Theoretical Study of Pentacoordinated Lanthanide Single-Ion Magnets via Ab Initio Electronic Structure Calculation
Abstract
:1. Introduction
2. Theoretical Background and Computational Details
3. Results and Discussion
3.1. The Comparison Between Theoretical Predictions and Experimental Results
3.2. Mechanisms of Magnetic Relaxation
3.3. Crystal-Field Analysis and Theoretical Magneto-Structural Correlation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sessoli, R.; Gatteschi, D.; Caneschi, A.; Novak, M.A. Magnetic bistability in a metal-ion cluster. Nature 1993, 365, 141–143. [Google Scholar] [CrossRef]
- Sessoli, R.; Tsai, H.L.; Schake, A.R.; Wang, S.; Vincent, J.B.; Folting, K.; Gatteschi, D.; Christou, G.; Hendrickson, D.N. High-spin molecules: [Mn12O12(O2CR)16(H2O)4]. J. Am. Chem. Soc. 1993, 115, 1804–1816. [Google Scholar] [CrossRef]
- Gatteschi, D.; Sessoli, R.; Villain, J. Molecular Nanomagnets; Oxford University Press: New York, NY, USA, 2006. [Google Scholar] [CrossRef]
- Liddle, S.T.; van Slageren, J. Improving f-element single molecule magnets. Chem. Soc. Rev. 2015, 44, 6655–6669. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-L.; Chen, Y.-C.; Tong, M.-L. Symmetry strategies for high performance lanthanide-based single-molecule magnets. Chem. Soc. Rev. 2018, 47, 2431–2453. [Google Scholar] [CrossRef]
- Parmar, V.S.; Mills, D.P.; Winpenny, R.E.P. Mononuclear Dysprosium Alkoxide and Aryloxide Single-Molecule Magnets. Chem. Eur. J. 2021, 27, 7625–7645. [Google Scholar] [CrossRef] [PubMed]
- Zabala-Lekuona, A.; Seco, J.M.; Colacio, E. Single-Molecule Magnets: From Mn12-ac to dysprosium metallocenes, a travel in time. Coord. Chem. Rev. 2021, 441, 213984. [Google Scholar] [CrossRef]
- Chilton, N.F. Molecular Magnetism. Annu. Rev. Mater. Res. 2022, 52, 79–101. [Google Scholar] [CrossRef]
- Duan, Y.; Rosaleny, L.E.; Coutinho, J.T.; Giménez-Santamarina, S.; Scheie, A.; Baldoví, J.J.; Cardona-Serra, S.; Gaita-Ariño, A. Data-driven design of molecular nanomagnets. Nat. Commun. 2022, 13, 7626. [Google Scholar] [CrossRef] [PubMed]
- Gould, C.A.; McClain, K.R.; Reta, D.; Kragskow, J.G.C.; Marchiori, D.A.; Lachman, E.; Choi, E.-S.; Analytis, J.G.; Britt, R.D.; Chilton, N.F.; et al. Ultrahard magnetism from mixed-valence dilanthanide complexes with metal-metal bonding. Science 2022, 375, 198–202. [Google Scholar] [CrossRef] [PubMed]
- Ungur, L.; Chibotaru, L.F. Strategies toward High-Temperature Lanthanide-Based Single-Molecule Magnets. Inorg. Chem. 2016, 55, 10043–10056. [Google Scholar] [CrossRef]
- Jiang, S.-D.; Wang, B.-W.; Su, G.; Wang, Z.-M.; Gao, S. A Mononuclear Dysprosium Complex Featuring Single-Molecule-Magnet Behavior. Angew. Chem. Int. Ed. 2010, 49, 7448–7451. [Google Scholar] [CrossRef]
- Ungur, L.; Le Roy, J.J.; Korobkov, I.; Murugesu, M.; Chibotaru, L.F. Fine-tuning the Local Symmetry to Attain Record Blocking Temperature and Magnetic Remanence in a Single-Ion Magnet. Angew. Chem. Int. Ed. 2014, 53, 4413–4417. [Google Scholar] [CrossRef]
- Gupta, S.K.; Rajeshkumar, T.; Rajaraman, G.; Murugavel, R. An air-stable Dy(III) single-ion magnet with high anisotropy barrier and blocking temperature. Chem. Sci. 2016, 7, 5181–5191. [Google Scholar] [CrossRef]
