Magnetic Dilution as a Direct Method for Detecting and Evaluation of Exchange Interactions between Rare Earth Elements in Oxide Systems
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shukla, A.; Kumar, A.; Pathak, K. Ferromagnetism in LaMnO3-LaFeO3-LaCoO3 mixed spin perovskite oxide solid solution. Ceram. Int. 2023, 49, 12680–12686. [Google Scholar] [CrossRef]
- Flores-Lasluisa, J.X.; Huerta, F.; Cazorla-Amorós, D.; Morallón, E. Manganese oxides/LaMnO3 perovskite materials and their application in the oxygen reduction reaction. Energy 2022, 247, 123456. [Google Scholar] [CrossRef]
- Punna, R.S.; Suresh, B.K. Structural change and insulator to metal transition of LaMnO3 by molybdenum substitution. Mater. Chem. Phys. 2021, 272, 125021. [Google Scholar]
- Tugova, E.A.; Bobrysheva, N.P.; Selyutin, A.A. Magnetic properties of complex oxides Gd2SrM2O7 (M = Fe, Al). Russ. J. Gen. Chem. 2008, 78, 2000–2001. [Google Scholar] [CrossRef]
- Ramirez, A.P. Colossal magnetoresistance. J. Phys. Condens. Matter. 1997, 9, 8171. [Google Scholar] [CrossRef]
- Hardik, G.; Bhargav, R.; Himanshu, D.; Keval, G.; Shrimali, V.G.; Bardapurkar, P.P.; Choudhary, R.J.; Phase, D.M.; Shah, N.A.; Solanki, P.S. Magnetoresistive nature assisted field effect configuration for LaMnO3/La0.7Ca0.3MnO3 interface. Phys. B Condens. Matter 2023, 649, 414472. [Google Scholar]
- Zhou, W.; Ma, C.; Cao, M.; Gan, Z.; Wang, X.; Ma, Y.; Wang, X.; Tan, W.; Wang, D.; Du, Y. Large magnetocaloric and magnetoresistance effects in metamagnetic Sm0.55(Sr0.5Ca0.5)0.45MnO3 manganite. Cer. Int. 2017, 43, 7870–7874. [Google Scholar] [CrossRef]
- Li, T.X.; Zhang, M.; Hu, Z.; Li, K.S.; Yu, D.B.; Yan, H. Effect of preferred orientation on magnetoelectric properties of multiferroic La0.7Sr0.3MnO3/BaTiO3 heterostructure. Solid State Commun. 2011, 151, 1659–1661. [Google Scholar] [CrossRef]
- Markina, D.I.; Pushkarev, A.P.; Shishkin, I.I.; Komissarenko, F.E.; Berestennikov, A.S.; Pavluchenko, A.S.; Smirnova, I.P.; Markov, L.K.; Vengris, M.; Zakhidov, A.A.; et al. Perovskite nanowire lasers on low-refractive-index conductive substrate for high-Q and low-threshold operation. Nanophotonics 2020, 9, 3977–3984. [Google Scholar] [CrossRef]
- Desong, F.; Qiang, L.; Yimin, X.; Hong, T.; Junfei, F. Temperature-dependent infrared properties of Ca doped (La,Sr)MnO3 compositions with potential thermal control application. Appl. Therm. Eng. 2013, 51, 255–261. [Google Scholar]
- Chun, D.H.; Choi, Y.J.; In, Y.; Nam, J.K.; Choi, Y.J.; Yun, S.; Kim, W.; Choi, D.; Kim, D.; Shin, H.; et al. Halide perovskite nanopillar photodetector. ACS Nano 2018, 12, 8564–8571. [Google Scholar] [CrossRef]
- Xie, Q.; Bin, L.; Wang, P.; Song, P.; Wu, X. Evolution of A-site disorder-dependent structural and magnetic transport properties in La2/3−xEuxCa1/3−ySryMnO3. Mat. Chem. Phys. 2009, 114, 636–643. [Google Scholar] [CrossRef]
