Anomalous Pressure Effects on the Electrical Conductivity of the Spin Crossover Complex [Fe(pyrazine){Au(CN)2}2]
Abstract
:1. Introduction
2. Results
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Gütlich, P.; Goodwin, H.A. Spin Crossover in Transition Metal Compounds I-III, Topics in Current Chemistry; Gütlich, P., Goodwin, H.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Rotaru, A.; Gural’skiy, I.y.A.; Molnar, G.; Salmon, L.; Demont, P.; Bousseksou, A. Spin state dependence of electrical conductivity of spin crossover materials. Chem. Commun. 2012, 48, 4163–4165. [Google Scholar] [CrossRef] [Green Version]
- Lefter, C.; Gural’skiy, I.y.A.; Peng, H.; Molnár, G.; Salmon, L.; Rotaru, A.; Bousseksou, A.; Demont, P. Dielectric and charge transport properties of the spin crossover complex [Fe(Htrz)2(trz)](BF4). Phys. Stat. Solidi RRL 2014, 8, 191–193. [Google Scholar] [CrossRef]
- Lefter, C.; Tricard, S.; Peng, H.; Molnár, G.; Salmon, L.; Demont, P.; Rotaru, A.; Bousseksou, A. Metal Substitution Effects on the Charge Transport and Spin Crossover Properties of [Fe1–xZnx(Htrz)2(trz)](BF4) (trz = Triazole). J. Phys. Chem. C 2015, 119, 8522–8529. [Google Scholar] [CrossRef] [Green Version]
- Diaconu, A.; Lupu, S.-L.; Rusu, I.; Risca, I.-M.; Salmon, L.; Molnár, G.; Bousseksou, A.; Demont, P.; Rotaru, A. Piezoresistive effect in the [Fe(Htrz)2(trz)](BF4) Spin crossover complex. J. Phys. Chem. Lett. 2017, 8, 3147–3151. [Google Scholar] [CrossRef] [Green Version]
- Soroceanu, I.; Graur, A.; Coca, E.; Salmon, L.; Molnar, G.; Demont, P.; Bousseksou, A.; Rotaru, A. Broad-band dielectric spectroscopy reveals peak values of conductivity and permittivity switching upon spin crossover. J. Phys. Chem. Lett. 2019, 10, 7391–7396. [Google Scholar] [CrossRef]
- Osorio, E.A.; Moth-Poulsen, K.; van der Zant, H.S.J.; Paaske, J.; Hedegård, P.; Flensberg, K.; Bendix, J.; Bjørnholm, T. Electrical manipulation of spin states in a single electrostatically gated transition-metal complex. Nano Lett. 2010, 10, 105–110. [Google Scholar] [CrossRef] [Green Version]
- Miyamachi, T.; Gruber, M.; Davesne, V.; Bowen, M.; Boukari, S.; Joly, L.; Scheurer, F.; Rogez, G.; Yamada, T.K.; Ohresser, P.; et al. Robust spin crossover and memristance across a single molecule. Nat. Commun. 2012, 3, 938. [Google Scholar] [CrossRef]
- Gopakumar, T.G.; Matino, F.; Naggert, H.; Bannwarth, A.; Tuczek, F.; Berndt, R. Electron-induced spin crossover of single molecules in a bilayer on gold. Angew. Chem. Int. Ed. 2012, 51, 6262–6266. [Google Scholar] [CrossRef]
- Bairagi, K.; Iasco, O.; Bellec, A.; Kartsev, A.; Li, D.; Lagoute, J.; Chacon, C.; Girard, Y.; Rousset, S.; Miserque, F.; et al. Molecular-scale dynamics of light-induced spin cross-over in a two-dimensional layer. Nat. Commun. 2016, 7, 12212. [Google Scholar] [CrossRef]
- Jasper-Toennies, T.; Gruber, M.; Karan, S.; Jacob, H.; Tuczek, F.; Berndt, R. Robust and selective switching of an FeIII spin-crossover compound on Cu2N/Cu(100) with memristance behavior. Nano Lett. 2017, 17, 6613–6619. [Google Scholar] [CrossRef]
