Femtosecond Laser Ablation-Induced Magnetic Phase Transformations in FeRh Thin Films
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Crangle, J.; Goodman, G. The magnetization of pure iron and nickel. Proc. R. Soc. London. A. Math. Phys. Sci. 1971, 321, 477–491. [Google Scholar]
- Beaurepaire, E.; Merle, J.C.; Daunois, A.; Bigot, J.Y. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett. 1996, 76, 4250. [Google Scholar] [CrossRef]
- Van Kampen, M.; Jozsa, C.; Kohlhepp, J.T.; LeClair, P.; Lagae, L.; De Jonge, W.J.M.; Koopmans, B. All-optical probe of coherent spin waves. Phys. Rev. Lett. 2002, 88, 227201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bigot, J.Y.; Vomir, M.; Andrade, L.H.F.; Beaurepaire, E. Ultrafast magnetization dynamics in ferromagnetic cobalt: The role of the anisotropy. Chem. Phys. 2005, 318, 137–146. [Google Scholar] [CrossRef]
- Salikhov, R.; Alekhin, A.; Parpiiev, T.; Pezeril, T.; Makarov, D.; Abrudan, R.; Meckenstock, R.; Radu, F.; Farle, M.; Zabel, H.; et al. Gilbert damping in NiFeGd compounds: Ferromagnetic resonance versus time-resolved spectroscopy. Phys. Rev. B 2019, 99, 104412. [Google Scholar] [CrossRef]
- Scherbakov, A.V.; Salasyuk, A.S.; Akimov, A.V.; Liu, X.; Bombeck, M.; Brüggemann, C.; Yakovlev, D.R.; Sapega, V.F.; Furdyna, J.K.; Bayer, M. Coherent magnetization precession in ferromagnetic (Ga, Mn) As induced by picosecond acoustic pulses. Phys. Rev. Lett. 2010, 105, 117204. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.W.; Vomir, M.; Bigot, J.Y. Ultrafast magnetoacoustics in nickel films. Phys. Rev. Lett. 2012, 109, 166601. [Google Scholar] [CrossRef]
- Vlasov, V.S.; Golov, A.V.; Kotov, L.N.; Shcheglov, V.I.; Lomonosov, A.M.; Temnov, V.V. The modern problems of ultrafast magnetoacoustics. Acoust. Phys. 2022, 68, 18–47. [Google Scholar] [CrossRef]
- Kimel, A.; Zvezdin, A.; Sharma, S.; Shallcross, S.; De Sousa, N.; García-Martín, A.; Salvan, G.; Hamrle, J.; Stejskal, O.; McCord, J.; et al. The 2022 magneto-optics roadmap. J. Phys. D Appl. Phys. 2022, 55, 463003. [Google Scholar] [CrossRef]
- Kisielewski, J.; Kurant, Z.; Sveklo, I.; Tekielak, M.; Wawro, A.; Maziewski, A. Magnetic phases in Pt/Co/Pt films induced by single and multiple femtosecond laser pulses. J. Appl. Phys. 2016, 119, 193901. [Google Scholar] [CrossRef]
- Urner-Wille, M.; Kobs, R.; Witter, K. Picosecond laser-induced change of the magnetic properties of amorphous GdFeBi-films. IEEE Trans. Magn. 1981, 17, 2621–2623. [Google Scholar] [CrossRef]
- Ehrler, J.; He, M.; Shugaev, M.V.; Polushkin, N.I.; Wintz, S.; Liersch, V.; Cornelius, S.; Hübner, R.; Potzger, K.; Lindner, J.; et al. Laser-rewriteable ferromagnetism at thin-film surfaces. ACS Appl. Mater. Interfaces 2018, 10, 15232–15239. [Google Scholar] [CrossRef] [PubMed]
- Polushkin, N.I.; Oliveira, V.; Vilar, R.; He, M.; Shugaev, M.V.; Zhigilei, L.V. Phase-change magnetic memory: Rewritable ferromagnetism by laser quenching of chemical disorder in Fe60Al40 alloy. Phys. Rev. Appl. 2018, 10, 024023. [Google Scholar] [CrossRef] [Green Version]
