The Assembly of Grid-type Lanthanide Cluster
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Ligand H2L
2.2. Synthesis of Dy2
2.3. Synthesis of Dy4
2.4. Crystallography
2.5. Magnetic Measurements
3. Results and Discussions
3.1. Structures of Dy2 and Dy4
3.2. Magnetic Properties of Dy2 and Dy4
3.2.1. Static Magnetic Properties of Dy2 and Dy4
3.2.2. Dynamic Magnetic Properties of Dy2 and Dy4
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ishikawa, N.; Sugita, M.; Ishikawa, T.; Koshihara, S.-Y.; Kaizu, Y. Lanthanide Double-Decker Complexes Functioning as Magnets at the Single-Molecular Level. J. Am. Chem. Soc. 2003, 125, 8694–8695. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; Tong, M.L. Single Ion Magnets from 3d to 5f: Developments and Strategies. Chem. Eur. J. 2018, 24, 7574–7594. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.-S.; Jiang, S.-D.; Wang, B.-W.; Gao, S. Understanding the Magnetic Anisotropy toward Single-Ion Magnets. Acc. Chem. Res. 2016, 49, 2381–2389. [Google Scholar] [CrossRef] [PubMed]
- Sessoli, R.; Powell, A.K. Strategies towards single molecule magnets based on lanthanide ions. Coord. Chem. Rev. 2009, 253, 2328–2341. [Google Scholar] [CrossRef]
- Clemente-Juan, J.M.; Coronado, E.; Gaita-Arino, A. Magnetic polyoxometalates: From molecular magnetism to molecular spintronics and quantum computing. Chem. Soc. Rev. 2012, 41, 7464–7478. [Google Scholar] [CrossRef]
- Akiyoshi, R.; Zenno, H.; Sekine, Y.; Nakaya, M.; Akita, M.; Kosumi, D.; Lindoy, L.F.; Hayami, S. A Ferroelectric Metallomesogen Exhibiting Field-Induced Slow Magnetic Relaxation. Chem. Eur. J. 2022, 28, e202103367. [Google Scholar] [CrossRef]
- Sessoli, R.; Tsai, H.L.; Schake, A.R.; Wang, S.; Vincent, J.B.; Folting, K.; Gatteschi, D.; Christou, G.; Hendrickson, D.N. High-spin molecules: [Mn12O12(O2CR)16(H2O)4]. J. Am. Chem. Soc. 1993, 115, 1804–1816. [Google Scholar] [CrossRef]
- Gatteschi, D.; Caneschi, A.; Pardi, L.; Sessoli, R. Large Clusters of Metal Ions: The Transition from Molecular to Bulk Magnets. Science 1994, 265, 1054–1058. [Google Scholar] [CrossRef]
- Cosquer, G.; Shen, Y.; Almeida, M.; Yamashita, M. Conducting single-molecule magnet materials. Dalton Trans. 2018, 47, 7616–7627. [Google Scholar] [CrossRef]
- Dey, A.; Kalita, P.; Chandrasekhar, V. Lanthanide(III)-Based Single-Ion Magnets. ACS Omega 2018, 3, 9462–9475. [Google Scholar] [CrossRef]
- Guo, F.-S.; Bar, A.K.; Layfield, R.A. Main Group Chemistry at the Interface with Molecular Magnetism. Chem. Rev. 2019, 119, 8479–8505. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Li, X.-L.; Liu, S.; Tang, J. External stimuli modulate the magnetic relaxation of lanthanide single-molecule magnets. Inorganic Chemistry Frontiers 2020, 7, 3315–3326. [Google Scholar] [CrossRef]
- Guo, F.-S.; Day, B.M.; Chen, Y.-C.; Tong, M.-L.; Mansikkamäki, A.; Layfield, R.A. Magnetic hysteresis up to 80 kelvin in a dysprosium metallocene single-molecule magnet. Science 2018, 362, 1400–1403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishikawa, N.; Sugita, M.; Wernsdorfer, W. Quantum Tunneling of Magnetization in Lanthanide Single-Molecule Magnets: Bis(phthalocyaninato)terbium and Bis(phthalocyaninato)dysprosium Anions. Angew. Chem. Int. Ed. 2005, 44, 2931–2935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wernsdorfer, W.; Sessoli, R. Quantum Phase Interference and Parity Effects in Magnetic Molecular Clusters. Science 1999, 284, 133–135. [Google Scholar] [CrossRef] [Green Version]
