Evidence of a Large Refrigerant Capacity in Nb-Modified La1.4Sr1.6Mn2−xNbxO7 (0.0 ≤ x ≤ 0.15) Layered Perovskites
Abstract
:1. Introduction
2. Experiment and Characterization Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Franco, V.; Blázquez, J.S.; Ingale, B.; Conde, A. The magnetocaloric effect and magnetic refrigeration near room temperature: Materials and models. Annu. Rev. Mater. Res. 2012, 42, 305–342. [Google Scholar] [CrossRef]
- Gutfleisch, O.; Willard, M.A.; Brück, E.; Chen, C.H.; Sankar, S.G.; Liu, J.P. Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient. Adv. Mater. 2011, 23, 821–842. [Google Scholar] [CrossRef] [PubMed]
- Gottschall, T.; Skokov, K.P.; Fries, M.; Taubel, A.; Radulov, I.; Scheibel, F.; Benke, D.; Riegg, S.; Gutfleisch, O. Magnetic Refrigeration: Making a Cool Choice: The Materials Library of Magnetic Refrigeration. Adv. Energy Mater. 2019, 9, 1970130. [Google Scholar] [CrossRef]
- Ram, N.R.; Prakash, M.; Naresh, U.; Kumar, N.S.; Sarmash, T.S.; Subbarao, T.; Kumar, R.J.; Kumar, G.R.; Naidu, K.C.B. Review on Magnetocaloric Effect and Materials. J. Supercond. Nov. Magn. 2018, 31, 1971–1979. [Google Scholar] [CrossRef]
- Salazar-Muñoz, V.E.; Guerrero, A.L.; Palomares-Sánchez, S.A. Review of magnetocaloric properties in lanthanum manganites. J. Magn. Magn. Mater. 2022, 562, 169787. [Google Scholar] [CrossRef]
- Ferreira, M.C.; Pimentel, B.; Andrade, V.; Zverev, V.; Gimaev, R.R.; Pomorov, A.S.; Pyatakov, A.; Alekhina, Y.; Komlev, A.; Makarova, L.; et al. Understanding the Dependence of Nanoparticles Magnetothermal Properties on Their Size for Hyperthermia Applications: A Case Study for La-Sr Manganites. Nanomaterials 2021, 11, 1826. [Google Scholar] [CrossRef] [PubMed]
- Anusree, V.K.; Ranjana, R.D.; Lekshmi, P.N.; Dhal, R.; Colin, C.V.; Santhosh, P.N. Giant exchange bias effect in Ruddlesden-Popper oxides SrLaFe0.25+xMn0.25Co0.5−xO4 (x = 0, 0.25): Role of the cluster glass magnetic phase in a quasi-two-dimensional perovskite. Phys. Rev. B 2020, 102, 134405. [Google Scholar]
- Elouafi, A.; Ounza, Y.; Omari, L.H.; Oubla, M.; Lassri, M.; Sajieddine, M.; Lassri, H. Spin-glass-like behavior and magnetocaloric properties in LaBiCaMn2O7 layered perovskite. Appl. Phys. A 2021, 127, 216. [Google Scholar] [CrossRef]
- Kumar, A.; Kumari, K.; Sharma, M.K.; Vij, A.; Kumar, S.; Huh, S.-H.; Koo, B.H. Chemically inducing room temperature spin-crossover in double layered magnetic refrigerants Pr1.4+xSr1.6−xMn2O7 (0.0 ≤ x ≤ 0.5). J. Mater. Sci. Technol. 2022, 124, 232–242. [Google Scholar] [CrossRef]
- Han, L.; Zhang, P.; Zhang, Y.; Zhu, H.; Liu, W.; Yang, J. Structure, magnetocaloric and critical properties of layered La2Sm0.4Sr0.6Mn2O7 perovskite. Ceram. Int. 2017, 43, 8709–8714. [Google Scholar] [CrossRef]