- Liu, J.; Chen, Y.-C.; Liu, J.-L.; Vieru, V.; Ungur, L.; Jia, J.-H.; Chibotaru, L.F.; Lan, Y.; Wernsdorfer, W.; Gao, S.; et al. A Stable Pentagonal Bipyramidal Dy(III) Single-Ion Magnet with a Record Magnetization Reversal Barrier over 1000 K. J. Am. Chem. Soc. 2016, 138, 5441–5450. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-C.; Liu, J.-L.; Ungur, L.; Liu, J.; Li, Q.-W.; Wang, L.-F.; Ni, Z.-P.; Chibotaru, L.F.; Chen, X.-M.; Tong, M.-L. Symmetry-Supported Magnetic Blocking at 20 K in Pentagonal Bipyramidal Dy(III) Single-Ion Magnets. J. Am. Chem. Soc. 2016, 138, 2829–2837. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; Tong, M.-L. Single Ion Magnets from 3d to 5f: Developments and Strategies. Chem. Eur. J. 2018, 24, 7574–7594. [Google Scholar] [CrossRef]
- Goodwin, C.A.P.; Ortu, F.; Reta, D.; Chilton, N.F.; Mills, D.P. Molecular magnetic hysteresis at 60 kelvin in dysprosocenium. Nature 2017, 548, 439–442. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.-S.; Day, B.M.; Chen, Y.-C.; Tong, M.-L.; Mansikkamäki, A.; Layfield, R.A. Magnetic hysteresis up to 80 kelvin in a dysprosium metallocene single-molecule magnet. Science 2018, 362, 1400–1403. [Google Scholar] [CrossRef]
- Vanjak, J.C.; Wilkins, B.O.; Vieru, V.; Bhuvanesh, N.S.; Reibenspies, J.H.; Martin, C.D.; Chibotaru, L.F.; Nippe, M. A High-Performance Single-Molecule Magnet Utilizing Dianionic Aminoborolide Ligands. J. Am. Chem. Soc. 2022, 144, 17743–17747. [Google Scholar] [CrossRef] [PubMed]
- Vincent, A.H.; Whyatt, Y.L.; Chilton, N.F.; Long, J.R. Strong Axiality in a Dysprosium(III) Bis(borolide) Complex Leads to Magnetic Blocking at 65 K. J. Am. Chem. Soc. 2023, 145, 1572–1579. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhao, C.; Feng, T.; Liu, X.; Ying, X.; Li, X.-L.; Zhang, Y.-Q.; Tang, J. Air-Stable Chiral Single-Molecule Magnets with Record Anisotropy Barrier Exceeding 1800 K. J. Am. Chem. Soc. 2021, 143, 10077–10082. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-S.; Zhang, K.; Wang, J.; Hu, Z.; Song, Y.; Zhang, Z.; Pan, Z.-Q. Regulating the distortion degree of the square antiprism coordination geometry in Dy–Na single ion magnets. CrystEngComm 2021, 23, 3175–3184. [Google Scholar] [CrossRef]
- Wang, H.-S.; Zhang, K.; Wang, J.; Hu, Z.-B.; Zhang, Z.; Song, Y.; Zhang, Y.-Q. Influence of the Different Types of Auxiliary Noncarboxylate Organic Ligands on the Topologies and Magnetic Relaxation Behavior of Zn–Dy Heterometallic Single Molecule Magnets. Inorg. Chem. 2021, 60, 9941–9955. [Google Scholar] [CrossRef] [PubMed]
- Ungur, L.; Chibotaru, L.F. Magnetic anisotropy in the excited states of low symmetry lanthanide complexes. Phys. Chem. Chem. Phys. 2011, 13, 20086–20090. [Google Scholar] [CrossRef] [PubMed]
- Chilton, N.F.; Goodwin, C.A.P.; Mills, D.P.; Winpenny, R.E.P. The first near-linear bis(amide) f-block complex: A blueprint for a high temperature single molecule magnet. Chem. Commun. 2015, 51, 101–103. [Google Scholar] [CrossRef] [PubMed]