- Rivas-Padilla, E.P.; Lisboa-Filho, P.N.; Ortiz, W.A. Study of magnetransport properties in manganites with fixed structural parameters. J. Solid State Chem. 2004, 77, 1338–1345. [Google Scholar] [CrossRef]
- Ehsani, M.H.; Kameli, P.; Razavi, F.S.; Ghazi, M.E.; Aslibeiki, B. Influence of Sm-doping on the structural, magnetic, and electrical properties of La0.8−xSmxSr0.2MnO3 (0 < x < 0.45) manganites. J. Alloys Compd. 2013, 579, 406–414. [Google Scholar]
- Istomin, S.Y.; Drozhzhin, O.A.; Napolsky, P.S.; Putilin, S.N.; Gippius, A.A.; Antipov, E.V. Thermal expansion behavior and high-temperature transport properties of Sr3YCo4−xFexO10.5+y, x = 0.0, 1.0, 2.0 and 3.0. Solid State Ion. 2008, 179, 1054–1057. [Google Scholar] [CrossRef]
- Lu, Z.; Meng, Y.; Wen, L.; Huang, M.; Zhou, L.; Liao, L.; He, D. Double perovskite Ba2LaNbO6:Mn4+,Yb3+ phosphors: Potential application to plant-cultivation LEDs. Dye. Pigment. 2019, 160, 395–402. [Google Scholar] [CrossRef]
- Jose, R.; Konopka, J.; Yang, X.; Konopka, A.; Ishikawa, M.; Koshy, J. Crystal structure and dielectric properties of a new complex perovskite oxide Ba2LaSbO6. Appl. Phys. A 2004, 79, 2041–2047. [Google Scholar] [CrossRef]
- Guo, Z.; Pan, L.; Bi, C.; Qiu, H.; Zhao, X.; Yang, L.; Rafique, M.Y. Structural and multiferroic properties of Fe-doped Ba0.5Sr0.5TiO3 solids. J. Magn. Magn. Mater. 2013, 325, 24–28. [Google Scholar] [CrossRef]
- Cherif, K.; Dhahri, J.; Vincent, H.; Zemni, S.; Dhahri, E.; Oumezzine, M. X-ray diffraction, magnetic and electrical properties in the manganites (La1−xNdx)0.7Sr0.3MnO3. Phys. B Condens. Matter 2002, 321, 48–53. [Google Scholar] [CrossRef]
- Goodenough, J.B.; Zhou, J.S. Localized to Itinerant Electronic Transitions in Transition Metal Oxides with the Perovskite Structure. Chem. Mater. 1998, 10, 2980–2993. [Google Scholar] [CrossRef]
- Krichene, A.; Boujelben, W.; Mukherjee, S.; Shah, N.A.; Solanki, P.S. Effect of charge ordering and phase separation on the electrical and magnetoresistive properties of polycrystalline La0.4Eu0.1Ca0.5MnO3. J. Phys. Chem. Solids 2018, 114, 21–27. [Google Scholar] [CrossRef]
- Tka, E.; Cherif, K.; Dhahri, J.; Dhahri, E. Effects of non magnetic aluminum Al doping on the structural, magnetic and transport properties in La0.57Nd0.1Sr0.33MnO3 manganite oxide. J. Alloys Compd. 2011, 509, 8047–8055. [Google Scholar] [CrossRef]
- Dhahri, J.; Dhahri, A.; Dhahri, E. Structural, magnetic and magnetocaloric properties of La0.7−xEuxBa0.3MnO3 perovskites. J. Magn. Magn. Mater. 2009, 321, 4128–4131. [Google Scholar] [CrossRef]
- Siwach, P.K.; Srivastava, P.; Singh, H.K.; Asthana, A.; Matsui, Y.; Shripathi, T.; Srivastava, O.N. Effect of multielement doping on low-field magnetotransport in La0.7−xMmxCa0.3MnO3 (0.0 ≤ x ≤ 0.45) manganite. J. Magn. Magn. Mater. 2009, 321, 1814–1820. [Google Scholar]
