Magnetoelectric Coupling Effects in Tb-Doped BiFeO3 Nanoparticles
Abstract
:1. Introduction
2. The Model
3. Numerical Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fiebig, M.; Lottermoser, T.; Meier, D.; Trassin, M. The evolution of multiferroics. Nat. Rev. Mater. 2016, 1, 16046. [Google Scholar] [CrossRef]
- Spaldin, N.A.; Ramesh, R. Advances in magnetoelectric multiferroics. Nat. Mater. 2019, 18, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Khomskii, D.I. Multiferroics: Different ways to combine magnetism and ferroelectricity. J. Magn. Magn. Mater. 2006, 306, 1–8. [Google Scholar] [CrossRef]
- Lorenz, B. Hexagonal Manganites-(RMnO3): Class (I) Multiferroics with Strong Coupling of Magnetism and Ferroelectricity. ISRN Cond. Matter Phys. 2013, 2013, 497073. [Google Scholar] [CrossRef]
- Single-Phase Type-II Multiferroics: Frustrated Magnetism-Triggered Ferroelectricity. In Book Multiferroic Materials; Wang, J. (Ed.) CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Dzyaloshinskii, I.E. On the magneto-electrical effects in antiferromagnets. Sov. Phys. JETP 1960, 10, 628–629. [Google Scholar]
- Astrov, D.N. The magnetoelectric effect in antiferromagnetics. Sov. Phys. JETP 1960, 11, 708–709. [Google Scholar]
- Ramesh, R.; Spaldin, N.A. Multiferroics: Progress and prospects in thin films. Nat. Mater. 2007, 6, 21–29. [Google Scholar] [CrossRef]
- Puhan, A.; Bhushan, B.; Nayak, A.K.; Rout, D. Fundamentals and Properties of Multifunctional Nanomaterials; Thomas, S., Kalarikkal, N., Abraham, A.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; Chapter 12; pp. 275–293. [Google Scholar]
- Dhir, G.; Lotey, G.S.; Uniyal, P.; Verma, N.K. Size-dependent magnetic and dielectric properties of Tb-doped BiFeO3 nanoparticles. J. Mater. Sci. Mater. Electr. 2013, 24, 4386. [Google Scholar] [CrossRef]
- Xing, Q.X.; Han, Z.; Zhao, S. Crystal structure and magnetism of BiFeO3 nanoparticles regulated by rare-earth Tb substitution. J. Mater. Sci. Mater. Electr. 2017, 28, 295. [Google Scholar] [CrossRef]
- Mazumder, R.; Ghosh, S.; Mondal, P.; Bhattacharya, D.; Dasgupta, S.; Das, D.; Sen, A.; Tyagi, A.K.; Sivakumar, M.; Takami, J.; et al. Particle size dependence of magnetization and phase transition near TN in multiferroic BiFeO3. J. Appl. Phys. 2006, 100, 033908. [Google Scholar] [CrossRef]
- Mazumder, R.; Devi, P.S.; Bhattacharya, D.; Choudhury, P.; Sen, A.; Raja, M. Ferromagnetism in nanoscale BiFeO3. Appl. Phys. Lett. 2007, 91, 062510. [Google Scholar] [CrossRef]
- Tae-Jin Park, T.-J.; Papaefthymiou, G.C.; Viescas, A.J.; Moodenbaugh, A.R.; Wong, S.S. Size-Dependent Magnetic Properties of Single-Crystalline Multiferroic BiFeO3 Nanoparticles. Nano Lett. 2007, 7, 766–772. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Kelly, S.D.; Palkar, V.R.; Fan, L.; Segre, C.U. Investigation of size effects in magnetoelectric BiFeO3. Phys. Scripta. 2005, 2005, 709. [Google Scholar] [CrossRef]
- Yang, C.-H.; Kan, D.; Takeuchi, I.; Nagaraj, V.; Seidel, J. Doping BiFeO3: Approaches and enhanced functionality. Phys. Chem. Chem. Phys. 2012, 14, 15953. [Google Scholar] [CrossRef]