- Bali, R.; Wintz, S.; Meutzner, F.; Hübner, R.; Boucher, R.; Ünal, A.A.; Valencia, S.; Neudert, A.; Potzger, K.; Bauch, J.; et al. Printing nearly-discrete magnetic patterns using chemical disorder induced ferromagnetism. Nano Lett. 2014, 14, 435–441. [Google Scholar] [CrossRef]
- Strusch, T.; Lenz, K.; Meckenstock, R.; Bali, R.; Ehrler, J.; Lindner, J.; Fassbender, J.; Farle, M.; Potzger, K.; Semisalova, A. Spin pumping at interfaces with ferro-and paramagnetic Fe60Al40 films acting as spin source and spin sink. J. Appl. Phys. 2022, 132, 213906. [Google Scholar] [CrossRef]
- Stanciu, C.D.; Hansteen, F.; Kimel, A.V.; Kirilyuk, A.; Tsukamoto, A.; Itoh, A.; Rasing, T. All-optical magnetic recording with circularly polarized light. Phys. Rev. Lett. 2007, 99, 047601. [Google Scholar] [CrossRef] [Green Version]
- Vahaplar, K.; Kalashnikova, A.M.; Kimel, A.V.; Gerlach, S.; Hinzke, D.; Nowak, U.; Chantrell, R.; Tsukamoto, A.; Itoh, A.; Kirilyuk, A.; et al. All-optical magnetization reversal by circularly polarized laser pulses: Experiment and multiscale modeling. Phys. Rev. B 2012, 85, 104402. [Google Scholar] [CrossRef]
- Ostler, T.A.; Barker, J.; Evans, R.F.L.; Chantrell, R.W.; Atxitia, U.; Chubykalo-Fesenko, O.; El Moussaoui, S.; Le Guyader, L.; Mengotti, E.; Heyderman, L.J.; et al. Ultrafast heating as a sufficient stimulus for magnetization reversal in a ferrimagnet. Nat. Commun. 2012, 3, 666. [Google Scholar] [CrossRef] [Green Version]
- Lewis, L.H.; Marrows, C.H.; Langridge, S. Coupled magnetic, structural, and electronic phase transitions in FeRh. J. Phys. D Appl. Phys. 2016, 49, 323002. [Google Scholar] [CrossRef]
- Griggs, W.; Eggert, B.; Liedke, M.O.; Butterling, M.; Wagner, A.; Kentsch, U.; Hirschmann, E.; Grimes, M.; Caruana, A.J.; Kinane, C.; et al. Depth selective magnetic phase coexistence in FeRh thin films. APL Mater. 2020, 8, 121103. [Google Scholar] [CrossRef]
- Nadarajah, R.; Tahir, S.; Landers, J.; Koch, D.; Semisalova, A.S.; Wiemeler, J.; El-Zoka, A.; Kim, S.H.; Utzat, D.; Möller, R.; et al. Controlling the oxidation of magnetic and electrically conductive solid-solution iron-rhodium nanoparticles synthesized by laser ablation in liquids. Nanomaterials 2020, 10, 2362. [Google Scholar] [CrossRef]
- Heidarian, A.; Stienen, S.; Semisalova, A.; Yuan, Y.; Josten, E.; Hübner, R.; Salamon, S.; Wende, H.; Gallardo, R.; Grenzer, J.; et al. Ferromagnetic resonance of MBE-grown FeRh thin films through the metamagnetic phase transition. Phys. Status Solidi 2017, 254, 1700145. [Google Scholar] [CrossRef]
- Eggert, B.; Schmeink, A.; Lill, J.; Liedke, M.O.; Kentsch, U.; Butterling, M.; Wagner, A.; Pascarelli, S.; Potzger, K.; Lindner, J.; et al. Magnetic response of FeRh to static and dynamic disorder. RSC Adv. 2020, 10, 14386–14395. [Google Scholar] [CrossRef]
- Vogler, C.; Abert, C.; Bruckner, F.; Suess, D. Noise Reduction Based on an Fe- Rh Interlayer in Exchange-Coupled Heat-Assisted Recording Media. Phys. Rev. Appl. 2017, 8, 054021. [Google Scholar] [CrossRef] [Green Version]
- Feng, Z.; Yan, H.; Liu, Z. Electric-Field Control of Magnetic Order: From FeRh to Topological Antiferromagnetic Spintronics. Adv. Electron. Mater. 2019, 5, 1800466. [Google Scholar] [CrossRef] [Green Version]
