Robustness of the Skyrmion Phase in a Frustrated Heisenberg Antiferromagnetic Layer against Lattice Imperfections and Nanometric Domain Sizes
Abstract
:1. Introduction
2. Model and Methods
3. Results and Discussion
3.1. Effect of Impurities
3.2. Lattice Finiteness
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.; Zhao, G.; Fangohr, H.; Liu, J.P.; Xia, W.; Xia, J.; Morvan, F. Skyrmion-skyrmion and skyrmion-edge repulsions in skyrmion-based racetrack memory. Sci. Rep. 2015, 5, 7643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Ezawa, M.; Zhou, Y. Magnetic skyrmion logic gates: Conversion, duplication and merging of skyrmions. Sci. Rep. 2015, 5, 9400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finocchio, G.; Ricci, M.; Tomasello, R.; Giordano, A.; Lanuzza, M.; Puliafito, V.; Burrascano, P.; Azzerboni, B.; Carpentieri, M. Skyrmion based microwave detectors and harvesting. Appl. Phys. Lett. 2015, 107, 262401. [Google Scholar] [CrossRef] [Green Version]
- Sampaio, J.; Cros, V.; Rohart, S.; Thiaville, A.; Fert, A. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nat. Nanotechnol. 2013, 8, 839. [Google Scholar] [CrossRef]
- Fert, A.; Cros, V.; Sampaio, J. Skyrmions on the track. Nat. Nanotechnol. 2013, 8, 152–156. [Google Scholar] [CrossRef]
- Schulz, T.; Ritz, R.; Bauer, A.; Halder, M.; Wagner, M.; Franz, C.; Pfleiderer, C.; Everschor, K.; Garst, M.; Rosch, A. Emergent electrodynamics of skyrmions in a chiral magnet. Nat. Phys. 2012, 8, 301–304. [Google Scholar] [CrossRef] [Green Version]
- Belavin, A.; Polyakov, A. Metastable states of two-dimensional isotropic ferromagnets. JETP Lett. 1975, 22, 245–248. [Google Scholar]
- Bogdanov, A.; Yablonskii, D. Thermodynamically stable “vortices” in magnetically ordered crystals. The mixed state of magnets. Zh. Eksp. Teor. Fiz 1989, 95, 182. [Google Scholar]
- Roessler, U.K.; Bogdanov, A.; Pfleiderer, C. Spontaneous skyrmion ground states in magnetic metals. Nature 2006, 442, 797–801. [Google Scholar] [CrossRef] [Green Version]
- Mühlbauer, S.; Binz, B.; Jonietz, F.; Pfleiderer, C.; Rosch, A.; Neubauer, A.; Georgii, R.; Böni, P. Skyrmion lattice in a chiral magnet. Science 2009, 323, 915–919. [Google Scholar] [CrossRef] [Green Version]
- Dzyaloshinsky, I. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 1958, 4, 241–255. [Google Scholar] [CrossRef]
- Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 1960, 120, 91. [Google Scholar] [CrossRef] [Green Version]
- Okubo, T.; Chung, S.; Kawamura, H. Multiple-q states and the skyrmion lattice of the triangular-lattice Heisenberg antiferromagnet under magnetic fields. Phys. Rev. Lett. 2012, 108, 017206. [Google Scholar] [CrossRef] [Green Version]
- Rosales, H.D.; Cabra, D.C.; Pujol, P. Three-sublattice skyrmion crystal in the antiferromagnetic triangular lattice. Phys. Rev. B 2015, 92, 214439. [Google Scholar] [CrossRef] [Green Version]
- Leonov, A.; Mostovoy, M. Multiply periodic states and isolated skyrmions in an anisotropic frustrated magnet. Nat. Commun. 2015, 6, 8275. [Google Scholar] [CrossRef] [Green Version]
- Barker, J.; Tretiakov, O.A. Static and dynamical properties of antiferromagnetic skyrmions in the presence of applied current and temperature. Phys. Rev. Lett. 2016, 116, 147203. [Google Scholar] [CrossRef] [Green Version]
- Osorio, S.A.; Rosales, H.D.; Sturla, M.B.; Cabra, D.C. Composite spin crystal phase in antiferromagnetic chiral magnets. Phys. Rev. B 2017, 96, 024404. [Google Scholar] [CrossRef] [Green Version]
- Bessarab, P.; Yudin, D.; Gulevich, D.; Wadley, P.; Titov, M.; Tretiakov, O.A. Stability and lifetime of antiferromagnetic skyrmions. Phys. Rev. B 2019, 99, 140411. [Google Scholar] [CrossRef] [Green Version]
