Magnetic Properties of CuCr1−xLaxS2 Thermoelectric Materials
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Korotaev, E.V.; Syrokvashin, M.M.; Filatova, I.Y.; Sotnikov, A.V.; Kalinkin, A.V. The Charge Distribution, Seebeck Coefficient, and Carrier Concentration of CuCr0.99Ln0.01S2 (Ln = Dy–Lu). Materials 2023, 16, 2431. [Google Scholar] [CrossRef]
- Okada, T. Intercalation of Organic Compounds into Layered Clay Minerals. Oleoscience 2014, 14, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Constantino, V.R.L.; Barbosa, C.A.S.; Bizeto, M.A.; Dias, P.M. Intercalation Compounds Involving Inorganic Layered Structures. An. Acad. Bras. Cienc. 2000, 72, 45–49. [Google Scholar] [CrossRef] [Green Version]
- Ushakov, A.V.; Kukusta, D.A.; Yaresko, A.N.; Khomskii, D.I. Magnetism of Layered Chromium Sulfides MCrS2 (M = Li, Na, K, Ag, and Au): A First-Principles Study. Phys. Rev. B 2013, 87, 014418. [Google Scholar] [CrossRef] [Green Version]
- Engelsman, F.M.R.; Wiegers, G.A.; Jellinek, F.; Van Laar, B. Crystal Structures and Magnetic Structures of Some Metal(I) Chromium(III) Sulfides and Selenides. J. Solid State Chem. 1973, 6, 574–582. [Google Scholar] [CrossRef]
- Sanchez Rodriguez, J.J.; Nunez Leon, A.N.; Abbasi, J.; Shinde, P.S.; Fedin, I.; Gupta, A. Colloidal Synthesis, Characterization, and Photoconductivity of Quasi-Layered CuCrS2 Nanosheets. Nanomaterials 2022, 12, 4164. [Google Scholar] [CrossRef]
- Chernozatonskii, L.A.; Artyukh, A.A. Quasi-Two-Dimensional Transition Metal Dichalcogenides: Structure, Synthesis, Properties, and Applications. Physics-Uspekhi 2018, 61, 2–28. [Google Scholar] [CrossRef]
- Vasilyeva, I.G. Chemical Aspect of the Structural Disorder in CuCrS2 and CuCr1–XVxS2 Solid Solutions. J. Struct. Chem. 2017, 58, 1009–1017. [Google Scholar] [CrossRef]
- Almukhametov, R.F.; Yakshibayev, R.A.; Gabitov, E.V.; Abdullin, A.R.; Kutusheva, R.M. Structural Properties and Ionic Conductivities of CuCr1–XVxS2 Solid Solutions. Phys. Status Solidi 2003, 236, 29–33. [Google Scholar] [CrossRef]
- Al’mukhametov, R.F.; Yakshibaev, R.A.; Gabitov, É.V.; Abdullin, A.R. Investigation of Superionic Phase Transition in the CuCr1-XVxS2 System by X-ray Diffraction and Magnetic Methods. Phys. Solid State 2000, 42, 1508–1511. [Google Scholar] [CrossRef]
- Korotaev, E.V.; Syrokvashin, M.M.; Filatova, I.Y.; Sotnikov, A.V. Effect of the Order-Disorder Transition on the Electronic Structure and Physical Properties of Layered CuCrS2. Materials 2021, 14, 2729. [Google Scholar] [CrossRef]
- Akmanova, G.R.; Davletshina, A.D. Ionic Conductivity and Diffusion in Superionic Conductors CuCrS2–AgCrS2. Lett. Mater. 2013, 3, 76–78. [Google Scholar] [CrossRef] [Green Version]
- Al’mukhametov, R.F.; Yakshibaev, R.A.; Gabitov, E.V.; Abdullin, A.R. Synthesis and X-ray Diffraction Study of CuCr1-XVxS2. Inorg. Mater. 2000, 36, 437–440. [Google Scholar] [CrossRef]
- Almukhametov, R. Structural Properties and Ionic Conductivity of New CuCr1−xVxSe2 Solid Solutions. Solid State Ionics 2003, 158, 409–414. [Google Scholar] [CrossRef]