- M’nassri, R.; Nofal, M.M.P. de Rangoc and N. Chniba-Boudjada, Magnetic entropy table-like shape and enhancement of refrigerant capacity in La1.4Ca1.6Mn2O7-La1.3Eu0.1Ca1.6Mn2O7 composite. RSC Adv. 2019, 9, 14916. [Google Scholar] [CrossRef] [PubMed]
- Hassayoun, O.; Baazaoui, M.; Laouyenne, M.R.; Hosni, F.; Hlil, E.K.; Oumezzine, M.; Farah, K. Magnetocaloric effect and electron paramagnetic resonance studies of the transition from ferromagnetic to paramagnetic in La0.8Na0.2Mn1−xNixO3 (0 ≤ x ≤ 0.06). J. Phys. Chem. Solids 2019, 135, 109058. [Google Scholar] [CrossRef]
- Chihi, I.; Baazaoui, M.; Mahjoub, S.; Cheikhrouhou, W.; Oumezzine, M.; Farah, K. Study of the magnetic and magnetocaloric properties of new perovskite—Type materials: La0.6Ba0.2Sr0.2Mn1−xFexO3. Appl. Phys. A 2019, 125, 627. [Google Scholar] [CrossRef]
- Phan, M.-H.; Phan, T.-L.; Yu, S.-C.; Tho, N.D.; Chau, N. Large magnetocaloric effect in La0.845Sr0.155Mn1−xMxO3 (M = Mn, Cu, Co) perovskites. Phys. Stat. Sol. 2004, 241, 1744–1747. [Google Scholar] [CrossRef]
- Wu, B.; Guo, D.; Wang, Y.; Zhang, Y. Crystal structure; magnetic properties, and magnetocaloric effect in B-site disordered RE2CrMnO6 (RE = Ho and Er) perovskites. Ceram. Int. 2020, 46, 11988–11993. [Google Scholar] [CrossRef]
- Selmi, A.; M’nassri, R.; Cheikhrouhou-Koubaa, W.; Boudjada, N.C.; Cheikhrouhou, A. The effect of Co doping on the magnetic and magnetocaloric properties of Pr0.7Ca0.3Mn1−xCoxO3 manganites. Ceram. Int. 2015, 41, 7723–7728. [Google Scholar] [CrossRef]
- Manoharan, S.S.; Singh, B.; Sahu, R.K. Powder neutron diffraction evidence for enhanced inter plane magnetic coupling in La1.2Sr1.8Mn2−xRuxO7 layered manganites. J. Appl. Phys. 2007, 101, 09G516. [Google Scholar] [CrossRef]
- Karimunnesa, S.; Ahmmad, B.; Basith, M.A. Effect of strontium substitution on the structural and magnetic properties of La1.8Sr0.2MMnO6 (M = Ni, Co)-layered manganites. Phase Transit. 2017, 90, 677–686. [Google Scholar] [CrossRef]
- Swetha, K.; Bharadwaj, S.; Kumar, N.P.; Chelvane, J.A.; Lakshmi, Y.K. Above room temperature magnetic entropy in non-stoichiometric manganese of La0.67Sr0.33MnO3 manganites. Appl. Phys. A 2022, 128, 727. [Google Scholar] [CrossRef]
- Tozri, A.; Dhahri, E. Structural and magnetotransport properties of (La, Pr)-Ba manganites. J. Alloys Compd. 2019, 783, 718–728. [Google Scholar] [CrossRef]
- Baazaoui, M.; Hcini, S.; Boudard, M.; Zemni, S.; Oumezzine, M. Critical behavior near the ferromagnetic–paramagnetic phase transition temperature of Pr0.67Ba0.33Mn1−xFexO3 (x = 0 and 0.05) manganite. J. Magn. Magn. Mater. 2016, 401, 323–332. [Google Scholar] [CrossRef]
- Guedri, A.; Mnefgui, S.; Hcini, S.; Hlil, E.K.; Dhahri, A. B-site substitution impact on structural and magnetocaloric behavior of La0.55Pr0.1Sr0.35Mn1−xTixO3 manganites. J. Solid State Chem. 2021, 297, 122046. [Google Scholar] [CrossRef]
