Slow Magnetic Relaxation in Cobalt(II) Complexes with One-Dimensional Hydrogen-Bonded Networks
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation of the Ligand and Cobalt(II) Complexes
2.2. Crystal Structures of H2mthp and Cobalt(II) Complexs
2.3. Magnetic Properties
2.3.1. Static Magnetic Properties
2.3.2. Dynamic magnetic properties
4. Materials and Methods
4.1. General Consideration
4.2. Preparations
4.3. Crystallography
4.4. Magnetic Measurements
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sessoli, R.; Gatteschi, D.; Caneschi, A.; Novak, M.A. Magnetic bistability in a metal-ion cluster. Nature 1993, 365, 141–143. [Google Scholar] [CrossRef]
- Mannini, M.; Pineider, F.; Sainctavit, P.; Danieli, C.; Otero, E.; Sciancalepore, C.; Talarico, A.M.; Arrio, M.-A.; Cornia, A.; Gatteschi, D.; et al. Magnetic memory of a single-molecule quantum magnet wired to a gold surface. Nat. Mater. 2009, 8, 194–197. [Google Scholar] [CrossRef] [PubMed]
- Ardavan, A.; Rival, O.; Morton, J.J.L.; Blundell, S.J.; Tyryshkin, A.M.; Timco, G.A.; Winpenny, R.E.P. Will Spin-Relaxation Times in Molecular Magnets Permit Quantum Information Processing? Phys. Rev. Lett. 2007, 98, 057201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stamp, P.C.E.; Gaita-Ariño, A. Spin-based quantum computers made by chemistry: Hows and whys. J. Mater. Chem. 2009, 19, 1718–1730. [Google Scholar] [CrossRef] [Green Version]
- Gaita-Ariño, A.; Luis, F.; Hill, S.; Coronado, E. Molecular spins for quantum computation. Nat. Chem. 2019, 11, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, N.; Sugita, M.; Ishikawa, T.; Koshihara, S.Y.; Kaizu, Y. Lanthanide double-decker complexes functioning as magnets at the single-molecular level. J. Am. Chem. Soc. 2003, 125, 8694–8695. [Google Scholar] [CrossRef] [PubMed]
- Harman, W.H.; Harris, T.D.; Freedman, D.E.; Fong, H.; Chang, A.; Rinehart, J.D.; Ozarowski, A.; Sougrati, M.T.; Grandjean, F.; Long, G.J.; et al. Slow Magnetic Relaxation in a Family of Trigonal Pyramidal Iron(II) Pyrrolide Complexes. J. Am. Chem. Soc. 2010, 132, 18115–18126. [Google Scholar] [CrossRef]
- Rechkemmer, Y.; Breitgoff, F.D.; van der Meer, M.; Atanasov, M.; Hakl, M.; Orlita, M.; Neugebauer, P.; Neese, F.; Sarkar, B.; van Slageren, J. A four-coordinate cobalt(II) single-ion magnet with coercivity and a very high energy barrier. Nat. Commun. 2016, 7, 10467. [Google Scholar] [CrossRef] [Green Version]
- Mitsuhashi, R.; Pedersen, K.S.; Ueda, T.; Suzuki, T.; Bendix, J.; Mikuriya, M. Field-induced single-molecule magnet behavior in ideal trigonal antiprismatic cobalt(II) complexes: Precise geometrical control by a hydrogen-bonded rigid metalloligand. Chem. Commun. 2018, 54, 8869–8872. [Google Scholar] [CrossRef]
