Exploring the Potential of Oxalyldihydrazide-Derived Schiff Bases as Versatile Ligands: Synthesis, Structural Characterization, and Magnetic Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. X-Ray Crystallography
2.2. Physical Measurements
3. Results and Discussion
3.1. Structural Description
3.1.1. [Cu5(L1)2(H2O)8(MeOH)2(NO3)2](NO3)4 (1)
3.1.2. [Mn2(HL2)2(BzO)2(MeOH)2]·2MeOH (2)
3.1.3. [Ni(HL2)2]·2MeOH (3)
3.1.4. [Ni4(L2)4]·4MeOH (4)
3.1.5. [Ni8(L3)4(AcO)4(H2O)12](OAc)4 (5)
3.2. Magnetic Properties
Static Measurements
4. Experimental Section
4.1. Synthesis of the Ligands
4.1.1. Synthesis of H2L1
4.1.2. Synthesis of H2L2 and H2L3
4.2. Synthesis of the Complexes
4.2.1. Synthesis of [Cu5(L1)2(H2O)8(MeOH)2(NO3)2](NO3)4 (1)
4.2.2. Synthesis of [Mn2(HL2)2(BzO)2(MeOH)2]·2MeOH (2)
4.2.3. Synthesis of [Ni(HL2)2]·2MeOH (3)
4.2.4. Synthesis of [Ni4(L2)4]·4MeOH (4)
4.2.5. Synthesis of [Ni8(L3)4(AcO)4(H2O)12](OAc)4 (5)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sessoli, R.; Gatteschi, D.; Caneschi, A.; Movak, N.A. Magnetic bistability in a metal-ion cluster. Nature 1993, 365, 141–143. [Google Scholar] [CrossRef]
- Singh, P.; Schlittenhardt, S.; Thakre, D.; Kushvaha, S.K.; Kumar, S.; Karnamkkott, H.S.; Ruben, M.; Ibrahim, M.; Banerjee, A.; Mondal, K.C. Exploration of Vanadium (IV)-Based Single-Ion Magnet Properties in Diphosphonate-Supported Mixed-Valent Polyoxovanadates. Cryst. Growth Des. 2022, 22, 5666–5679. [Google Scholar] [CrossRef]
- Stamatatos, T.C.; Foguet-Albiol, D.; Lee, S.-C.; Stoumpos, C.C.; Raptopoulou, C.P.; Terzis, A.; Wernsdorfer, W.; Hill, S.O.; Perlepes, S.P.; Christou, G. “Switching On” the Properties of Single-Molecule Magnetism in Triangular Manganese(III) Complexes. J. Am. Chem. Soc. 2007, 129, 9484–9499. [Google Scholar] [CrossRef]
- Terazzi, E.; Rogez, G.; Gallani, J.-L.; Donnio, B. Supramolecular Organization and Magnetic Properties of Mesogen-Hybridized Mixed-Valent Manganese Single Molecule Magnets [MnIII8MnIV4O12(Lx,y,z-CB)16(H2O)4]. J. Am. Chem. Soc. 2013, 135, 2708–2722. [Google Scholar] [CrossRef]
- Mathonière, C.; Lin, H.-J.; Siretanu, D.; Clérac, R.; Smith, J.M. Photoinduced Single-Molecule Magnet Properties in a Four-Coordinate Iron(II) Spin Crossover Complex. J. Am. Chem. Soc. 2013, 135, 19083–19086. [Google Scholar] [CrossRef]
- Cornia, A.; Mannini, M.; Sessoli, R.; Gatteschi, D. Propeller-Shaped Fe4 and Fe3M Molecular Nanomagnets: A Journey from Crystals to Addressable Single Molecules. Eur. J. Inorg. Chem. 2019, 2019, 552–568. [Google Scholar] [CrossRef]
- Novikov, V.V.; Pavlov, A.A.; Nelyubina, Y.V.; Boulon, M.-E.; Varzatskii, O.A.; Voloshin, Y.Z.; Winpenny, R.E.P. A Trigonal Prismatic Mononuclear Cobalt(II) Complex Showing Single-Molecule Magnet Behavior. J. Am. Chem. Soc. 2015, 137, 9792–9795. [Google Scholar] [CrossRef]