- Nanto, D.; Akbar, H.; Soegijono, B.; Kurniawan, B.; Ghosh, N.; Hwang, J.-S.; Yu, S.-C. Temperature span of magnetocaloric effect in Nb-doped La0.7Ca0.3Mn1−xNbxO3 (x = 0.000, 0.002 and 0.01). Phys. B Condens. Matter 2017, 526, 160–165. [Google Scholar] [CrossRef]
- Arayedh, B.; Kallel, S.; Kallel, N.; Peña, O. Influence of non-magnetic and magnetic ions on the MagnetoCaloric properties of La0.7Sr0.3Mn0.9M0.1O3 doped in the Mn sites by M=Cr, Sn, Ti. J. Magn. Magn. Mater. 2014, 361, 68–73. [Google Scholar] [CrossRef]
- Fawcett, I.D.; Sunstrom, J.E.; Greenblatt, M.; Croft, M.; Ramanujachary, K.V. Structure, magnetism, and properties of Ruddlesden-Popper calcium manganates prepared from citrate gels. Chem. Mater. 1998, 10, 3643–3651. [Google Scholar] [CrossRef]
- Saini, N.; Jindal, R.; Tripathi, A. Study of lattice dynamics of bilayered tetragonal Ruddlesden-Popper compounds (Ca, Sr)3Mn2O7. Mater. Today Commun. 2023, 34, 105190. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 1976, A32, 751–767. [Google Scholar] [CrossRef]
- Velikodnyi, Y.A.; Sirotinkin, V.P.; Trunov, V.K. The structure of the double pyrovanadate K2 Mg V2 O7. Russ. J. Inorg. Chem. (Zhurnal Neorg. Khimii) 1984, 29, 648–651. [Google Scholar]
- Raju, K.; Song, M.S.; Lee, J.Y. Crystal structure and magnetic properties of La2−x(Sr0.5Ca0.5)1−xMn2O7 (x = 0.6, 0.8 and 1.0) Ruddlesden-Popper manganites. J. Alloys Compd. 2014, 358–359, 119–122. [Google Scholar] [CrossRef]
- Li, H.F.; Su, Y.; Persson, J.; Meuffels, P.; Walter, J.M.; Skowronek, R.; Brückel, T. Neutron-diffraction study of structural transition and magnetic order in orthorhombic and rhombohedral La7/8Sr1/8Mn1−γO3+δ. J. Phys. Condens. Matter 2007, 19, 176226. [Google Scholar] [CrossRef] [PubMed]
- Koc, N.S.; Altintas, S.P.; Mahamdioua, N.; Terzioglu, C. Cation size mismatch effect in (La1−yREy)1.4Ca1.6Mn2O7 perovskite manganites. J. Alloys Compd. 2019, 797, 471–476. [Google Scholar]
- Kumar, B.; Tiwari, J.K.; Chauhan, H.C.; Ghosh, S. Multiple magnetic phase transitions with different universality classes in bilayer La1.4Sr1.6Mn2O7 manganite. Sci. Rep. 2021, 11, 21184. [Google Scholar] [CrossRef] [PubMed]
- Hussain, I.; Kumar, A.; Khan, S.N.; Brojabasi, P.; Koo, B.H. Effect of B-site vanadium (V) doping on the structural, magnetic and magnetocaloric properties of Ba2FeMo1−xVxO6 perovskite. Solid State Commun. 2020, 310, 113861. [Google Scholar] [CrossRef]
- Banerjee, B.K. On a generalised approach to first and second order magnetic transitions. Phys. Lett. 1964, 12, 16–17. [Google Scholar] [CrossRef]
- Smith, A.; Bahl, C.R.H.; Bjørk, R.; Engelbrecht, K.; Nielsen, K.K.; Pryds, N. Materials challenges for high performance magnetocaloric refrigeration devices. Adv. Energy Mater. 2012, 2, 1288–1318. [Google Scholar] [CrossRef]
- Gschneidner, K.A., Jr.; Pecharsky, V.K.; Pecharsky, A.O.; Zimm, C.B. Recent Developments in Magnetic Refrigeration. Mater. Sci. Forum 1999, 315–317, 69–76. [Google Scholar]