- Gatteschi, D.; Sessoli, R. Quantum Tunneling of Magnetization and Related Phenomena in Molecular Materials. Angew. Chem. Int. Ed. 2003, 42, 268–297. [Google Scholar] [CrossRef]
- Guo, F.S.; Day, B.M.; Chen, Y.C.; Tong, M.L.; Mansikkamaki, A.; Layfield, R.A. A Dysprosium Metallocene Single-Molecule Magnet Functioning at the Axial Limit. Angew. Chem. Int. Ed. 2017, 56, 11445–11449. [Google Scholar] [CrossRef] [Green Version]
- Goodwin, C.A.P.; Ortu, F.; Reta, D.; Chilton, N.F.; Mills, D.P. Molecular magnetic hysteresis at 60 kelvin in dysprosocenium. Nature 2017, 548, 439–442. [Google Scholar] [CrossRef] [Green Version]
- Martynov, A.G.; Horii, Y.; Katoh, K.; Bian, Y.; Jiang, J.; Yamashita, M.; Gorbunova, Y.G. Rare-earth based tetrapyrrolic sandwiches: Chemistry, materials and applications. Chem. Soc. Rev. 2022, 51, 9262–9339. [Google Scholar] [CrossRef]
- Jiang, S.-D.; Wang, B.-W.; Su, G.; Wang, Z.-M.; Gao, S. A Mononuclear Dysprosium Complex Featuring Single-Molecule-Magnet Behavior. Angew. Chem. Int. Ed. 2010, 49, 7448–7451. [Google Scholar] [CrossRef]
- Wu, J.; Jung, J.; Zhang, P.; Zhang, H.; Tang, J.; Le Guennic, B. Cis-Trans Isomerism Modulates the Magnetic Relaxation of Dysprosium Single-Molecule Magnets. Chem. Sci. 2016, 7, 3632–3639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Cador, O.; Li, X.-L.; Zhao, L.; Le Guennic, B.; Tang, J. Axial Ligand Field in D4d Coordination Symmetry: Magnetic Relaxation of Dy SMMs Perturbed by Counteranions. Inorg. Chem. 2017, 56, 11211–11219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.-C.; Liu, J.-L.; Ungur, L.; Liu, J.; Li, Q.-W.; Wang, L.-F.; Ni, Z.-P.; Chibotaru, L.F.; Chen, X.-M.; Tong, M.-L. Symmetry-Supported Magnetic Blocking at 20 K in Pentagonal Bipyramidal Dy(III) Single-Ion Magnets. J. Am. Chem. Soc. 2016, 138, 2829–2837. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chen, Y.-C.; Liu, J.-L.; Vieru, V.; Ungur, L.; Jia, J.-H.; Chibotaru, L.F.; Lan, Y.; Wernsdorfer, W.; Gao, S.; et al. A Stable Pentagonal Bipyramidal Dy(III) Single-Ion Magnet with a Record Magnetization Reversal Barrier over 1000 K. J. Am. Chem. Soc. 2016, 138, 5441–5450. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.-X.; Kragskow, J.G.C.; Ding, Y.-S.; Zhai, Y.-Q.; Reta, D.; Chilton, N.F.; Zheng, Y.-Z. Enhancing Magnetic Hysteresis in Single-Molecule Magnets by Ligand Functionalization. Chem 2020, 6, 1777–1793. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Tong, M.-L. Single-Molecule Magnets beyond a Single Lanthanide Ion: The Art of Coupling. Chem. Sci. 2022, 13, 8716–8726. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Krylov, D.S.; Spree, L.; Avdoshenko, S.M.; Samoylova, N.A.; Rosenkranz, M.; Kostanyan, A.; Greber, T.; Wolter, A.U.B.; Büchner, B.; et al. Single molecule magnet with an unpaired electron trapped between two lanthanide ions inside a fullerene. Nat. Commun. 2017, 8, 16098. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Velkos, G.; Krylov, D.S.; Spree, L.; Zalibera, M.; Ray, R.; Samoylova, N.A.; Chen, C.-H.; Rosenkranz, M.; Schiemenz, S.; et al. Air-stable redox-active nanomagnets with lanthanide spins radical-bridged by a metal–metal bond. Nat. Commun. 2019, 10, 571. [Google Scholar] [CrossRef]