- Chilton, N.F. Design Criteria for High-Temperature Single-Molecule Magnets. Inorg. Chem. 2015, 54, 2097–2099. [Google Scholar] [CrossRef]
- Luzon, J.; Sessoli, R. Lanthanides in molecular magnetism: So fascinating, so challenging. Dalton Trans. 2012, 41, 13556–13567. [Google Scholar] [CrossRef] [PubMed]
- Ungur, L.; Thewissen, M.; Costes, J.-P.; Wernsdorfer, W.; Chibotaru, L.F. Interplay of Strongly Anisotropic Metal Ions in Magnetic Blocking of Complexes. Inorg. Chem. 2013, 52, 6328–6337. [Google Scholar] [CrossRef] [PubMed]
- Chibotaru, L.F. Theoretical Understanding of Anisotropy in Molecular Nanomagnets. In Molecular Nanomagnets and Related Phenomena; Gao, S., Ed.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 185–229. [Google Scholar]
- Ungur, L.; Chibotaru, L.F. Computational Modelling of the Magnetic Properties of Lanthanide Compounds. In Lanthanides and Actinides in Molecular Magnetism; Wiley: Hoboken, New Jersey, USA, 2015. [Google Scholar] [CrossRef]
- Gómez-Coca, S.; Aravena, D.; Morales, R.; Ruiz, E. Large magnetic anisotropy in mononuclear metal complexes. Coord. Chem. Rev. 2015, 289–290, 379–392. [Google Scholar] [CrossRef]
- Baldoví, J.J.; Duan, Y.; Morales, R.; Gaita-Ariño, A.; Ruiz, E.; Coronado, E. Rational Design of Lanthanoid Single-Ion Magnets: Predictive Power of the Theoretical Models. Chem. Eur. J. 2016, 22, 13532–13539. [Google Scholar] [CrossRef]
- Gupta, T.; Rajaraman, G. Modelling spin Hamiltonian parameters of molecular nanomagnets. Chem. Commun. 2016, 52, 8972–9008. [Google Scholar] [CrossRef] [PubMed]
- Ungur, L. 1—Introduction to the electronic structure, luminescence, and magnetism of lanthanides. In Lanthanide-Based Multifunctional Materials; Martín-Ramos, P., Ramos Silva, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–58. [Google Scholar]
- Kotrle, K.; Herchel, R. Are Inorganic Single-Molecule Magnets a Possibility? A Theoretical Insight into Dysprosium Double-Deckers with Inorganic Ring Systems. Inorg. Chem. 2019, 58, 14046–14057. [Google Scholar] [CrossRef]
- Castro-Alvarez, A.; Gil, Y.; Llanos, L.; Aravena, D. High performance single-molecule magnets, Orbach or Raman relaxation suppression? Inorg. Chem. Front. 2020, 7, 2478–2486. [Google Scholar] [CrossRef]
- Aravena, D.; Ruiz, E. Spin dynamics in single-molecule magnets and molecular qubits. Dalton Trans. 2020, 49, 9916–9928. [Google Scholar] [CrossRef]
- Yang, Q.-Q.; Wang, Y.-F.; Wang, Y.-X.; Tang, M.-J.; Yin, B. Ab initio prediction of key parameters and magneto-structural correlation of tetracoordinated lanthanide single-ion magnets. Phys. Chem. Chem. Phys. 2023, 25, 18387–18399. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Li, J.-F.; Yin, B. The coexistence of long τQTM and high Ueff as a concise criterion for a good single-molecule magnet: A theoretical case study of square antiprism dysprosium single-ion magnets. Phys. Chem. Chem. Phys. 2022, 24, 11729–11742. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Li, J.-F.; Yin, B. The interpretation and prediction of lanthanide single-ion magnets from ab initio electronic structure calculation: The capability and limit. Dalton Trans. 2022, 51, 14793–14816. [Google Scholar] [CrossRef] [PubMed]