- Bongers, P.F.; Van Bruggen, C.F.; Koopstra, J.; Omloo, W.P.F.A.M.; Wiegers, G.A.; Jellinek, F. Structures and Magnetic Properties of Some Metal (I) Chromium (III) Sulfides and Selenides. J. Phys. Chem. Solids 1968, 29, 977–984. [Google Scholar] [CrossRef]
- Abramova, G.M.; Petrakovskii, G.A. Metal-Insulator Transition, Magnetoresistance, and Magnetic Properties of 3d-Sulfides (Review). Low Temp. Phys. 2006, 32, 725–734. [Google Scholar] [CrossRef]
- Abramova, G.M.; Petrakovskǐ, G.A.; Vorotynov, A.M.; Velikanov, D.A.; Kiselev, N.I.; Bovina, A.F.; Szymczak, R.; Al’mukhametov, R.F. Phase Transitions and Colossal Magnetoresistance in CuVxCr 1-x S2 Layered Disulfides. JETP Lett. 2006, 83, 118–121. [Google Scholar] [CrossRef]
- Tsujii, N.; Kitazawa, H. Substitution Effect on the Two-Dimensional Triangular-Lattice System CuCrS2. J. Phys. Condens. Matter 2007, 19, 145245. [Google Scholar] [CrossRef]
- Karmakar, A.; Dey, K.; Chatterjee, S.; Majumdar, S.; Giri, S. Spin Correlated Dielectric Memory and Rejuvenation in Multiferroic CuCrS2. Appl. Phys. Lett. 2014, 104, 052906. [Google Scholar] [CrossRef] [Green Version]
- Korotaev, E.V.; Syrokvashin, M.M.; Filatova, I.Y.; Zvereva, V.V. Vanadium Doped Layered Copper-Chromium Sulfides: The Correlation between the Magnetic Properties and XES Data. Vacuum 2020, 179, 109390. [Google Scholar] [CrossRef]
- Korotaev, E.V.; Syrokvashin, M.M.; Filatova, I.Y.; Trubina, S.V.; Nikolenko, A.D.; Ivlyushkin, D.V.; Zavertkin, P.S.; Sotnikov, A.V.; Kriventsov, V.V. XANES Investigation of Novel Lanthanide-Doped CuCr0.99Ln0.01S2 (Ln = La, Ce) Solid Solutions. Appl. Phys. A 2020, 126, 537. [Google Scholar] [CrossRef]
- Korotaev, E.V.; Syrokvashin, M.M.; Filatova, I.Y.; Zvereva, V.V. Magnetic Properties of Novel Layered Disulfides CuCr0.99Ln0.01S2 (Ln = La…Lu). Materials 2021, 14, 5101. [Google Scholar] [CrossRef] [PubMed]
- Fomenko, Y.S.; Gushchin, A.L.; Tkachev, A.V.; Vasilyev, E.S.; Abramov, P.A.; Nadolinny, V.A.; Syrokvashin, M.M.; Sokolov, M.N. Fist Oxidovanadium Complexes Containing Chiral Derivatives of Dihydrophenanthroline and Diazafluorene. Polyhedron 2017, 135, 96–100. [Google Scholar] [CrossRef]
- Abramova, G.M.; Petrakovskiǐ, G.A.; Vtyurin, A.N.; Vorotynov, A.M.; Velikanov, D.A.; Krylov, A.S.; Gerasimova, Y.; Sokolov, V.V.; Bovina, A.F. Magnetic Properties, Magnetoresistance, and Raman Spectra of CuV x Cr1–X S2. Phys. Solid State 2009, 51, 532–536. [Google Scholar] [CrossRef]
- Tsujii, N.; Kitazawa, H.; Kido, G. Insulator to Metal Transition Induced by Substitution in the Nearly Two-Dimensional Compound CuCr1–XVxS2. Phys. Status Solidi 2006, 3, 2775–2778. [Google Scholar] [CrossRef]
- Korotaev, E.V.; Syrokvashin, M.M.; Filatova, I.Y.; Pelmenev, K.G.; Zvereva, V.V.; Peregudova, N.N. Seebeck Coefficient of Cation-Substituted Disulfides CuCr1−xFexS2 and Cu1−xFexCrS2. J. Electron. Mater. 2018, 47, 3392–3397. [Google Scholar] [CrossRef]
- Korotaev, E.V.; Syrokvashin, M.M.; Filatova, I.Y.; Trubina, S.V.; Nikolenko, A.D.; Ivlyushkin, D.V.; Zavertkin, P.S.; Kriventsov, V.V. The Conduction Band of the Lanthanide Doped Chromium Disulfides CuCr0.99Ln0.01S2 (Ln = La, Ce, Gd): XANES Investigations. In Proceedings of the AIP Conference Proceedings, Novosibirsk, Russia, 13–16 July 2020; Volume 2299, p. 080004. [Google Scholar]