- Dimakopoulou, F.; Efthymiou, C.G.; O’Malley, C.; Kourtellaris, A.; Moushi, E.; Tasiopooulos, A.; Perlepes, S.P.; McArdle, P.; Costa-Villén, E.; Mayans, J.; et al. Novel Co5 and Ni4 Metal Complexes and Ferromagnets by the Combination of 2-Pyridyl Oximes with Polycarboxylic Ligands. Molecules 2022, 27, 4701–4714. [Google Scholar] [CrossRef]
- Maniaki, D.; Pilichos, E.; Perlepes, S.P. Coordination Clusters of 3d-Metals That Behave as Single-Molecule Magnets (SMMs): Synthetic Routes and Strategies. Front. Chem. 2018, 6, 461. [Google Scholar] [CrossRef]
- Serra, J.; Font-Bardia, M.; Escuer, A.; Mayans, J. Slow Magnetic Relaxation in Silver(II) Macrocyclic Systems. Inorg. Chem. 2023, 62, 18804–18808. [Google Scholar] [CrossRef]
- Yamada, Y.; Nakajima, H.; Kobayashi, C.; Shuku, Y.; Awaga, K.; Akine, S.; Tanaka, K. Synthesis of Isomeric Tb3+-Phthalocyanine Double-Decker Complexes Depending on the Difference in the Direction of Coordination Plane and Their Magnetic Properties. Chem. Eur. J. 2023, 29, e202203272. [Google Scholar] [CrossRef] [PubMed]
- Anwar, M.U.; Thompson, L.K.; Dawe, L.N.; Habib, F.; Murugesu, M. Predictable self-assembled [2 × 2] Ln(III)4 square grids (Ln = Dy,Tb)—SMM behaviour in a new lanthanide cluster motif. Chem. Commun. 2012, 48, 4576–4578. [Google Scholar] [CrossRef] [PubMed]
- Tubau, À.; Zinna, F.; Di Bari, L.; Font-Bardía, M.; Vicente, R. Luminescence, CPL and magnetic properties of 1D enantiopure Ln3+ complexes with (S-) and (R-) α-methoxyphenylacetate ligand. Dalton Trans. 2023, 52, 1122–1132. [Google Scholar] [CrossRef] [PubMed]
- Evans, P.; Reta, D.; Whitehead, G.F.S.; Chilton, N.F.; Mills, D.P. Bis-Monophospholyl Dysprosium Cation Showing Magnetic Hysteresis at 48 K. J. Am. Chem. Soc. 2019, 141, 19935–19940. [Google Scholar] [CrossRef] [PubMed]
- Costa-Villén, E.; Font-Bardia, M.; Mayans, J.; Escuer, A. Field-Induced Slow Relaxation of the Magnetization in Two Families of [MIILnIII] Complexes. Cryst. Growth Des. 2024, 24, 5806–5817. [Google Scholar] [CrossRef]
- Baskar, V.; Gopal, K.; Helliwell, M.; Tuna, F.; Wernsdorfer, W.; Winpenny, R.E.P. 3d–4f Clusters with large spin ground states and SMM behavior. Dalton Trans. 2010, 39, 4747–4750. [Google Scholar] [CrossRef]
- Patrascu, A.A.; Briganti, M.; Soriano, S.; Calancea, S.; Allão Cassaro, R.A.; Totti, F.; Vaz, M.G.F.; Andruh, M. SMM Behavior Tuned by an Exchange Coupling LEGO Approach for Chimeric Compounds: First 2p–3d–4f Heterotrispin Complexes with Different Metal Ions Bridged by One Aminoxyl Group Inorg. Chem. 2019, 58, 13090–13101. [Google Scholar] [CrossRef]
- Polyzou, C.D.; Efthymiou, C.G.; Escuer, A.; Cunha-Silva, L.; Papatriantafyllopoulou, C.; Perlepes, S.P. In search of 3d/4f-metal single-molecule magnets: Nickel (II)/lanthanide (III) coordination clusters. Pure Appl. Chem. 2013, 85, 315–327. [Google Scholar] [CrossRef]
- Schmidt, S.F.M.; Merkel, M.P.; Kostakis, G.E.; Buth, G.; Ansona, C.E.; Powell, A.K. SMM behaviour and magnetocaloric effect in heterometallic 3d–4f coordination clusters with high azide: Metal ratios. Dalton Trans. 2017, 46, 15661–15665. [Google Scholar] [CrossRef]