- Qiao, K.; Liang, Y.; Zhang, H.; Hu, F.; Yu, Z.; Long, Y.; Wang, J.; Sun, J.; Zhao, T.; Shen, B. Manipulation of magnetocaloric effect in FeRh films by epitaxial growth. J. Alloys Compd. 2022, 907, 164574. [Google Scholar] [CrossRef]
- Vieira, R.M.; Eriksson, O.; Bergman, A.; Herper, H.C. High-throughput compatible approach for entropy estimation in magnetocaloric materials: FeRh as a test case. J. Alloys Compd. 2021, 857, 157811. [Google Scholar] [CrossRef]
- Chirkova, A.; Skokov, K.P.; Schultz, L.; Baranov, N.V.; Gutfleisch, O.; Woodcock, T.G. Giant adiabatic temperature change in FeRh alloys evidenced by direct measurements under cyclic conditions. Acta Mater. 2016, 106, 15–21. [Google Scholar] [CrossRef]
- Bennett, S.P.; Ambaye, H.; Lee, H.; LeClair, P.; Mankey, G.J.; Lauter, V. Direct evidence of anomalous interfacial magnetization in metamagnetic Pd doped FeRh thin films. Sci. Rep. 2015, 5, 9142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Q.B.; Li, J.; Wang, C.C.; Zhou, Z.J.; Cao, Q.Q.; Zhou, T.J.; Wang, D.H.; Du, Y.W. Electric field tuning of magnetocaloric effect in FeRh0.96Pd0.04/PMN-PT composite near room temperature. Appl. Phys. Lett. 2017, 110, 222408. [Google Scholar] [CrossRef]
- Barua, R.; Jiménez-Villacorta, F.; Lewis, L.H. Predicting magnetostructural trends in FeRh-based ternary systems. Appl. Phys. Lett. 2013, 103, 102407. [Google Scholar] [CrossRef]
- Urban, C.; Bennett, S.P.; Schuller, I.K. Hydrostatic pressure mapping of barium titanate phase transitions with quenched FeRh. Sci. Rep. 2020, 10, 6312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fina, I.; Fontcuberta, J. Strain and voltage control of magnetic and electric properties of FeRh films. J. Phys. D Appl. Phys. 2019, 53, 023002. [Google Scholar] [CrossRef] [Green Version]
- Fujita, N.; Matsui, T.; Kosugi, S.; Satoh, T.; Saitoh, Y.; Takano, K.; Koka, M.; Kamiya, T.; Seki, S.; Iwase, A. Micrometer-sized magnetic patterning of FeRh films using an energetic ion microbeam. Jpn. J. Appl. Phys. 2010, 49, 060211. [Google Scholar] [CrossRef]
- Koide, T.; Satoh, T.; Kohka, M.; Saitoh, Y.; Kamiya, T.; Ohkouchi, T.; Kotsugi, M.; Kinoshita, T.; Nakamura, T.; Iwase, A.; et al. Magnetic patterning of FeRh thin films by energetic light ion microbeam irradiation. Jpn. J. Appl. Phys. 2014, 53, 05FC06. [Google Scholar] [CrossRef]
- Heidarian, A.; Bali, R.; Grenzer, J.; Wilhelm, R.A.; Heller, R.; Yildirim, O.; Lindner, J.; Potzger, K. Tuning the antiferromagnetic to ferromagnetic phase transition in FeRh thin films by means of low-energy/low fluence ion irradiation. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2015, 358, 251–254. [Google Scholar] [CrossRef]
- Bennett, S.P.; Herklotz, A.; Cress, C.D.; Ievlev, A.; Rouleau, C.M.; Mazin, I.I.; Lauter, V. Magnetic order multilayering in FeRh thin films by He-Ion irradiation. Mater. Res. Lett. 2018, 6, 106–112. [Google Scholar] [CrossRef]
- Cress, C.D.; Wickramaratne, D.; Rosenberger, M.R.; Hennighausen, Z.; Callahan, P.G.; LaGasse, S.W.; Bernstein, N.; van ’t Erve, O.M.; Jonker, B.T.; Qadri, S.B.; et al. Direct-Write of Nanoscale Domains with Tunable Metamagnetic Order in FeRh Thin Films. ACS Appl. Mater. Interfaces 2021, 13, 836–847. [Google Scholar] [CrossRef]