- Muneeswaran, M.; Dhanalakshmi, R.; Giridharan, N. Effect of Tb substitution on structural, optical, electrical and magnetic properties of BiFeO3. J. Mater. Sci. Mater. Electr. 2015, 26, 3827. [Google Scholar] [CrossRef]
- Yao, Y.; Liu, W.; Chan, Y.; Leung, C.; Mak, C.; Ploss, B. Studies of Rare-Earth-Doped BiFeO3 Ceramics. Int. J. Appl. Ceram. Techn. 2011, 8, 1246. [Google Scholar] [CrossRef]
- Gervits, N.E.; Tkachev, A.V.; Zhurenko, S.V.; Gunbin, A.V.; Gippius, A.A.; Makarova, A.O.; Pokatilov, V.S. Emergence of collinear magnetic structure in Tb-doped BiFeO3. J. Magn. Magn. Mater. 2011, 563, 170031. [Google Scholar] [CrossRef]
- Dhir, G.; Uniyal, P.; Verma, N.K. Effect of partice size on the MF properties of Tb-doped BiFeO3 nanoparticles. J. Supercond. Nov. Magn. 2016, 29, 2621. [Google Scholar] [CrossRef]
- Lotey, G.S.; Verma, N.K. Magnetoelectric coupling in multiferroic Tb-doped BiFeO3. Mater. Lett. 2013, 111, 55. [Google Scholar] [CrossRef]
- Chen, X.; Hu, G.; Wu, W.; Yang, C.; Wang, X.; Fan, S. Large Piezoelectric Coefficient in Tb-Doped BiFeO3 Films. J. Am. Ceram. Soc. 2010, 93, 948. [Google Scholar] [CrossRef]
- Dong, G.; Tan, G.; Luo, Y.; Liu, W.; Ren, H.; Xia, A. Investigation of Tb-doping on structural transition and multiferroic properties of BiFeO3 thin films. Ceram. Int. 2014, 40, 6413. [Google Scholar] [CrossRef]
- Wang, Y.; Nan, C.-W. Effect of Tb doping on electric and magnetic behavior of BiFeO3 thin films. J. Appl. Phys. 2008, 103, 024103. [Google Scholar] [CrossRef]
- Yi, M.L.; Wang, C.B.; Li, L.; Wang, J.M.; Shen, Q.; Zhang, L.M. Influence of Tb doping on structure and multiferroic properties of BiFeO3 films prepared by pulsed laser deposition. Appl. Surf. Sci. 2015, 344, 47–51. [Google Scholar] [CrossRef]
- Zhai, X.; Deng, H.; Yang, P.; Chu, J. Effect of Tb-doping on structural, magnetic and optical properties of BiFeO3 films prepared by chemical solution deposition. Mater. Lett. 2015, 158, 266. [Google Scholar] [CrossRef]
- Bielecki, J.; Svedlindh, P.; Tibebu, D.T.; Cai, S.; Eriksson, S.-G.; Borjesson, L.; Knee, C.S. Structural and Magnetic Properties of Isovalently Substituted Multiferroic BiFeO3: Insights From Raman Spectroscopy. Phys. Rev. B 2012, 86, 184422. [Google Scholar] [CrossRef]
- Nayek, C.; Al-Akhras, M.; Obaidat, I. Tuning of the optical band-gap of rare earth doped BiFeO3 submicron particles for solar cell applications. In Proceedings of the 2018 5th International Conference on Renewable Energy: Generation and Applications (ICREGA), Al Ain, United Arab Emirates, 25–28 February 2018. [Google Scholar]
- Li, Z.; Cheng, L.; Zhang, K.; Wang, Z. Enhanced photocatalytic performance by Y-doped BiFeO3 particles derived from MOFs precursor based on band gap reduction and oxygen vacancies. Appl. Organomech. Chem. 2021, 35, e6113. [Google Scholar]
- Haruna, A.; Abdulkadir, I.; Idris, S.O. Photocatalytic activity and doping effects of BiFeO3 nanoparticles in model organic dyes. Heliyon 2020, 6, e03237. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.; Hossain, S.M.; Pal, M.; Basu, S. Effect of Y-doping on optical properties of multiferroics BiFeO3 nanoparticles. Appl. Nanosci. 2012, 2, 305. [Google Scholar] [CrossRef]