- Mitsuhashi, R.; Hosoya, S.; Sunatsuki, Y.; Suzuki, T.; Mikuriya, M. Field-induced single-ion magnet behaviors in 1-dimensionally assembled tetrahedral cobalt(II) complexes with halide donors. Inorg. Chim. Acta 2022, 529, 120667. [Google Scholar] [CrossRef]
- Zadrozny, J.M.; Long, J.R. Slow magnetic relaxation at zero field in the tetrahedral complex [Co(SPh)4]2−. J. Am. Chem. Soc. 2011, 133, 20732–20734. [Google Scholar] [CrossRef]
- Mitsuhashi, R.; Hosoya, S.; Suzuki, T.; Sunatsuki, Y.; Sakiyama, H.; Mikuriya, M. Hydrogen-bonding interactions and magnetic relaxation dynamics in tetracoordinated cobalt(II) single-ion magnets. Dalton Trans. 2019, 48, 395–399. [Google Scholar] [CrossRef] [PubMed]
- Mitsuhashi, R.; Hosoya, S.; Suzuki, T.; Sunatsuki, Y.; Sakiyama, H.; Mikuriya, M. Zero-field slow relaxation of magnetization in cobalt(II) single-ion magnets: Suppression of quantum tunneling of magnetization by tailoring the intermolecular magnetic coupling. RSC Adv. 2020, 10, 43472–43479. [Google Scholar] [CrossRef] [PubMed]
- da Cunha, T.T.; Barbosa, V.M.M.; Oliveira, W.X.C.; Pedroso, E.F.; García, D.M.A.; Nunes, W.C.; Pereira, C.L.M. Field-Induced Slow Magnetic Relaxation of a Six-Coordinate Mononuclear Manganese(II) and Cobalt(II) Oxamate Complexes. Inorg. Chem. 2020, 59, 12983–12987. [Google Scholar] [CrossRef]
- Yao, B.; Singh, M.K.; Deng, Y.-F.; Wang, Y.-N.; Dunbar, K.R.; Zhang, Y.-Z. Trigonal Prismatic Cobalt(II) Single-Ion Magnets: Manipulating the Magnetic Relaxation Through Symmetry Control. Inorg. Chem. 2020, 59, 8505–8513. [Google Scholar] [CrossRef] [PubMed]
- Saber, M.R.; Singh, M.K.; Dunbar, K.R. Geometrical control of the magnetic anisotropy in six coordinate cobalt complexes. Chem. Commun. 2020, 56, 8492–8495. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.-F.; Singh, M.K.; Gan, D.; Xiao, T.; Wang, Y.; Liu, S.; Wang, Z.; Ouyang, Z.; Zhang, Y.-Z.; Dunbar, K.R. Probing the Axial Distortion Effect on the Magnetic Anisotropy of Octahedral Co(II) Complexes. Inorg. Chem. 2020, 59, 7622–7630. [Google Scholar] [CrossRef]
- Wernsdorfer, W.; Aliaga-Alcalde, N.; Hendrickson, D.N.; Christou, G. Exchange-biased quantum tunnelling in a supramolecular dimer of single-molecule magnets. Nature 2002, 416, 406–409. [Google Scholar] [CrossRef]
- Hill, S.; Edwards, R.S.; Aliaga-Alcalde, N.; Christou, G. Quantum Coherence in an Exchange-Coupled Dimer of Single-Molecule Magnets. Science 2003, 302, 1015–1018. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.N.; Wernsdorfer, W.; Abboud, K.A.; Christou, G. A supramolecular aggregate of four exchange-biased single-molecule magnets. J. Am. Chem. Soc. 2011, 133, 20688–20691. [Google Scholar] [CrossRef]