- Caballero, S.; Pilichos, E.; Font-Bardia, M.; Mayans, J.; Escuer, A. Field-Induced Slow Magnetic Relaxation in a New Family of Tetranuclear Double-Stranded Cu2II–Ln2III Metallohelicates. Cryst. Growth Des. 2023, 23, 3711–3719. [Google Scholar] [CrossRef]
- Singh, S.K.; Cramer, C.J.; Gagliardi, L. Correlating Electronic Structure and Magnetic Anisotropy in Actinide Complexes [An(COT)2], AnIII/IV = U, Np, and Pu. Inorg. Chem. 2020, 59, 6815–6825. [Google Scholar] [CrossRef] [PubMed]
- Chatelain, L.; Walsh, J.P.S.; Pécaut, J.; Tuna, F.; Mazzanti, M. Self-Assembly of a 3d–5f Trinuclear Single-Molecule Magnet from a Pentavalent Uranyl Complex. Angew. Chem. 2014, 126, 13652–13656. [Google Scholar] [CrossRef]
- Coronado, E. Molecular magnetism: From chemical design to spin control in molecules, materials and devices. Nat. Rev. Mater. 2020, 5, 87–104. [Google Scholar] [CrossRef]
- Chicco, S.; Chiesa, A.; Allodi, G.; Garlatti, E.; Atzori, M.; Sorace, L.; De Renzi, R.; Sessoli, R.; Carretta, S. Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear qudit with an electronic ancilla. Chem. Sci. 2021, 12, 12046–12055. [Google Scholar] [CrossRef]
- Aromí, G.; Aguilà, D.; Gàmez, P.; Luis, F.; Roubeau, O. Design of magnetic coordination complexes for quantum computing Chem. Soc. Rev. 2012, 41, 537–546. [Google Scholar] [CrossRef]
- Rocha, A.R.; García-Suárez, V.M.; Bailey, S.W.; Lambert, C.J.; Ferrer, J.; Sanvito, S. Towards molecular spintronics. Nat. Mater. 2005, 4, 335–339. [Google Scholar] [CrossRef]
- Coronado, E.; Yamashita, M. Molecular spintronics: The role of coordination chemistry. Dalton Trans. 2016, 45, 16553–16555. [Google Scholar] [CrossRef]
- Weickmann, D.; Frey, W.; Plietker, B. Synchronizing Steric and Electronic Effects in {RuII(NNNN,P)} Complexes: The Catalytic Dehydrative Alkylation of Anilines by Using Alcohols as a Case Study. Chem. Eur. J. 2013, 19, 2741–2748. [Google Scholar] [CrossRef]
- Whiteoak, C.J.; Torres Martin de Rosales, R.; White, A.J.P.; Britovsek, G.J.P. Iron(II) Complexes with Tetradentate Bis(aminophenolate) Ligands: Synthesis and Characterization, Solution Behavior, and Reactivity with O2. Inorg. Chem. 2010, 49, 11106–11117. [Google Scholar] [CrossRef]
- Das, A.; Goswami, S.; Sen, R.; Ghosh, A. Inclusion of Ln(III) in the Complexes of Co(II) with a Mannich Base Ligand: Development of Atmospheric CO2 Fixation and Enhancement of Catalytic Oxidase Activities. Inorg. Chem. 2019, 58, 5787–5798. [Google Scholar] [CrossRef]
- Hazra, S.; Kuznetsov, M.L.; Fatima, M.; Guedes da Silva, C.; Pombeiro, A.J.L. MII···Cl Interaction Supported Heterometallic {NiIISnII}{SnIV} and {NiIISnII}{SnII} Complex Salts: Possibility of Ion-Pair-Assisted Tetrel Bonds. Cryst. Growth Des. 2022, 22, 341–355. [Google Scholar] [CrossRef]