- Aragonès, A.C.; Aravena, D.; Cerdá, J.I.; Acís-Castillo, Z.; Li, H.; Real, J.A.; Sanz, F.; Hihath, J.; Ruiz, E.; Díez-Pérez, I. Large conductance switching in a single-molecule device through room temperature spin-dependent transport. Nano Lett. 2016, 16, 218–226. [Google Scholar] [CrossRef] [Green Version]
- Prins, F.; Monrabal-Capilla, M.; Osorio, E.A.; Coronado, E.; van der Zant, H.S.J. Room-temperature electrical addressing of a bistable spin-crossover molecular system. Adv. Mater. 2011, 23, 1545–1549. [Google Scholar] [CrossRef]
- Rotaru, A.; Dugay, J.; Tan, R.P.; Gural’skiy, I.A.; Salmon, L.; Demont, P.; Carrey, J.; Molnar, G.; Respaud, M.; Bousseksou, A. Nano-electromanipulation of spin crossover nanorods: Towards switchable nanoelectronic devices. Adv. Mater. 2013, 25, 1745–1749. [Google Scholar] [CrossRef] [Green Version]
- Dugay, J.; Aarts, M.; Giménez-Marqués, M.; Kozlova, T.; Zandbergen, H.W.; Coronado, E.; van der Zant, H.S.J. Phase transitions in spin-crossover thin films probed by graphene transport measurements. Nano Lett. 2016, 17, 186–193. [Google Scholar] [CrossRef]
- Torres-Cavanillas, R.; Sanchis-Gual, R.; Dugay, J.; Coronado-Puchau, M.; Giménez-Marqués, M.; Coronado, E. Design of Bistable Gold@Spin-Crossover Core–shell nanoparticles showing large electrical responses for the spin switching. Adv. Mater. 2019, 31, 1900039. [Google Scholar] [CrossRef]
- Koo, Y.-S.; Galán-Mascarós, J.R. Spin crossover probes confer multistability to organic conducting polymers. Adv. Mater. 2014, 26, 6785–6789. [Google Scholar] [CrossRef]
- Schleicher, F.; Studniarek, M.; Kumar, K.S.; Urbain, E.; Katcko, K.; Chen, J.; Frauhammer, T.; Hervé, M.; Halisdemir, U.; Kandpal, L.M.; et al. Linking electronic transport through a spin crossover thin film to the molecular spin state using x-ray absorption spectroscopy operando techniques. ACS Appl. Mater. Int. 2018, 10, 31580–31585. [Google Scholar] [CrossRef]
- Lefter, C.; Rat, S.; Costa, J.S.; Manrique-Juárez, M.D.; Quintero, C.M.; Salmon, L.; Séguy, I.; Leichle, T.; Nicu, L.; Demont, P.; et al. Current switching coupled to molecular spin-states in large-area junctions. Adv. Mater. 2016, 28, 7508–7514. [Google Scholar] [CrossRef] [Green Version]
- Shalabaeva, V.; Ridier, K.; Rat, S.; Manrique-Juarez, M.D.; Salmon, L.; Séguy, I.; Rotaru, A.; Molnár, G.; Bousseksou, A. Room temperature current modulation in large area electronic junctions of spin crossover thin films. Appl. Phys. Lett. 2018, 112, 013301. [Google Scholar] [CrossRef]
- Poggini, L.; Gonidec, M.; Gonzalez-Estefan, J.H.; Pecastaings, G.; Gobaut, B.; Rosa, P. Vertical tunnel junction embedding a spin crossover molecular film. Adv. Electron. Mater. 2018, 4, 1800204. [Google Scholar] [CrossRef]
- Ruiz, E. Charge transport properties of spin crossover systems. Phys. Chem. Chem. Phys. 2014, 16, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Lefter, C.; Davesne, V.; Salmon, L.; Molnár, G.; Demont, P.; Rotaru, A.; Bousseksou, A. Charge transport and electrical properties of spin crossover materials: Towards nanoelectronic and spintronic devices. Magnetochemistry 2016, 2, 18. [Google Scholar] [CrossRef] [Green Version]