- Yin, B.; Li, C.-C. A method to predict both the relaxation time of quantum tunneling of magnetization and the effective barrier of magnetic reversal for a Kramers single-ion magnet. Phys. Chem. Chem. Phys. 2020, 22, 9923–9933. [Google Scholar] [CrossRef] [PubMed]
- Yin, B.; Luo, L. The anisotropy of the internal magnetic field on the central ion is capable of imposing great impact on the quantum tunneling of magnetization of Kramers single-ion magnets. Phys. Chem. Chem. Phys. 2021, 23, 3093–3105. [Google Scholar] [CrossRef] [PubMed]
- Dergachev, V.D.; Nakritskaia, D.D.; Varganov, S.A. Strong Relativistic Effects in Lanthanide-Based Single-Molecule Magnets. J. Phys. Chem. Lett. 2022, 13, 6749–6754. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Zhang, Y.-Q.; Li, X.-L.; Guo, M.; Lu, J.; Liu, S.; Layfield Richard, A.; Tang, J. Tuning Magnetic Relaxation in Square-Pyramidal Dysprosium Single-Molecule Magnets Using Apical Alkoxide Ligands. CCS Chem. 2021, 3, 388–398. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, K.; Qin, Y.; Wu, Q.; Hu, K.; Mei, L.; Chai, Z.; Liu, X.; Yu, J.; Shi, W. Role of molecular symmetry in the magnetic relaxation dynamics of five-coordinate Dy(iii) complexes. Dalton Trans. 2023, 52, 2703–2711. [Google Scholar] [CrossRef]
- Zhu, Z.; Ying, X.; Zhao, C.; Zhang, Y.-Q.; Tang, J. A new breakthrough in low-coordinate Dy(iii) single-molecule magnets. Inorg. Chem. Front. 2022, 9, 6061–6066. [Google Scholar] [CrossRef]
- Parmar, V.S.; Ortu, F.; Ma, X.; Chilton, N.F.; Clérac, R.; Mills, D.P.; Winpenny, R.E.P. Probing Relaxation Dynamics in Five-Coordinate Dysprosium Single-Molecule Magnets. Chem. Eur. J. 2020, 26, 7774–7778. [Google Scholar] [CrossRef]
- Ying, X.; Zhu, Z.; Zhao, C.; Zhang, Y.-Q.; Tang, J. Five-Coordinated Dysprosium Single-Molecule Magnet Functionalized by the SMe Group. Inorg. Chem. 2022, 61, 20547–20551. [Google Scholar] [CrossRef] [PubMed]
- Bartolomé, E.; Arauzo, A.; Luzón, J.; Bartolomé, J.; Bartolomé, F. Chapter 1—Magnetic Relaxation of Lanthanide-Based Molecular Magnets. In Handbook of Magnetic Materials; Brück, E., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; Volume 26, pp. 1–289. [Google Scholar]
- Gatteschi, D.; Sessoli, R. Quantum Tunneling of Magnetization and Related Phenomena in Molecular Materials. Angew. Chem. Int. Ed. 2003, 42, 268–297. [Google Scholar] [CrossRef] [PubMed]
- Garanin, D.A.; Chudnovsky, E.M. Thermally activated resonant magnetization tunneling in molecular magnets: Mn12Ac and others. Physical Review B 1997, 56, 11102–11118. [Google Scholar] [CrossRef]
- Lunghi, A.; Sanvito, S. Computational design of magnetic molecules and their environment using quantum chemistry, machine learning and multiscale simulations. Nat. Rev. Chem. 2022, 6, 761–781. [Google Scholar] [CrossRef] [PubMed]
- Reta, D.; Kragskow, J.G.C.; Chilton, N.F. Ab Initio Prediction of High-Temperature Magnetic Relaxation Rates in Single-Molecule Magnets. J. Am. Chem. Soc. 2021, 143, 5943–5950. [Google Scholar] [CrossRef] [PubMed]