- Han, T.; Giansiracusa, M.J.; Li, Z.H.; Ding, Y.S.; Chilton, N.F.; Winpenny, R.E.P.; Zheng, Y.Z. Exchange-Biasing in a Dinuclear Dysprosium(III) Single-Molecule Magnet with a Large Energy Barrier for Magnetisation Reversal. Chem.—A Eur. J. 2020, 26, 6773–6777. [Google Scholar] [CrossRef] [PubMed]
- Mitsuhashi, R.; Suzuki, T.; Sunatsuki, Y. Four-Electron Oxidative Dehydrogenation Induced by Proton-Coupled Electron Transfer in Ruthenium(III) Complex with 2-(1,4,5,6-Tetrahydropyrimidin-2-yl)phenolate. Inorg. Chem. 2013, 52, 10183–10190. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Powell, D.R.; Houser, R.P. Structural variation in copper(I) complexes with pyridylmethylamide ligands: Structural analysis with a new four-coordinate geometry index, τ4. Dalton Trans. 2007, 36, 955–964. [Google Scholar] [CrossRef]
- Mitsuhashi, R.; Suzuki, T.; Hosoya, S.; Mikuriya, M. Hydrogen-Bonded Supramolecular Structures of Cobalt(III) Complexes with Unsymmetrical Bidentate Ligands: mer/fac Interconversion Induced by Hydrogen-Bonding Interactions. Cryst. Growth Des. 2017, 17, 207–213. [Google Scholar] [CrossRef]
- Scott, P.L.; Jeffries, C.D. Spin-lattice relaxation in some rare-earth salts at helium temperatures; observation of the phonon bottleneck. Phys. Rev. 1962, 127, 32–51. [Google Scholar] [CrossRef]
- Shrivastava, K. Theory of Spin–Lattice Relaxation. Phys. Status Solidi B 1983, 117, 437. [Google Scholar] [CrossRef]
- Gottlieb, H.E.; Kotlyar, V.; Nudelman, A. NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities. J. Org. Chem. 1997, 62, 7512–7515. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Bain, G.A.; Berry, J.F. Diamagnetic Corrections and Pascal’s Constants. J. Chem. Educ. 2008, 85, 532–536. [Google Scholar] [CrossRef]
- Sakiyama, H. Development of MagSaki(Tetra) Software for the Magnetic Analysis of Tetranuclear High-spin Cobalt(II) Complexes. J. Comput. Chem. Jpn.-Int. Ed. 2016, 2, 2016-0001. [Google Scholar] [CrossRef]
- Chilton, N.F. CC-Fit; The University of Manchester: Manchester, UK, 2014; Available online: http://www.nfchilton.com/cc-fit.html (accessed on 4 November 2019).
Atom-Atom | Length/Å | Atom-Atom-Atom | Angle/° |
---|---|---|---|
Co(1)-O(1) | 1.913(2) | O(1)-Co(1)-N(2) | 94.08(10) |
Co(1)-O(3) | 1.910(2) | O(3)-Co(1)-N(4) | 93.27(10) |
Co(1)-N(2) | 1.982(3) | O(1)-Co(1)-O(3) | 106.28(10) |
Co(1)-N(4) | 1.972(3) | O(1)-Co(1)-N(4) | 126.84(10) |
O(3)-Co(1)-N(2) | 125.07(11) | ||
N(2)-Co(1)-N(4) | 114.22(11) |
Atom-Atom | Length/Å | Atom-Atom-Atom | Angle/° |
---|---|---|---|
Co(1)-O(1) | 2.002(3) | O(1)-Co(1)-N(2) | 91.44(14) |
Co(1)-O(3) | 1.982(3) | O(3)-Co(1)-O(4) | 72.58(11) |
Co(1)-O(4) | 2.354(3) | O(5)-Co(1)-O(6) | 71.15(12) |
Co(1)-O(5) | 1.998(3) | O(1)-Co(1)-O(3) | 90.51(11) |
Co(1)-O(6) | 2.387(3) | O(1)-Co(1)-O(5) | 108.44(12) |
Co(1)—N(2) | 2.041(4) | O(1)-Co(1)-O(6) | 91.16(11) |
N(2)-Co(1)-O(3) | 111.63(15) | ||
N(2)-Co(1)-O(4) | 92.64(14) | ||