- Sosnowska, I.; Peterlin-Neumaier, T.; Steichele, E. Spiral magnetic ordering in bismuth ferrite. J. Phys. C 1982, 15, 4835. [Google Scholar] [CrossRef]
- Wang, N.; Luo, X.; Han, L.; Zhang, Z.; Zhang, R.; Olin, H.; Yang, Y. Structure, Performance, and Application of BiFeO3 Nanomaterials. Nano-Micro Lett. 2020, 12, 81. [Google Scholar] [CrossRef] [PubMed]
- Blinc, R.; Zeks, B. Soft Modes in Ferroelectrics and Antferroelectrics; North-Holland: Amsterdam, The Netherlands, 1974. [Google Scholar]
- Kovachev, S.; Wesselinowa, J.M. Electric field control of phonon properties in multiferroic BiFeO3 and hexagonal RMnO3. Solid State Commun. 2009, 149, 859–861. [Google Scholar] [CrossRef]
- Bonfim, O.F.A.; Gehring, G.A. Magnetoelectric effect in antiferromagnetic crystals. Adv. Phys. 1980, 29, 731. [Google Scholar] [CrossRef]
- Wu, H.; Jiang, Q.; Shen, W.Z. A possible coupling mechanism between magnetism and dielectric properties in EuTiO3 within the framework of the transverse-field Ising model. Phys. Lett. A 2004, 330, 358–364. [Google Scholar] [CrossRef]
- Katsufuji, T.; Mori, S.; Masaki, M.; Moritomo, Y.; Yamamoto, N.; Takagi, H. Dielectric and magnetic anomalies and spin frustration in hexagonal RMnO3 (R = Y, Yb, and Lu). Phys. Rev. B 2001, 64, 104419. [Google Scholar] [CrossRef]
- Tserkovnikov, Y.A. Decoupling of chains of equations for two-time Green’s functions. Theor. Math. Phys. 1971, 7, 511. [Google Scholar] [CrossRef]
- Nagayev, E.I. Spin Polaron Theory for Magnetic Semiconductors with Narrow Bands. Phys. Stat. Sol. B 1974, 65, 11. [Google Scholar] [CrossRef]
- Apostolov, A.T.; Apostolova, I.N.; Wesselinowa, J.M. Magnetic field effect on the dielectric properties of rare earth doped multiferroic BiFeO3. J. Magn. Magn. Mater. 2020, 513, 167101. [Google Scholar] [CrossRef]
- Mangin, S.; Montaigne, F.; Bellouard, C.; Fritzsche, H. Study of magnetic configurations in exchange-coupled bilayers by polarized neutron reflectometry. Appl. Phys. A 2002, 74, S631. [Google Scholar] [CrossRef]
- Wesselinowa, J.M. Size and anisotropy effects on magnetic properties of antiferromagnetic nanoparticles. J. Magn. Magn. Mater. 2010, 322, 234. [Google Scholar] [CrossRef]
- Lotey, G.S.; Verma, N.K. Multiferroic properties of Tb-doped BiFeO3 nanowires. J. Nanopart. Res. 2013, 15, 1553. [Google Scholar] [CrossRef]
- Puhan, A.; Bhushan, B.; Meena, S.S.; Nayak, A.K.; Rout, D. Surface engineered Tb and Co co-doped BiFeO3 nanoparticles for enhanced photocatalytic and magnetic properties. J. Mater. Sci. Mater. Electr. 2021, 32, 7956. [Google Scholar] [CrossRef]
- Reddy, V.A.; Pathak, N.P.; Nath, R. Enhanced magnetoelectric coupling in transition-metal-doped BiFeO3 thin films. Solid State Commun. 2013, 171, 40–45. [Google Scholar]
- Guo, K.; Zhang, R.; He, T.; Kong, H.; Deng, C. Multiferroic and in-plane magnetoelectric coupling properties of BiFeO3 nano-films with substitution of rare earth ions La3+ and Nd3+. J. Rare Earths 2016, 34, 1228–1234. [Google Scholar] [CrossRef]