- Paschke, F.; Birk, T.; Enenkel, V.; Liu, F.; Romankov, V.; Dreiser, J.; Popov, A.A.; Fonin, M. Exceptionally High Blocking Temperature of 17 K in a Surface-Supported Molecular Magnet. Adv Mater 2021, 33, 2102844. [Google Scholar] [CrossRef]
- Gould, C.A.; McClain, K.R.; Reta, D.; Kragskow, J.G.C.; Marchiori, D.A.; Lachman, E.; Choi, E.-S.; Analytis, J.G.; Britt, R.D.; Chilton, N.F.; et al. Ultrahard magnetism from mixed-valence dilanthanide complexes with metal-metal bonding. Science 2022, 375, 198–202. [Google Scholar] [CrossRef]
- Rinehart, J.D.; Fang, M.; Evans, W.J.; Long, J.R. Strong exchange and magnetic blocking in N2 32-radical-bridged lanthanide complexes. Nat. Chem. 2011, 3, 538–542. [Google Scholar] [CrossRef] [PubMed]
- Demir, S.; Jeon, I.-R.; Long, J.R.; Harris, T.D. Radical ligand-containing single-molecule magnets. Coord. Chem. Rev. 2015, 289-290, 149–176. [Google Scholar] [CrossRef] [Green Version]
- Demir, S.; Gonzalez, M.I.; Darago, L.E.; Evans, W.J.; Long, J.R. Giant coercivity and high magnetic blocking temperatures for N23− radical-bridged dilanthanide complexes upon ligand dissociation. Nat. Commun. 2017, 8, 2144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Li, Q.-W.; Wu, S.-G.; Chen, Y.-C.; Wan, R.-C.; Huang, G.-Z.; Liu, Y.; Liu, J.-L.; Reta, D.; Giansiracusa, M.J.; et al. Opening magnetic hysteresis by axial ferromagnetic coupling: From mono-decker to double-decker metallacrown. Angew. Chem. Int. Ed. 2021, 60, 5299–5306. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Ding, H.-Y.; Meng, Y.-S.; Gao, C.; Zhang, X.-J.; Meng, Z.-S.; Zhang, Y.-Q.; Shi, W.; Wang, B.-W.; Gao, S. Hydroxide-bridged five-coordinate DyIII single-molecule magnet exhibiting the record thermal relaxation barrier of magnetization among lanthanide-only dimers. Chem. Sci. 2017, 8, 1288–1294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Demeshko, S.; Dechert, S.; Meyer, F. Macrocycle Based Dinuclear Dysprosium(III) Single Molecule Magnets with Local D5h Coordination Geometry. Dalton Trans. 2021, 50, 17573–17582. [Google Scholar] [CrossRef]
- Lu, J.; Li, X.-L.; Jin, C.; Yu, Y.; Tang, J. Dysprosium-based linear helicate clusters: Syntheses, structures, and magnetism. New J. Chem. 2020, 44, 994–1000. [Google Scholar] [CrossRef]
- Zhang, Y.; Ali, B.; Wu, J.; Guo, M.; Yu, Y.; Liu, Z.; Tang, J. Construction of Metallosupramolecular Coordination Complexes: From Lanthanide Helicates to Octahedral Cages Showing Single-Molecule Magnet Behavior. Inorg. Chem. 2019, 58, 3167–3174. [Google Scholar] [CrossRef]
- Wu, J.; Li, X.-L.; Zhao, L.; Guo, M.; Tang, J. Enhancement of Magnetocaloric Effect through Fixation of Carbon Dioxide: Molecular Assembly from Ln4 to Ln4 Cluster Pairs. Inorg. Chem. 2017, 56, 4104–4111. [Google Scholar] [CrossRef]
- Amlani, I.; Orlov, A.O.; Toth, G.; Bernstein, G.H.; Lent, C.S.; Snider, G.L. Digital Logic Gate Using Quantum-Dot Cellular Automata. Science, 1999; 284, 289–291. [Google Scholar] [CrossRef]
- Yang, Q.; Tang, J. Heterometallic grids: Synthetic strategies and recent advances. Dalton Trans. 2019, 48, 769–778. [Google Scholar] [CrossRef]