N(2)-Co(1)-O(5) | 93.62(14) | ||
O(3)-Co(1)-O(6) | 83.54(12) | ||
O(4)-Co(1)-O(5) | 87.83(12) | ||
O(1)-Co(1)-O(4) | 162.93(11) | ||
N(2)-Co(1)-O(6) | 164.58(13) | ||
O(3)-Co(1)-O(5) | 148.22(14) | ||
O(4)-Co(1)-O(6) | 89.29(12) |
1·C2H5OH | 2BF4·1.5C2H5OH | [Co(Hthp)2] i | [Co(Hmimn)2]·CH3OH ii | |
---|---|---|---|---|
gx, gy | 2.16 | 2.35 | 2.18 | 2.18 |
gz | 2.56 | 2.42 | 2.48 | 2.55 |
D/cm−1 | –49 | –31 | –30 | –30 |
zJ/cm−1 | –0.56 | 0 | –1.5 | –0.25 |
TIP/cm3 mol−1 | 0.0003 | 0.0005 | 0.0003 | 0.0003 |
Complex | 1·C2H5OH | 2BF4·1.5C2H5OH | H2mthp |
---|---|---|---|
Empirical formula | C24H32CoN4O5 | C36H50BCoF4N6O7.5 | C11H14N2O2 |
Formula weight | 515.46 | 832.56 | 206.24 |
Crystal system | Monoclinic | Triclinic | Orthorhombic |
Crystal dimensions/mm | 0.08 × 0.05 × 0.02 | 0.15 × 0.09 × 0.07 | 0.16 × 0.11 × 0.07 |
Space group | P21/c | P | P212121 |
a/Å | 10.3216(6) | 12.1036(6) | 7.5402(2) |
b/Å | 19.6289(11) | 13.6859(6) | 12.0806(3) |
c/Å | 11.8343(6) | 13.9026(8) | 22.6040(8) |
α/° | 114.527(5) | ||
β/° | 96.137(5) | 104.484(4) | |
γ/° | 92.660(4) | ||
V/Å3 | 2383.9(2) | 1998.83(19) | 2059.00(10) |
Z | 4 | 2 | 8 |
T/K | 100(2) | 100(2) | 100(2) |
ρcalcd/g·cm−3 | 1.436 | 1.383 | 1.331 |
µ/mm−1 | 0.763 | 0.503 | 0.093 |
F(000) | 1084 | 872 | 880 |
2θmax/◦ | 55 | 55 | 55 |
No. of reflections measured | 20466 | 26576 | 12996 |
No. of independent reflections | 5452 (Rint = 0.0866) | 9145 (Rint = 0.0482) | 4588 (Rint = 0.0339) |
Data/restraints/parameters | 5452/0/319 | 9145/83/552 | 4588/4/289 |
R1 [I > 2.00 σ(I)] i | 0.0621 | 0.0852 | 0.0376 |
wR2 (all reflections) ii | 0.1230 | 0.2784 | 0.0850 |
Goodness of fit indicator | 1.043 | 1.040 | 1.030 |
Highest peak, deepest hole/e Å−3 | 0.437, −0.575 | 1.432, −0.799 | 0.181, −0.214 |
CCDC deposition number | 2216987 | 2216988 | 2216989 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitsuhashi, R.; Sakiyama, H.; Hayashi, Y. Slow Magnetic Relaxation in Cobalt(II) Complexes with One-Dimensional Hydrogen-Bonded Networks. Magnetochemistry 2023, 9, 17. https://doi.org/10.3390/magnetochemistry9010017
Mitsuhashi R, Sakiyama H, Hayashi Y. Slow Magnetic Relaxation in Cobalt(II) Complexes with One-Dimensional Hydrogen-Bonded Networks. Magnetochemistry. 2023; 9(1):17. https://doi.org/10.3390/magnetochemistry9010017
Chicago/Turabian StyleMitsuhashi, Ryoji, Hiroshi Sakiyama, and Yoshihito Hayashi. 2023. "Slow Magnetic Relaxation in Cobalt(II) Complexes with One-Dimensional Hydrogen-Bonded Networks" Magnetochemistry 9, no. 1: 17. https://doi.org/10.3390/magnetochemistry9010017
APA StyleMitsuhashi, R., Sakiyama, H., & Hayashi, Y. (2023). Slow Magnetic Relaxation in Cobalt(II) Complexes with One-Dimensional Hydrogen-Bonded Networks. Magnetochemistry, 9(1), 17. https://doi.org/10.3390/magnetochemistry9010017