as Multifunctional and Multiresponsive Magnetic Devices: Advancements and Prospects in Molecular Spintronics and Quantum Computing Technologies. Magnetochemistry, 10(12), 107. https://doi.org/10.3390/magnetochemistry10120107