- Briganti, M.; Santanni, F.; Tesi, L.; Totti, F.; Sessoli, R.; Lunghi, A. A Complete Ab Initio View of Orbach and Raman Spin–Lattice Relaxation in a Dysprosium Coordination Compound. J. Am. Chem. Soc. 2021, 143, 13633–13645. [Google Scholar] [CrossRef] [PubMed]
- Roos, B.O.; Taylor, P.R.; Sigbahn, P.E.M. A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach. Chem. Phys. 1980, 48, 157–173. [Google Scholar] [CrossRef]
- Aquilante, F.; Autschbach, J.; Carlson, R.K.; Chibotaru, L.F.; Delcey, M.G.; De Vico, L.; Fdez Galván, I.; Ferré, N.; Frutos, L.M.; Gagliardi, L.; et al. Molcas 8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table. J. Comput. Chem. 2016, 37, 506–541. [Google Scholar] [CrossRef]
- Malmqvist, P.Å.; Roos, B.O.; Schimmelpfennig, B. The restricted active space (RAS) state interaction approach with spin–orbit coupling. Chem. Phys. Lett. 2002, 357, 230–240. [Google Scholar] [CrossRef]
- Heß, B.A.; Marian, C.M.; Wahlgren, U.; Gropen, O. A mean-field spin-orbit method applicable to correlated wavefunctions. Chem. Phys. Lett. 1996, 251, 365–371. [Google Scholar] [CrossRef]
- Roos, B.O.; Lindh, R.; Malmqvist, P.-Å.; Veryazov, V.; Widmark, P.-O. Main Group Atoms and Dimers Studied with a New Relativistic ANO Basis Set. J. Phys. Chem. A 2004, 108, 2851–2858. [Google Scholar] [CrossRef]
- Roos, B.O.; Lindh, R.; Malmqvist, P.-Å.; Veryazov, V.; Widmark, P.-O.; Borin, A.C. New Relativistic Atomic Natural Orbital Basis Sets for Lanthanide Atoms with Applications to the Ce Diatom and LuF3. J. Phys. Chem. A 2008, 112, 11431–11435. [Google Scholar] [CrossRef]
- Chibotaru, L.F.; Ungur, L. Ab initio calculation of anisotropic magnetic properties of complexes. I. Unique definition of pseudospin Hamiltonians and their derivation. J. Chem. Phys. 2012, 137, 064112. [Google Scholar] [CrossRef]
- Chibotaru, L.F. Ab Initio Methodology for Pseudospin Hamiltonians of Anisotropic Magnetic Complexes. Adv. Chem. Phys. 2013, 153, 397–519. [Google Scholar]
- Wang, Y.-F.; Wang, Y.-X.; Yang, Q.-Q.; Yin, B. Auxiliary Rather Than Dominant. The Role of Direct Dy–S Coordination in Single-Molecule Magnet Unveiled via ab initio Study. J. Phys. Chem. A 2024, 128, 5285–5297. [Google Scholar] [CrossRef] [PubMed]
- Ungur, L.; Chibotaru, L.F. Ab Initio Crystal Field for Lanthanides. Chem. Eur. J. 2017, 23, 3708–3718. [Google Scholar] [CrossRef] [PubMed]
- Briganti, M.; Garcia, G.F.; Jung, J.; Sessoli, R.; Le Guennic, B.; Totti, F. Covalency and magnetic anisotropy in lanthanide single molecule magnets: The DyDOTA archetype. Chem. Sci. 2019, 10, 7233–7245. [Google Scholar] [CrossRef] [PubMed]
- Manvell, A.S.; Pfleger, R.; Bonde, N.A.; Briganti, M.; Mattei, C.A.; Nannestad, T.B.; Weihe, H.; Powell, A.K.; Ollivier, J.; Bendix, J.; et al. LnDOTA puppeteering: Removing the water molecule and imposing tetragonal symmetry. Chem. Sci. 2024, 15, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Pointillart, F.; Le Guennic, B.; Cador, O. Pressure-Induced Structural, Optical and Magnetic Modifications in Lanthanide Single-Molecule Magnets. Chem. Eur. J. 2024, 30, e202400610. [Google Scholar] [CrossRef] [PubMed]
Refcode | / | TAC a | ||||