- Wu, J.; Guo, M.; Li, X.-L.; Zhao, L.; Sun, Q.-F.; Layfield, R.; Tang, J. From Double-Shelled Grids to Supramolecular Frameworks. Chem. Commun. 2018, 54, 12097–12100. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhao, L.; Guo, M.; Tang, J. Constructing supramolecular grids: From 4f square to 3d-4f grid. Chem. Commun. 2015, 51, 17317–17320. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhao, L.; Zhang, L.; Li, X.-L.; Guo, M.; Tang, J. Metallosupramolecular Coordination Complexes: The Design of Heterometallic 3d–4f Gridlike Structures. Inorg. Chem. 2016, 55, 5514–5519. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhao, L.; Zhang, L.; Li, X.-L.; Guo, M.; Powell, A.K.; Tang, J. Macroscopic Hexagonal Tubes of 3 d–4 f Metallocycles. Angew. Chem. Int. Ed. 2016, 55, 15574–15578. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Li, X.-L.; Guo, M.; Zhao, L.; Zhang, Y.; Tang, J. Realization of toroidal magnetic moments in heterometallic 3d-4f metallocycles. Chem. Commun. 2018, 54, 1065–1068. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Liu, D.; Yang, Q.; Ge, Y.; Tang, J.; Qi, Z. Magnetic investigation in di- and tetranuclear lanthanide complexes. New J. Chem. 2021, 45, 2200–2207. [Google Scholar] [CrossRef]
- Alam, M.S.; Strömsdörfer, S.; Dremov, V.; Müller, P.; Kortus, J.; Ruben, M.; Lehn, J.-M. Addressing the Metal Centers of [2×2] CoII4 Grid-Type Complexes by STM/STS. Angew. Chem. Int. Ed. 2005, 44, 7896–7900. [Google Scholar] [CrossRef]
- Barboiu, M.; Stadler, A.-M.; Lehn, J.-M. Controlled Folding, Motional, and Constitutional Dynamic Processes of Polyheterocyclic Molecular Strands. Angew. Chem. Int. Ed. 2016, 55, 4130–4154. [Google Scholar] [CrossRef] [Green Version]
- Bassani, D.M.; Lehn, J.-M.; Fromm, K.; Fenske, D. Toposelective and Chiroselective Self-Assembly of [2 × 2] Grid-Type Inorganic Arrays Containing Different Octahedral Metallic Centers. Angew. Chem. Int. Ed. 1998, 37, 2364–2367. [Google Scholar] [CrossRef]
- Wang, Y.-T.; Li, S.-T.; Wu, S.-Q.; Cui, A.-L.; Shen, D.-Z.; Kou, H.-Z. Spin Transitions in Fe(II) Metallogrids Modulated by Substituents, Counteranions, and Solvents. J. Am. Chem. Soc. 2013, 135, 5942–5945. [Google Scholar] [CrossRef]
- Dhers, S.; Mondal, A.; Aguilà, D.; Ramírez, J.; Vela, S.; Dechambenoit, P.; Rouzières, M.; Nitschke, J.R.; Clérac, R.; Lehn, J.-M. Spin State Chemistry: Modulation of Ligand pKa by Spin State Switching in a [2 × 2] Iron(II) Grid-Type Complex. J. Am. Chem. Soc. 2018, 140, 8218–8227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.-L.; Wu, J.; Zhao, L.; Shi, W.; Cheng, P.; Tang, J. End-to-end azido-pinned interlocking lanthanide squares. Chem. Commun. 2017, 53, 3026–3029. [Google Scholar] [CrossRef] [PubMed]
- Uppadine, L.H.; Gisselbrecht, J.-P.; Kyritsakas, N.; Nättinen, K.; Rissanen, K.; Lehn, J.-M. Mixed-Valence, Mixed-Spin-State, and Heterometallic [2 × 2] Grid-type Arrays Based on Heteroditopic Hydrazone Ligands: Synthesis and Electrochemical Features. Chem. Eur. J. 2005, 11, 2549–2565. [Google Scholar] [CrossRef] [PubMed]
- Join, B.; Möller, K.; Ziebart, C.; Schröder, K.; Gördes, D.; Thurow, K.; Spannenberg, A.; Junge, K.; Beller, M. Selective Iron-Catalyzed Oxidation of Benzylic and Allylic Alcohols. Adv. Synth. Catal. 2011, 353, 3023–3030. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G. SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallographica Section A 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G. Crystal structure refinement with SHELXL. Acta Crystallographica Section C 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Boudreaux, E.A.; Mulay, L.N. Theory and Applications of Molecular Paramagnetism; John Wiley & Sons: New York, NY, USA, 1976. [Google Scholar]