- Fernandes, R.R.; Lasri, J.; Kirillov, A.M.; Guedes da Silva, M.F.C.; da Silva, J.A.L.; Fraústo da Silva, J.J.R.; Pombeiro, A.J.L. New FeII and CuII Complexes Bearing Azathia Macrocycles—Catalyst Precursors for Mild Peroxidative Oxidation of Cyclohexane and 1-Phenylethanol. Eur. J. Inorg. Chem. 2011, 25, 3781–3790. [Google Scholar] [CrossRef]
- Dasa, M.; Bhuniab, P.; Mukherjeec, A.; Costa-Villén, E.; Mayans, J.; Guha, P. Antiferromagnetic resorcinol bridged dinuclear square-planar copper (II) complexes: Syntheses, structural, spectroscopic and magnetic properties. Inorg. Chim. Acta 2024, 569, 122134–122140. [Google Scholar] [CrossRef]
- Schoumacker, S.; Hamelin, O.; Pecaut, J.; Fontecave, M. Catalytic Asymmetric Sulfoxidation by Chiral Manganese Complexes: Acetylacetonate Anions as Chirality Switches. Inorg. Chem. 2003, 42, 8110–8116. [Google Scholar] [CrossRef] [PubMed]
- Melville, J.N.; Bernhardt, P.V. Electrochemical Exploration of Active Cu-Based Atom Transfer Radical Polymerization Catalysis through Ligand Modification. Inorg. Chem. 2021, 60, 9709–9719. [Google Scholar] [CrossRef] [PubMed]
- Pointillart, F.; Bernot, K.; Colas, J.; Sorace, L.; Sessoli, R. Rational enhancement of the coordination capability of Ru(III)(salen)-nitronyl nitroxide building block: A step towards 2p–3d–4d magnetic edifices. Inorganica Chim. Acta 2008, 361, 3427–3431. [Google Scholar] [CrossRef]
- Senapati, T.; Pichon, C.; Ababei, R.; Mathoniere, C.; Clerac, R. Cyanido-Bridged Fe(III)–Mn(III) Heterobimetallic Materials Built From Mn(III) Schiff Base Complexes and Di- or Tri-Cyanido Fe(III) Precursors. Inorg. Chem. 2012, 51, 3796–3812. [Google Scholar] [CrossRef]
- Maeda, M.; Hino, S.; Yamashita, K.; Kataoka, Y.; Nakano, M.; Yamamura, T.; Kajiwara, T. Correlation between slow magnetic relaxation and the coordination structures of a family of linear trinuclear Zn(II)–Ln(III)–Zn(II) complexes (Ln = Tb, Dy, Ho, Er, Tm and Yb). Dalton Trans. 2012, 41, 13640–13648. [Google Scholar] [CrossRef]
- Wu, J.; Li, X.-L.; Zhao, L.; Guo, M.; Tang, J. Enhancement of Magnetocaloric Effect through Fixation of Carbon Dioxide: Molecular Assembly from Ln4 to Ln4 Cluster Pairs. Inorg. Chem. 2017, 56, 4104–4111. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXL-2014/7: Program for the Solution of Crystal Structures; University of Göttingen: Göttingen, Germany, 2014. [Google Scholar]
- Bain, G.A.; Berry, J.F. Diamagnetic Corrections and Pascal’s Constants. J. Chem. Educ. 2008, 85, 532–536. [Google Scholar] [CrossRef]
- Llunell, M.; Casanova, D.; Cirera, J.; Alemany, P.; Alvarez, S. SHAPE, version 2.0; Barcelona, 2010; The program is available upon request from the authors. [Google Scholar]
- Chilton, N.F.; Anderson, R.P.; Turner, L.D.; Soncini, A.; Murray, K.S. PHI: A powerful new program for the analysis of anisotropic monomeric and exchange-coupled polynuclear d- and f-block complexes. J. Comput. Chem. 2013, 34, 1164–1175. [Google Scholar] [CrossRef] [PubMed]