---|---|---|---|---|---|---|
1Dy | LEVLEH | 1.43 | 2.49 | 1780 | 1776/1856 | 95 |
2Dy | XUWDAX | 1.26 × 10−1 | 2.62 × 10−1 | 1201 | 1350/1282 | 64 |
3Dy | XUWCUQ | 3.98 × 10−2 | 1.35 × 10−1 | 1210 | 1315/1239 | 64 |
4Dy | XUWCOK | 1.00 × 10−1 | 5.42 × 10−2 | 1262 | 1249/1173 | 64 |
5Dy | ENACOO | N/A b | 7.41 × 10−1 | 1176 | 1236/999 | 60 |
6Dy | ENACII | N/A | 1.51 | 905 | 1035/964 | 49 |
7Dy | ENACUU | 2.02 × 10−2 | 8.77 × 10−1 | 872 | 1014/951 | 41 |
8Dy | ENABON | 3.02 × 10−2 | 2.77 | 773 | 981/801 | 50 |
9Dy | ZESGAJ | 3.68 × 10−1 | 2.56 × 10−1 | 622 | 859/731 | 45 |
10Dy | E.NACAA | 7.45 × 10−3 | 2.51 × 10−1 | 601 | 745/684 | 40 |
11Dy | ENACEE | 3.35 × 10−3 | 5.75 × 10−3 | 378 | 633/374 | 33 |
12Dy | ENABIH | 6.11 × 10−4 | 1.25 × 10−3 | 160 | 738/422 | 22 |
13Dy | DEYRIO | N/A | 2.12 × 10−6 | 36 | 328/230 | 6 |
14Dy | FEYREK | N/A | 1.53 × 10−6 | 19 | 250/124 | 5 |
15Dy | DEYRIO | N/A | 8.00 × 10−7 | N/A | 245/0 | 6 |
16Dy | FEYRAG | 4.03 × 10−4 | 1.19 × 10−8 | N/A | 160/0 | 6 |
Saturated Case | Reproducing Case | Trep | |
---|---|---|---|
1Dy | KD5 + KD6 (91%) | KD5 + KD6 (68%), KD4 (16%) | 100 a |
2Dy | KD3 + KD4 (97%) | KD4 + KD3 (82%) | 79 |
3Dy | KD3 + KD4 (95%) | KD3 + KD4 (77%), KD2 (21%) | 86 |
4Dy | KD3 + KD4 (96%) | KD3 + KD4 (86%) | 90 a |
5Dy | KD4 + KD5 + KD6 (79%) | KD4 + KD5 + KD6 (75%), KD3 (15%) | 160 |
6Dy | KD3 (38%) + KD5 (36%) + KD4 (18%) | KD3 (47%) + KD0 (28%) + KD2 (11%) | 49 |
7Dy | KD4 (53%) + KD5 (28%) + KD6 (16%) | KD4 (62%) + KD1 (9%) + KD5 (8%) | 56 |
8Dy | KD3 (42%) + KD5 (38%) + KD4 (12%) | KD3 (52%) + KD2 (19%) + KD0 (13%) | 48 |
9Dy | KD5 (40%) + KD3 (38%) + KD2 (15%) | KD2 (48%) + KD3 (25%) + KD0 (18%) | 44 |
10Dy | KD2 (46%) + KD3 (35%) + KD4 (18%) | KD2 (71%) + KD0 (15%) + KD3 (12%) | 38 |
11Dy | KD3 (53%) + KD2 (43%) | KD2 (54%) + KD0 (25%) + KD3 (12%) | 40 |
12Dy | KD3 (52%) + KD2 (16%) + KD7 (12%) | KD0 (74%) + KD3 (13%) | 42 |
13Dy | KD2 (48%) + KD1 (39%) + KD3 (10%) | KD0 (83%) + KD1 (16%) | 31 |
14Dy | KD3 (66%) + KD4 (14%) | KD0 (86%) + KD1 (13%) | 23 |
15Dy | KD1 (70%) + KD2 (21%) | N/A b | N/A |
16Dy | KD1 (44%) + KD2 (30%) + KD0 (16%) | N/A | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.-X.; Wang, Y.-F.; Yin, B. Theoretical Study of Pentacoordinated Lanthanide Single-Ion Magnets via Ab Initio Electronic Structure Calculation. Magnetochemistry 2025, 11, 3. https://doi.org/10.3390/magnetochemistry11010003
Wang Y-X, Wang Y-F, Yin B. Theoretical Study of Pentacoordinated Lanthanide Single-Ion Magnets via Ab Initio Electronic Structure Calculation. Magnetochemistry. 2025; 11(1):3. https://doi.org/10.3390/magnetochemistry11010003
Chicago/Turabian StyleWang, Yu-Xi, Yu-Fei Wang, and Bing Yin. 2025. "Theoretical Study of Pentacoordinated Lanthanide Single-Ion Magnets via Ab Initio Electronic Structure Calculation" Magnetochemistry 11, no. 1: 3. https://doi.org/10.3390/magnetochemistry11010003
APA StyleWang, Y.-X., Wang, Y.-F., & Yin, B. (2025). Theoretical Study of Pentacoordinated Lanthanide Single-Ion Magnets via Ab Initio Electronic Structure Calculation. Magnetochemistry, 11(1), 3. https://doi.org/10.3390/magnetochemistry11010003