- Mutter, T.T.; Leonov, A.O.; Inoue, K. Skyrmion instabilities and distorted spiral states in a frustrated chiral magnet. Phys. Rev. B 2019, 100, 060407. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; dos Santos Dias, M.; Lounis, S. Theoretical investigation of antiferromagnetic skyrmions in a triangular monolayer. J. Phys. Condens. Matter 2020, 32, 425801. [Google Scholar] [CrossRef]
- Mohylna, M.; Žukovič, M. Emergence of a Skyrmion Phase in a Frustrated Heisenberg Antiferromagnet with Dzyaloshinskii-Moriya Interaction. Acta Phys. Pol. A 2020, 137. [Google Scholar] [CrossRef]
- Mohylna, M.; Buša Jr, J.; Žukovič, M. Formation and growth of skyrmion crystal phase in a frustrated Heisenberg antiferromagnet with Dzyaloshinskii-Moriya interaction. J. Magn. Magn. Mater. 2021, 527, 167755. [Google Scholar] [CrossRef]
- Mohylna, M.; Tkachenko, V.; Žukovič, M. Road to zero-field antiferromagnetic skyrmions in a frustrated AFM/FM heterostructure. Phys. Lett. A 2022, 449, 128350. [Google Scholar] [CrossRef]
- Mohylna, M.; Albarracín, F.G.; Žukovič, M.; Rosales, H. Spontaneous antiferromagnetic skyrmion/antiskyrmion lattice and spiral spin-liquid states in the frustrated triangular lattice. Phys. Rev. B 2022, 106, 224406. [Google Scholar] [CrossRef]
- Rohart, S.; Miltat, J.; Thiaville, A. Path to collapse for an isolated Néel skyrmion. Phys. Rev. B 2016, 93, 214412. [Google Scholar] [CrossRef] [Green Version]
- Rózsa, L.; Simon, E.; Palotás, K.; Udvardi, L.; Szunyogh, L. Complex magnetic phase diagram and skyrmion lifetime in an ultrathin film from atomistic simulations. Phys. Rev. B 2016, 93, 024417. [Google Scholar] [CrossRef] [Green Version]
- Lobanov, I.S.; Jónsson, H.; Uzdin, V.M. Mechanism and activation energy of magnetic skyrmion annihilation obtained from minimum energy path calculations. Phys. Rev. B 2016, 94, 174418. [Google Scholar] [CrossRef]
- Stosic, D.; Mulkers, J.; Van Waeyenberge, B.; Ludermir, T.B.; Milošević, M.V. Paths to collapse for isolated skyrmions in few-monolayer ferromagnetic films. Phys. Rev. B 2017, 95, 214418. [Google Scholar] [CrossRef] [Green Version]
- Bessarab, P.F.; Müller, G.P.; Lobanov, I.S.; Rybakov, F.N.; Kiselev, N.S.; Jónsson, H.; Uzdin, V.M.; Blügel, S.; Bergqvist, L.; Delin, A. Lifetime of racetrack skyrmions. Sci. Rep. 2018, 8, 3433. [Google Scholar] [CrossRef] [Green Version]
- Derras-Chouk, A.; Chudnovsky, E.M.; Garanin, D.A. Thermal collapse of a skyrmion. J. Appl. Phys. 2019, 126, 083901. [Google Scholar] [CrossRef] [Green Version]
- Peng, L.; Zhang, Y.; Ke, L.; Kim, T.H.; Zheng, Q.; Yan, J.; Zhang, X.G.; Gao, Y.; Wang, S.; Cai, J.; et al. Relaxation dynamics of zero-field skyrmions over a wide temperature range. Nano Lett. 2018, 18, 7777–7783. [Google Scholar] [CrossRef] [Green Version]
- Kindervater, J.; Stasinopoulos, I.; Bauer, A.; Haslbeck, F.X.; Rucker, F.; Chacon, A.; Mühlbauer, S.; Franz, C.; Garst, M.; Grundler, D.; et al. Weak crystallization of fluctuating skyrmion textures in MnSi. Phys. Rev. X 2019, 9, 041059. [Google Scholar] [CrossRef] [Green Version]
- Birch, M.; Takagi, R.; Seki, S.; Wilson, M.; Kagawa, F.; Štefančič, A.; Balakrishnan, G.; Fan, R.; Steadman, P.; Ottley, C.; et al. Increased lifetime of metastable skyrmions by controlled doping. Phys. Rev. B 2019, 100, 014425. [Google Scholar] [CrossRef] [Green Version]
- Crisanti, M.; Birch, M.; Wilson, M.; Moody, S.; Štefančič, A.; Huddart, B.; Cabeza, S.; Balakrishnan, G.; Hatton, P.; Cubitt, R. Position-dependent stability and lifetime of the skyrmion state in nickel-substituted Cu2OSeO3. Phys. Rev. B 2020, 102, 224407. [Google Scholar] [CrossRef]
- Shimojima, T.; Nakamura, A.; Yu, X.; Karube, K.; Taguchi, Y.; Tokura, Y.; Ishizaka, K. Nano-to-micro spatiotemporal imaging of magnetic skyrmion’s life cycle. Sci. Adv. 2021, 7, eabg1322. [Google Scholar] [CrossRef]
- Maryasin, V.; Zhitomirsky, M. Triangular antiferromagnet with nonmagnetic impurities. Phys. Rev. Lett. 2013, 111, 247201. [Google Scholar] [CrossRef] [Green Version]