- Thompson, L.K.; Xu, Z.; Goeta, A.E.; Howard, J.A.K.; Clase, H.J.; Miller, D.O. Structural and Magnetic Properties of Dicopper(II) Complexes of Polydentate Diazine Ligands. Inorg. Chem. 1998, 37, 3217–3229. [Google Scholar] [CrossRef]
- Gómez, V.; Corbella, M.; Font-Bardia, M.; Calvet, T. A μ1,1- or μ1,3-carboxylate bridge makes the difference in the magnetic properties of dinuclear MnII compounds. Dalton Trans. 2010, 39, 11664–11674. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Niel, V.; Thompson, L.K.; Xu, Z.; Milway, V.A.; Harvey, R.G.; Miller, D.O.; Wilson, C.; Leech, M.; Howard, J.A.K.; et al. Self-assembled polynuclear clusters derived from some flexible polydentate dihydrazide ligands. Dalton Trans. 2004, 1446–1455. [Google Scholar] [CrossRef]
- Thompson, L.K. Polynuclear coordination complexes—From dinuclear to nonanuclear and beyond. Coord. Chem. Rev. 2002, 233–234, 193–206. [Google Scholar] [CrossRef]
- Inoue, M.; Kishita, M.; Kubo, M. Magnetic Moments of Copper(II) Salicylate, Copper(II) Benzoate, and Some Related Compounds. Inorg. Chem. 1964, 3, 239–242. [Google Scholar] [CrossRef]
- Singh, D.P.; Allam, B.K.; Singh, K.N.; Singh, V.P. A binuclear Mn(II) complex as an efficient catalyst for transamidation of carboxamides with amines. RSC Adv. 2014, 4, 1155–1158. [Google Scholar] [CrossRef]
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds; Wiley: Hoboken, NJ, USA, 2008; ISBN 9780471743392. [Google Scholar]
Compound | 2J1 (cm−1) | g | R 1 |
---|---|---|---|
1 | −60.87 ± 0.01 | 2.09 | 4.70 × 10−4 |
2 | −0.47 ± 0.01 | 2.00 | 7.20 × 10−4 |
4 | −0.23 ± 0.01 | 2.06 | 6.71 × 10−5 |
5 | −11.50 ± 0.19 | 2.13 | 2.57 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa-Villén, E.; Ortiz, M.; Sitjar, P.; Puigjaner, C.; El Fallah, M.S. Exploring the Potential of Oxalyldihydrazide-Derived Schiff Bases as Versatile Ligands: Synthesis, Structural Characterization, and Magnetic Properties. Magnetochemistry 2025, 11, 4. https://doi.org/10.3390/magnetochemistry11010004
Costa-Villén E, Ortiz M, Sitjar P, Puigjaner C, El Fallah MS. Exploring the Potential of Oxalyldihydrazide-Derived Schiff Bases as Versatile Ligands: Synthesis, Structural Characterization, and Magnetic Properties. Magnetochemistry. 2025; 11(1):4. https://doi.org/10.3390/magnetochemistry11010004
Chicago/Turabian StyleCosta-Villén, Ernesto, Marina Ortiz, Pedro Sitjar, Cristina Puigjaner, and Mohamed Salah El Fallah. 2025. "Exploring the Potential of Oxalyldihydrazide-Derived Schiff Bases as Versatile Ligands: Synthesis, Structural Characterization, and Magnetic Properties" Magnetochemistry 11, no. 1: 4. https://doi.org/10.3390/magnetochemistry11010004
APA StyleCosta-Villén, E., Ortiz, M., Sitjar, P., Puigjaner, C., & El Fallah, M. S. (2025). Exploring the Potential of Oxalyldihydrazide-Derived Schiff Bases as Versatile Ligands: Synthesis, Structural Characterization, and Magnetic Properties. Magnetochemistry, 11(1), 4. https://doi.org/10.3390/magnetochemistry11010004