- Casanova, D.; Alemany, P.; Bofill, J.M.; Alvarez, S. Shape and Symmetry of Heptacoordinate Transition-Metal Complexes: Structural Trends. Chem. Eur. J. 2003, 9, 1281–1295. [Google Scholar] [CrossRef]
- Casanova, D.; Llunell, M.; Alemany, P.; Alvarez, S. The Rich Stereochemistry of Eight-Vertex Polyhedra: A Continuous Shape Measures Study. Chem. Eur. J. 2005, 11, 1479–1494. [Google Scholar] [CrossRef]
- Acharya, J.; Ahmed, N.; Flores-Gonzalez, J.; Kumar, P.; Pointillart, F.; Cador, O.; Singh, S.K.; Chandrasekhar, V. Slow Magnetic Relaxation in a Homo Dinuclear Dy(III) Complex in a Pentagonal Bipyamidal Geometry. Dalton Trans. 2020, 49, 13110–13122. [Google Scholar] [CrossRef]
- Yang, H.; Liu, S.-S.; Meng, Y.-S.; Zhang, Y.-Q.; Pu, L.; Wang, X.; Lin, S. Four mononuclear dysprosium complexes with neutral Schiff-base ligands: Syntheses, crystal structures and slow magnetic relaxation behavior. Dalton Trans. 2022, 51, 1415–1422. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Wang, G.-L.; Zhang, Y.-Q.; Tang, J. Self-assembly of fish-bone and grid-like CoII-based single-molecule magnets using dihydrazone ligands with NNN and NNO pockets. Dalton Trans. 2022, 51, 13928–13937. [Google Scholar] [CrossRef] [PubMed]
- Ashebr, T.G.; Li, X.-L.; Zhao, C.; Yang, Q.; Tang, J. Bis-pyrazolone-based dysprosium(iii) complexes: Zero-field single-molecule magnet behavior in the [2 × 2] grid DyIII4 cluster. CrystEngComm 2022, 24, 6688–6695. [Google Scholar] [CrossRef]
- Reta, D.; Chilton, N.F. Uncertainty estimates for magnetic relaxation times and magnetic relaxation parameters. PCCP 2019, 21, 23567–23575. [Google Scholar] [CrossRef] [PubMed]
- Debye, P. Einige Bemerkungen zur Magnetisierung bei tiefer Temperatur. Ann. Phys. 1926, 386, 1154–1160. [Google Scholar] [CrossRef]
- Demir, S.; Zadrozny, J.M.; Long, J.R. Large Spin-Relaxation Barriers for the Low-Symmetry Organolanthanide Complexes [Cp*2Ln(BPh4)] (Cp*=pentamethylcyclopentadienyl; Ln=Tb, Dy). Chem. Eur. J. 2014, 20, 9524–9529. [Google Scholar] [CrossRef]
- Chilton, N.F.; Collison, D.; McInnes, E.J.L.; Winpenny, R.E.P.; Soncini, A. An electrostatic model for the determination of magnetic anisotropy in dysprosium complexes. Nat. Commun. 2013, 4, 2551. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Zhang, F.; Guo, X.; Liu, D.; Wu, J. The Assembly of Grid-type Lanthanide Cluster. Magnetochemistry 2023, 9, 4. https://doi.org/10.3390/magnetochemistry9010004
Li J, Zhang F, Guo X, Liu D, Wu J. The Assembly of Grid-type Lanthanide Cluster. Magnetochemistry. 2023; 9(1):4. https://doi.org/10.3390/magnetochemistry9010004
Chicago/Turabian StyleLi, Jinsong, Fan Zhang, Xuefeng Guo, Dan Liu, and Jianfeng Wu. 2023. "The Assembly of Grid-type Lanthanide Cluster" Magnetochemistry 9, no. 1: 4. https://doi.org/10.3390/magnetochemistry9010004
APA StyleLi, J., Zhang, F., Guo, X., Liu, D., & Wu, J. (2023). The Assembly of Grid-type Lanthanide Cluster. Magnetochemistry, 9(1), 4. https://doi.org/10.3390/magnetochemistry9010004