- Korotaev, E.V.; Syrokvashin, M.M.; Filatova, I.Y.; Sotnikov, A.V.; Kalinkin, A.V. Charge Distribution in Layered Lanthanide-Doped CuCr0.99Ln0.01S2 (Ln = Pr–Tb) Thermoelectric Materials. Materials 2022, 15, 8747. [Google Scholar] [CrossRef]
- Chen, Y.-X.; Zhang, B.-P.; Ge, Z.-H.; Shang, P.-P. Preparation and Thermoelectric Properties of Ternary Superionic Conductor CuCrS2. J. Solid State Chem. 2012, 186, 109–115. [Google Scholar] [CrossRef]
- Romanenko, A.I.; Chebanova, G.E.; Katamanin, I.N.; Drozhzhin, M.V.; Artemkina, S.B.; Han, M.-K.; Kim, S.-J.; Wang, H. Enhanced Thermoelectric Properties of Polycrystalline CuCrS2−x Se X (x = 0, 0.5, 1.0, 1.5, 2) Samples by Replacing Chalcogens and Sintering. J. Phys. D. Appl. Phys. 2021, 55, 135302. [Google Scholar] [CrossRef]
- Tewari, G.C.; Karppinen, M.; Rastogi, A.K. Effects of Competing Magnetic Interactions on the Electronic Transport Properties of CuCrSe2. J. Solid State Chem. 2013, 198, 108–113. [Google Scholar] [CrossRef]
- Tewari, G.C.; Tripathi, T.S.; Rastogi, A.K. Thermoelectric Properties of Layer-Antiferromagnet CuCrS 2. J. Electron. Mater. 2010, 39, 1133–1139. [Google Scholar] [CrossRef] [Green Version]
- Tewari, G.C.; Tripathi, T.S.; Rastogi, A.K. Effect of Chromium Disorder on the Thermoelectric Properties of Layered-Antiferromagnet CuCrS2. Z. Fur Krist. 2010, 225, 471–474. [Google Scholar] [CrossRef]
- Srivastava, D.; Tewari, G.C.; Karppinen, M.; Nieminen, R.M. First-Principles Study of Layered Antiferromagnetic CuCrX2 (X = S, Se and Te). J. Phys. Condens. Matter 2013, 25, 105504. [Google Scholar] [CrossRef]
- Kim, K.; Asaoka, S.; Yamamoto, T.; Hayakawa, S.; Takeda, K.; Katayama, M.; Onoue, T. Mechanisms of Hydrogen Sulfide Removal with Steel Making Slag. Environ. Sci. Technol. 2012, 46, 120907070404002. [Google Scholar] [CrossRef]
- Hansen, A.-L.; Dankwort, T.; Groß, H.; Etter, M.; König, J.; Duppel, V.; Kienle, L.; Bensch, W. Structural Properties of the Thermoelectric Material CuCrS2 and of Deintercalated CuxCrS2 on Different Length Scales: X-ray Diffraction, Pair Distribution Function and Transmission Electron Microscopy Studies. J. Mater. Chem. C 2017, 5, 9331–9338. [Google Scholar] [CrossRef]
- Kaltzoglou, A.; Vaqueiro, P.; Barbier, T.; Guilmeau, E.; Powell, A.V. Ordered-Defect Sulfides as Thermoelectric Materials. J. Electron. Mater. 2014, 43, 2029–2034. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Basu, R.; Bhatt, R.; Pitale, S.; Singh, A.; Aswal, D.K.; Gupta, S.K.; Navaneethan, M.; Hayakawa, Y. CuCrSe2: A High Performance Phonon Glass and Electron Crystal Thermoelectric Material. J. Mater. Chem. A 2013, 1, 11289–11294. [Google Scholar] [CrossRef]
- Wu, D.; Huang, S.; Feng, D.; Li, B.; Chen, Y.; Zhang, J.; He, J. Revisiting AgCrSe2 as a Promising Thermoelectric Material. Phys. Chem. Chem. Phys. 2016, 18, 23872–23878. [Google Scholar] [CrossRef]