- Li-Qin, Y.; Fen, W.; Yuelei, Z.; Tao, Z.; Jun, S.; Young, S. Exchange bias effect in multiferroic Eu0.75Y0.25MnO3. J. Magn. Magn. Mater. 2012, 324, 2579–2582. [Google Scholar]
- Krichene, A.; Solanki, P.S.; Venkateshwarlu, D.; Rayaprol, S.; Ganesan, V.; Boujelben, W.; Kuberkar, D.G. Magnetic and electrical studies on La0.4Sm0.1Ca0.5MnO3 charge ordered manganite. J. Magn. Magn. Mater. 2015, 381, 470–477. [Google Scholar] [CrossRef]
- Song, Q.; Wang, G.; Yan, G.; Mao, Q.; Wang, W.; Peng, Z. Influence of the substitution of Sm, Gd, and Dy for La in La0.7Sr0.3MnO3 on its magnetic and electric properties and strengthening effect on room-temperature CMR. J. Rare Earths 2008, 26, 821–826. [Google Scholar] [CrossRef]
- Carlin, R.L. Magnetochemistry; Springer: Beglin/Heidelberg, Germany, 1986; 328p. [Google Scholar]
- Damay, F.; Cohen, L.F. Low-temperature grain boundaries effect in La0.7−xYxCa0.3MnO3. J. Magn. Magn. Mater. 2000, 54, 150–154. [Google Scholar]
- Petrov, D.; Angelov, B. Indirect exchange interactions in orthorhombic lanthanum aluminate. Acta Phys. Pol. A 2012, 122, 737–740. [Google Scholar] [CrossRef]
- Sharov, V.A.; Bazuev, G.V.; Zuev, M.G.; Bamburov, V.G. Oxalate Complexes of 3d- and 4f-Elements with Hydrazine; Ural Branch of Russian Academy of Sciences: Ekaterinburg, Russia, 2004; 178p. (In Russian) [Google Scholar]
- Chezhina, N.V.; Zolotukhina, N.V.; Bodritskaya, E.V. Magnetic dilution in the LaCrO3-LaGaO3 system. Russ. J. Gen. Chem. 2005, 75, 1167–1170. [Google Scholar] [CrossRef]
- Chezhina, N.V.; Kuzmich, M. Magnetic dilution in the xLa0.33Ba0.67MnO3–(1 − x)LaAlO3 system. Russ. J. Gen. Chem. 2004, 74, 486–488. [Google Scholar] [CrossRef]
- Fedorova, A.V.; Chezhina, N.V. Problems of Electron Structure of Colossal Magnetoresistors. In Electronic Structure of Materials. Challenges and Developments; Chezhina, N.V., Korolev, D.A., Eds.; Pan Stanford Publishing: Singapore, 2019; pp. 59–95. [Google Scholar]
- Chezhina, N.V.; Mikhailova, M.; Osipova, A.S. Manganese reactivity in the synthesis of magnetoresisting complex oxides. Solid State Ion. 2001, 141–142, 617–621. [Google Scholar] [CrossRef]
- Chezhina, N.V.; Fedorova, A.V. Influence of yttrium atoms on magnetic properties of lanthanum manganites doped with strontium. Russ. J. Gen. Chem. 2010, 80, 203–206. [Google Scholar] [CrossRef]
- Fedorova, A.V.; Chezhina, N.V.; Shilovskikh, V.V. State of europium atoms and exchange interactions in La1−yEuyAlO3. Russ. J. Gen. Chem. 2015, 85, 2223–2226. [Google Scholar] [CrossRef]
- Ponomareva, E.A.; Fedorova, A.V.; Chezhina, N.V. Magnetic susceptibility of La1−yCeyAlO3 solid solutions. Russ. J. Gen. Chem. 2017, 87, 2730–2732. [Google Scholar] [CrossRef]