- Silva, R.; Secchin, L.; Moura-Melo, W.; Pereira, A.; Stamps, R. Emergence of skyrmion lattices and bimerons in chiral magnetic thin films with nonmagnetic impurities. Phys. Rev. B 2014, 89, 054434. [Google Scholar] [CrossRef] [Green Version]
- Iwasaki, J.; Mochizuki, M.; Nagaosa, N. Current-induced skyrmion dynamics in constricted geometries. Nat. Nanotechnol. 2013, 8, 742–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chui, C.; Ma, F.; Zhou, Y. Geometrical and physical conditions for skyrmion stability in a nanowire. AIP Adv. 2015, 5, 047141. [Google Scholar] [CrossRef] [Green Version]
- Beg, M.; Chernyshenko, D.; Bisotti, M.A.; Wang, W.; Albert, M.; Stamps, R.L.; Fangohr, H. Finite size effects, stability, hysteretic behaviour, and reversal mechanism of skyrmionic textures in nanostructures. arXiv 2013, arXiv:1312.7665. [Google Scholar]
- Fang, W.; Raeliarijaona, A.; Chang, P.H.; Kovalev, A.A.; Belashchenko, K.D. Spirals and skyrmions in antiferromagnetic triangular lattices. Phys. Rev. Mater. 2021, 5, 054401. [Google Scholar] [CrossRef]
- Mohylna, M.; Žukovič, M. Stability of skyrmion crystal phase in antiferromagnetic triangular lattice with DMI and single-ion anisotropy. J. Magn. Magn. Mater. 2022, 546, 168840. [Google Scholar] [CrossRef]
- Berg, B.; Lüscher, M. Definition and statistical distributions of a topological number in the lattice O (3) σ-model. Nucl. Phys. B 1981, 190, 412–424. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, Y.; Song, K.M.; Park, T.E.; Xia, J.; Ezawa, M.; Liu, X.; Zhao, W.; Zhao, G.; Woo, S. Skyrmion-electronics: Writing, deleting, reading and processing magnetic skyrmions toward spintronic applications. J. Phys. Condens. Matter 2020, 32, 143001. [Google Scholar] [CrossRef] [Green Version]
- Creutz, M. Overrelaxation and monte carlo simulation. Phys. Rev. D 1987, 36, 515. [Google Scholar] [CrossRef]
- Swendsen, R.H.; Wang, J.S. Nonuniversal critical dynamics in Monte Carlo simulations. Phys. Rev. Lett. 1987, 58, 86. [Google Scholar] [CrossRef]
- Mohylna, M.; Žukovič, M. Effect of impurities on stability of the skyrmion phase in a frustrated heisenberg antiferromagnet. In Proceedings of the 36th International ECMS International Conference on Modelling and Simulation, ECMS, Alesund, Norway, 30 May–3 June 2022. [Google Scholar]
- Subbaraman, K.; Zaspel, C.; Drumheller, J.E. Impurity-pinned solitons in the two-dimensional antiferromagnet detected by electron paramagnetic resonance. Phys. Rev. Lett. 1998, 80, 2201. [Google Scholar] [CrossRef]
- Pereira, A.; Pires, A. Solitons in the presence of a static spin vacancy on a 2D Heisenberg antiferromagnet. J. Magn. Magn. Mater. 2003, 257, 290–295. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohylna, M.; Žukovič, M. Robustness of the Skyrmion Phase in a Frustrated Heisenberg Antiferromagnetic Layer against Lattice Imperfections and Nanometric Domain Sizes. Magnetochemistry 2023, 9, 101. https://doi.org/10.3390/magnetochemistry9040101
Mohylna M, Žukovič M. Robustness of the Skyrmion Phase in a Frustrated Heisenberg Antiferromagnetic Layer against Lattice Imperfections and Nanometric Domain Sizes. Magnetochemistry. 2023; 9(4):101. https://doi.org/10.3390/magnetochemistry9040101
Chicago/Turabian StyleMohylna, Mariia, and Milan Žukovič. 2023. "Robustness of the Skyrmion Phase in a Frustrated Heisenberg Antiferromagnetic Layer against Lattice Imperfections and Nanometric Domain Sizes" Magnetochemistry 9, no. 4: 101. https://doi.org/10.3390/magnetochemistry9040101
APA StyleMohylna, M., & Žukovič, M. (2023). Robustness of the Skyrmion Phase in a Frustrated Heisenberg Antiferromagnetic Layer against Lattice Imperfections and Nanometric Domain Sizes. Magnetochemistry, 9(4), 101. https://doi.org/10.3390/magnetochemistry9040101