- Molnar, G.; Rat, S.; Salmon, L.; Nicolazzi, W.; Bousseksou, A. Spin crossover nanomaterials: From fundamental concepts to devices. Adv. Mater. 2018, 30, 1703862. [Google Scholar] [CrossRef] [PubMed]
- Bellec, A.; Lagoute, J.; Repain, V. Molecular electronics: Scanning tunneling microscopy and single-molecule devices. Comptes Rendus Chim. 2018, 21, 1287–1299. [Google Scholar] [CrossRef]
- Gaspar, A.B.; Molnár, G.; Rotaru, A.; Shepherd, H.J. Pressure effect investigations on spin-crossover coordination compounds. Comptes Rendus Chim. 2018, 21, 1095–1120. [Google Scholar] [CrossRef]
- Gural’skiy, I.A.; Golub, B.O.; Shylin, S.I.; Ksenofontov, V.; Shepherd, H.J.; Raithby, P.R.; Tremel, W.; Fritsky, I.O. Cooperative high-temperature spin crossover accompanied by a highly anisotropic structural distortion. Eur. J. Inorg. Chem. 2016, 2016, 3191–3195. [Google Scholar] [CrossRef] [Green Version]
- Molnar, G.; Cobo, S.; Mahfoud, T.; Vertelman, E.J.M.; van Koningsbruggen, P.J.; Demont, P.; Bousseksou, A. Interplay between the charge transport phenomena and the charge-transfer phase transition in RbxMn[Fe(CN)6]y.zH2O. J. Phys. Chem. C 2009, 113, 2586–2593. [Google Scholar] [CrossRef] [Green Version]
- Ohtani, R.; Hayami, S. Guest-dependent spin-transition behavior of porous coordination polymers. Chem. Eur. J. 2017, 23, 2236–2248. [Google Scholar] [CrossRef]
Pressure (bar) * | σ0LS (S/m) | σ0HS(S/m) | EaLS (eV) | EaHS(eV) |
---|---|---|---|---|
1 | 1.1 (9) × 10−4 | 6.3 (3) × 10−3 | 0.22 (2) | 0.36 (2) |
500 | 1.3 (4) × 10−3 | 1.1 (1) × 10−2 | 0.31 (9) | 0.40 (1) |
1000 | 1.7 (2) × 10−3 | 2.1 (1) × 10−2 | 0.34 (1) | 0.43 (4) |
1500 | 8.2 (1) × 10−3 | 1.9 (4) × 10−1 | 0.40 (8) | 0.51 (8) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gheorghe, A.-C.; Bibik, Y.S.; Kucheriv, O.I.; Barakhtii, D.D.; Boicu, M.-V.; Rusu, I.; Diaconu, A.; Gural’skiy, I.A.; Molnár, G.; Rotaru, A. Anomalous Pressure Effects on the Electrical Conductivity of the Spin Crossover Complex [Fe(pyrazine){Au(CN)2}2]. Magnetochemistry 2020, 6, 31. https://doi.org/10.3390/magnetochemistry6030031
Gheorghe A-C, Bibik YS, Kucheriv OI, Barakhtii DD, Boicu M-V, Rusu I, Diaconu A, Gural’skiy IA, Molnár G, Rotaru A. Anomalous Pressure Effects on the Electrical Conductivity of the Spin Crossover Complex [Fe(pyrazine){Au(CN)2}2]. Magnetochemistry. 2020; 6(3):31. https://doi.org/10.3390/magnetochemistry6030031
Chicago/Turabian StyleGheorghe, Andrei-Cristian, Yurii S. Bibik, Olesia I. Kucheriv, Diana D. Barakhtii, Marin-Vlad Boicu, Ionela Rusu, Andrei Diaconu, Il’ya A. Gural’skiy, Gábor Molnár, and Aurelian Rotaru. 2020. "Anomalous Pressure Effects on the Electrical Conductivity of the Spin Crossover Complex [Fe(pyrazine){Au(CN)2}2]" Magnetochemistry 6, no. 3: 31. https://doi.org/10.3390/magnetochemistry6030031
APA StyleGheorghe, A. -C., Bibik, Y. S., Kucheriv, O. I., Barakhtii, D. D., Boicu, M. -V., Rusu, I., Diaconu, A., Gural’skiy, I. A., Molnár, G., & Rotaru, A. (2020). Anomalous Pressure Effects on the Electrical Conductivity of the Spin Crossover Complex [Fe(pyrazine){Au(CN)2}2]. Magnetochemistry, 6(3), 31. https://doi.org/10.3390/magnetochemistry6030031