- Dmitriev, A.V.; Zvyagin, I.P. Current Trends in the Physics of Thermoelectric Materials. Uspekhi Fiz. Nauk 2010, 180, 821. [Google Scholar] [CrossRef]
- Terasaki, I. Thermal Conductivity and Thermoelectric Power of Semiconductors. In Comprehensive Semiconductor Science and Technology; Elsevier Science: Amsterdam, The Netherlands, 2011; ISBN 9780444531537. [Google Scholar]
- Nandihalli, N. Thermoelectric Films and Periodic Structures and Spin Seebeck Effect Systems: Facets of Performance Optimization. Mater. Today Energy 2022, 25, 100965. [Google Scholar] [CrossRef]
- Korotaev, E.V.; Kanazhevskiy, V.V.; Peregudova, N.N.; Syrokvashin, M.M.; Mazalov, L.N.; Sokolov, V.V.; Filatova, I.Y.; Pichugin, A.Y. Xanes of X-ray Absorbtion K Edges of Chromium Dichalcogenides CuCr1−x M′ x S2 and MCrX2. J. Struct. Chem. 2016, 57, 1355–1361. [Google Scholar] [CrossRef]
- Sotnikov, A.V.; Bakovets, V.V.; Sokolov, V.V.; Filatova, I.Y. Lanthanum Oxide Sulfurization in Ammonium Rhodanide Vapor. Inorg. Mater. 2014, 50, 1024–1029. [Google Scholar] [CrossRef]
- Selwood, P. Magnetochemistry, 2nd ed.; Interscience Publishers: New York, NY, USA, 1956. [Google Scholar]
- Blundell, S. Magnetism in Condensed Matter; OXFORD University Press: Oxford, UK, 2001. [Google Scholar] [CrossRef]
- Inorganic Crystal Structure Database, Version 2.1.0, Leibniz Institute for Information Infrastructure, FIZ Karlsruhe, Eggenstein—Leopoldshafen, Germany. Available online: https://icsd.products.fiz-karlsruhe.de/ (accessed on 17 May 2023).
- Vassilieva, I.G.; Kardash, T.Y.; Malakhov, V.V. Phase Transformations of CuCrS2: Structural and Chemical Study. J. Struct. Chem. 2009, 50, 288–295. [Google Scholar] [CrossRef]
- Korotaev, E.V.; Syrokvashin, M.M.; Filatova, I.Y.; Kalinkin, A.V.; Sotnikov, A.V. Valence Band Structure and Charge Distribution in the Layered Lanthanide-Doped CuCr0.99Ln0.01S2 (Ln = La, Ce) Solid Solutions. Sci. Rep. 2021, 11, 18934. [Google Scholar] [CrossRef]
Sample | a, Å | c, Å |
---|---|---|
CuCrS2 | 3.482(7) | 18.701(5) |
CuCr0.995La0.005S2 | 3.482(9) | 18.706(6) |
CuCr0.99La0.01S2 | 3.483(6) | 18.716(4) |
CuCr0.985La0.015S2 | 3.479(1) | 18.686(8) |
CuCr0.97La0.03S2 | 3.480(1) | 18.696(7) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korotaev, E.V.; Syrokvashin, M.M.; Sulyaeva, V.S.; Filatova, I.Y. Magnetic Properties of CuCr1−xLaxS2 Thermoelectric Materials. Magnetochemistry 2023, 9, 168. https://doi.org/10.3390/magnetochemistry9070168
Korotaev EV, Syrokvashin MM, Sulyaeva VS, Filatova IY. Magnetic Properties of CuCr1−xLaxS2 Thermoelectric Materials. Magnetochemistry. 2023; 9(7):168. https://doi.org/10.3390/magnetochemistry9070168
Chicago/Turabian StyleKorotaev, Evgeniy V., Mikhail M. Syrokvashin, Veronica S. Sulyaeva, and Irina Yu. Filatova. 2023. "Magnetic Properties of CuCr1−xLaxS2 Thermoelectric Materials" Magnetochemistry 9, no. 7: 168. https://doi.org/10.3390/magnetochemistry9070168
APA StyleKorotaev, E. V., Syrokvashin, M. M., Sulyaeva, V. S., & Filatova, I. Y. (2023). Magnetic Properties of CuCr1−xLaxS2 Thermoelectric Materials. Magnetochemistry, 9(7), 168. https://doi.org/10.3390/magnetochemistry9070168