- Feng, J.Q.; Liu, Y.H.; Sui, J.H.; He, A.N.; Xia, W.X.; Wang, W.H.; Wang, J.Q.; Huo, J.T. Giant refrigerant capacity in Gd-based amorphous/nanocrystalline composite fibers. Mater. Today Phys. 2021, 21, 100528. [Google Scholar] [CrossRef]
- Singh, K.; Rani, M.; Malik, V.K.; Panwar, N. Structural, Optical, Magnetic, and Magnetocaloric Properties of Sn2Mn2O7 Pyrochlore. Phys. Status Solidi A 2023, 221, 2300553. [Google Scholar] [CrossRef]
- Khachnaoui, F.; Amor, N.B.; Bejar, M.; Dhahri, E.; Hlil, E.K. Synthesis and Magnetic Properties of New Pyrochlore Fe2Mn2O7 Compound. J. Supercond. Nov. Magn. 2018, 31, 3803–3808. [Google Scholar] [CrossRef]
- Khachnaoui, F.; Amor, N.B.; Nouri, K.; Bejar, M.; Dhahri, E. Investigation of Griffiths-like phase at low temperature in a new magnetocaloric compound, Al2Mn2O7. J. Phys. Chem. Solids 2021, 148, 109605. [Google Scholar] [CrossRef]
Nb Concentration (x) | x = 0.0 | x = 0.05 | x = 0.1 | x = 0.15 |
---|---|---|---|---|
Space group = I4/mmm | x = 0.0 | x = 0.05 | x = 0.1 | x = 0.15 |
Unit cell parameters (Å) a = b; ≠ c | 3.86357 (2); 20.35096 (5) | 3.86844 (3); 20.34060 (4) | 3.86913 (3); 20.34580 (1) | 3.87041 (2); 20.33350 (4) |
Unit cell volume (Å3) | 303.78296 (3) | 304.393553 (2) | 304.580013 (4) | 304.597319 (2) |
χ2 | 1.84 | 2.01 | 2.48 | 1.98 |
Rwp | 10.1 | 12.6 | 13.4 | 11.7 |
Rp | 9.8 | 11.9 | 12.8 | 11.2 |
Rexp | 6.12 | 5.82 | 7.42 | 5.46 |
I4/mmm (R-P phase) (wt%) | 100 (0.72) | 89.26 (0.49) | 79.73 (0.13) | 72.71 (0.17) |
R-3c (hexagonal perovskite phase) (wt%) | ~ | 9.61 (0.55) | 16.55 (0.83) | 19.12 (0.27) |
I41/a (tetragonal perovskite phase) (wt%) | ~ | 1.13 (0.05 | 3.72 (0.08) | 8.17 (0.11) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, A.; Kim, J.W.; Sharma, M.K.; Kumari, K.; Vij, A.; Koo, B.H. Evidence of a Large Refrigerant Capacity in Nb-Modified La1.4Sr1.6Mn2−xNbxO7 (0.0 ≤ x ≤ 0.15) Layered Perovskites. Magnetochemistry 2024, 10, 22. https://doi.org/10.3390/magnetochemistry10040022
Kumar A, Kim JW, Sharma MK, Kumari K, Vij A, Koo BH. Evidence of a Large Refrigerant Capacity in Nb-Modified La1.4Sr1.6Mn2−xNbxO7 (0.0 ≤ x ≤ 0.15) Layered Perovskites. Magnetochemistry. 2024; 10(4):22. https://doi.org/10.3390/magnetochemistry10040022
Chicago/Turabian StyleKumar, Akshay, Jong Woo Kim, Mohit K. Sharma, Kavita Kumari, Ankush Vij, and Bon Heun Koo. 2024. "Evidence of a Large Refrigerant Capacity in Nb-Modified La1.4Sr1.6Mn2−xNbxO7 (0.0 ≤ x ≤ 0.15) Layered Perovskites" Magnetochemistry 10, no. 4: 22. https://doi.org/10.3390/magnetochemistry10040022
APA StyleKumar, A., Kim, J. W., Sharma, M. K., Kumari, K., Vij, A., & Koo, B. H. (2024). Evidence of a Large Refrigerant Capacity in Nb-Modified La1.4Sr1.6Mn2−xNbxO7 (0.0 ≤ x ≤ 0.15) Layered Perovskites. Magnetochemistry, 10(4), 22. https://doi.org/10.3390/magnetochemistry10040022