- Fedorova, A.V.; Ponomareva, E.A.; Chezhina, N.V. Magnetic Susceptibility of the La1−yGdyAlO3 Solid Solutions. Russ. J. Gen. Chem. 2018, 88, 2472–2475. [Google Scholar] [CrossRef]
- Fedorova, A.V.; Chezhina, N.V.; Sukhenko, K.Y. Magnetic properties of solid solutions of lanthanum manganite doped with ytterbium and calcium in LaAlO3. Russ. J. Gen. Chem. 2016, 86, 1552–1557. [Google Scholar] [CrossRef]
- Shannon, R.D.; Prewitt, C.T. Effective Ionic Radii on Oxides and Fluorides. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1969, 25, 925–946. [Google Scholar] [CrossRef]
- Selwood, P. Magnetochemistry; Interscience: New York, NY, USA, 1943; p. 148. [Google Scholar]
- Brach, B.Y.; Chezhina, N.V.; Dudkin, B.N. Magnetic properties of solid solutions with perovskite structure containing 3d-elements in trivalent state. Rus. J. Inorg. Chem. 1979, 24, 2064–2067. [Google Scholar]
- Brach, B.Y.; Zvereva, I.A. Calculation of 3d-element atom distribution over a solid solution and of exchange parameters in binuclear clusters. Zh. Strukturnoi Khimii 1982, 23, 39–41. [Google Scholar]
- Rakitin, Y.V.; Kalinnikov, V.T. Sovremennaya Magnetokhimiya (Modern Magnetochemistry); Nauka, Saint-Petersburg.: Petersburg, Russia, 1994; 276p. (In Russian) [Google Scholar]
y | a, Å | c, Å | V, Å3 |
---|---|---|---|
0.0196 | 5.358 | 13.112 | 373.425 |
0.0288 | 5.362 | 13.112 | 373.687 |
0.0492 | 5.365 | 13.109 | 374.312 |
0.0689 | 5.368 | 13.105 | 374.613 |
0.0969 | 5.364 | 13.095 | 373.776 |
0.1465 | 5.366 | 13.092 | 373.980 |
0.1842 | 5.370 | 13.091 | 374.562 |
T, K | χSm·106, emu/mol | μeff, μB (1) | μeff, μB (2) |
---|---|---|---|
90 | 2220 | 1.28 | 1.02 |
120 | 1900 | 1.36 | 1.04 |
140 | 1760 | 1.42 | 1.05 |
160 | 1660 | 1.44 | 1.05 |
200 | 1490 | 1.55 | 1.06 |
240 | 1380 | 1.59 | 1.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chezhina, N.; Fedorova, A. Magnetic Dilution as a Direct Method for Detecting and Evaluation of Exchange Interactions between Rare Earth Elements in Oxide Systems. Magnetochemistry 2023, 9, 137. https://doi.org/10.3390/magnetochemistry9050137
Chezhina N, Fedorova A. Magnetic Dilution as a Direct Method for Detecting and Evaluation of Exchange Interactions between Rare Earth Elements in Oxide Systems. Magnetochemistry. 2023; 9(5):137. https://doi.org/10.3390/magnetochemistry9050137
Chicago/Turabian StyleChezhina, Natalia, and Anna Fedorova. 2023. "Magnetic Dilution as a Direct Method for Detecting and Evaluation of Exchange Interactions between Rare Earth Elements in Oxide Systems" Magnetochemistry 9, no. 5: 137. https://doi.org/10.3390/magnetochemistry9050137
APA StyleChezhina, N., & Fedorova, A. (2023). Magnetic Dilution as a Direct Method for Detecting and Evaluation of Exchange Interactions between Rare Earth Elements in Oxide Systems. Magnetochemistry, 9(5), 137. https://doi.org/10.3390/magnetochemistry9050137