- Qiao, L.; Zhang, S.; Xiao, H.Y.; Singh, D.J.; Zhang, K.H.L.; Liu, Z.J.; Zua, X.T.; Lic, S. Orbital controlled band gap engineering of tetragonal BiFeO3 for optoelectronic application. J. Mater. Chem. C 2018, 6, 1239. [Google Scholar] [CrossRef]
- Clark, S.J.; Robertson, J. Band gap and Schottky barrier heights of multiferroic BiFeO3. Appl. Phys. Lett. 2007, 90, 132903. [Google Scholar] [CrossRef]
- Mocherla, P.; Karthik, C.; Ubic, R.; Rao, M.S.R.; Sudakar, C. Tunable bandgap in BiFeO3 nanoparticles: The role of microstrain and oxygen defects. Appl. Phys. Lett. 2013, 103, 022910. [Google Scholar] [CrossRef]
- Sharma, S.; Kumar, M. Band gap tuning and optical properties of BiFeO3 nanoparticles. Mater. Today Proc. 2020, 28, 168. [Google Scholar] [CrossRef]
- Micard, Q.; Margueron, S.; Bartasyte, A.; Condorelli, G.G.; Malandrino, G. Dy-Doped BiFeO3 thin films: Piezoelectric and bandgap tuning. Mater. Adv. 2022, 3, 3446. [Google Scholar] [CrossRef]
- Irfan, S.; Shen, Y.; Rizwan, S.; Wang, H.; Khan, S.B.; Nan, C.W. Band-Gap Engineering and Enhanced Photocatalytic Activity of Sm and Mn Doped BiFeO3 Nanoparticles. J. Am. Ceram. Soc. 2017, 100, 31. [Google Scholar] [CrossRef]
- Hasan, M.; Basith, M.A.; Zubair, M.A.; Hossain, M.S.; Mahbub, R.; Hakim, M.A.; Islam, M.F. Saturation magnetization and band gap tuning in BiFeO3 nanoparticles via co-substitution of Gd and Mn. J. Alloys Compd. 2016, 687, 701. [Google Scholar] [CrossRef]
- Wrzesinska, A.; Khort, A.; Bobowska, I.; Busiakiewicz, A.; Wypych-Puszkarz, A. Influence of the La3+, Eu3+, and Er3+ Doping on Structural, Optical, and Electrical Properties of BiFeO3 Nanoparticles Synthesized by Microwave-Assisted Solution Combustion Method. J. Nanomater. 2019, 2019, 5394325. [Google Scholar] [CrossRef]
- Singh, E.C.; Singh, H.H.; Sharma, H.B. Effect of Rare Earth Elements Doping On Dielectric and Magnetic Properties of BiFeO3 Nanoparticles. AIP Conf. Proc. 2020, 2265, 030140. [Google Scholar]
- Golda, R.A.; Marikani, A.; Alex, E.J. Enhancement of dielectric, ferromagnetic and electrochemical properties of BiFeO3 nanostructured films through rare earth metal doping. Ceram. Int. 2020, 46, 1962–1973. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Apostolova, I.; Apostolov, A.; Wesselinowa, J. Magnetoelectric Coupling Effects in Tb-Doped BiFeO3 Nanoparticles. Magnetochemistry 2023, 9, 142. https://doi.org/10.3390/magnetochemistry9060142
Apostolova I, Apostolov A, Wesselinowa J. Magnetoelectric Coupling Effects in Tb-Doped BiFeO3 Nanoparticles. Magnetochemistry. 2023; 9(6):142. https://doi.org/10.3390/magnetochemistry9060142
Chicago/Turabian StyleApostolova, Iliana, Angel Apostolov, and Julia Wesselinowa. 2023. "Magnetoelectric Coupling Effects in Tb-Doped BiFeO3 Nanoparticles" Magnetochemistry 9, no. 6: 142. https://doi.org/10.3390/magnetochemistry9060142
APA StyleApostolova, I., Apostolov, A., & Wesselinowa, J. (2023). Magnetoelectric Coupling Effects in Tb-Doped BiFeO3 Nanoparticles. Magnetochemistry, 9(6), 142. https://doi.org/10.3390/magnetochemistry9060142