- Ju, G.; Hohlfeld, J.; Bergman, B.; van de Veerdonk, R.J.M.; Mryasov, O.N.; Kim, J.Y.; Wu, X.; Weller, D.; Koopmans, B. Ultrafast generation of ferromagnetic order via a laser-induced phase transformation in FeRh thin films. Phys. Rev. Lett. 2004, 93, 197403. [Google Scholar] [CrossRef] [Green Version]
- Bergman, B.; Ju, G.; Hohlfeld, J.; van de Veerdonk, R.J.M.; Kim, J.Y.; Wu, X.; Weller, D.; Koopmans, B. Identifying growth mechanisms for laser-induced magnetization in FeRh. Phys. Rev. B 2006, 73, 060407. [Google Scholar] [CrossRef] [Green Version]
- Pressacco, F.; Uhlíř, V.; Gatti, M.; Nicolaou, A.; Bendounan, A.; Arregi, J.A.; Patel, S.K.K.; Fullerton, E.E.; Krizmancic, D.; Sirotti, F. Laser induced phase transition in epitaxial FeRh layers studied by pump-probe valence band photoemission. Struct. Dyn. 2018, 5, 034501. [Google Scholar] [CrossRef]
- Awari, N.; Semisalova, A.; Deinert, J.C.; Lenz, K.; Lindner, J.; Fullerton, E.; Uhlíř, V.; Li, J.; Clemens, B.; Carley, R.; et al. Monitoring laser-induced magnetization in FeRh by transient terahertz emission spectroscopy. Appl. Phys. Lett. 2020, 117, 122407. [Google Scholar] [CrossRef]
- Temnov, V.V.; Armelles, G.; Woggon, U.; Guzatov, D.; Cebollada, A.; Garcia-Martin, A.; Garcia-Martin, J.M.; Thomay, T.; Leitenstorfer, A.; Bratschitsch, R. Active magneto-plasmonics in hybrid metal–ferromagnet structures. Nat. Photonics 2010, 4, 107–111. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.M. Simple technique for measurements of pulsed Gaussian-beam spot sizes. Opt. Lett. 1982, 7, 196–198. [Google Scholar] [CrossRef] [PubMed]
- Dróżdż, P.; Ślęzak, M.; Matlak, K.; Kozioł-Rachwał, A.; Korecki, J.; Slezak, T. Spin-flop coupling induced large coercivity enhancement in Fe/FeRh/W(110) bilayers across ferromagnetic–antiferromagnetic phase transition of FeRh alloy. J. Magn. Magn. Mater. 2020, 498, 166258. [Google Scholar] [CrossRef]
- Xie, Y.; Zhan, Q.; Shang, T.; Yang, H.; Liu, Y.; Wang, B.; Li, R.W. Electric field control of magnetic properties in FeRh/PMN-PT heterostructures. AIP Adv. 2018, 8, 055816. [Google Scholar] [CrossRef] [Green Version]
- Staunton, J.B.; Banerjee, R.; Dias, M.d.S.; Deak, A.; Szunyogh, L. Fluctuating local moments, itinerant electrons, and the magnetocaloric effect: Compositional hypersensitivity of FeRh. Phys. Rev. B 2014, 89, 054427. [Google Scholar] [CrossRef] [Green Version]
- Arregi, J.A.; Caha, O.; Uhlíř, V. Evolution of strain across the magnetostructural phase transition in epitaxial FeRh films on different substrates. Phys. Rev. B 2020, 101, 174413. [Google Scholar] [CrossRef]
- Barton, C.W.; Ostler, T.A.; Huskisson, D.; Kinane, C.J.; Haigh, S.J.; Hrkac, G.; Thomson, T. Substrate induced strain field in FeRh epilayers grown on single crystal MgO (001) substrates. Sci. Rep. 2017, 7, 44397. [Google Scholar] [CrossRef] [Green Version]
- Temnov, V.V. Ultrafast Laser-Induced Phenomena in Solids Studied by Time-Resolved Interferometry; University of Duisburg-Essen: Duisburg, Germany, 2004. [Google Scholar]
- Sokolowski-Tinten, K.; Bialkowski, J.; Cavalleri, A.; von der Linde, D.; Oparin, A.; Meyer-ter-Vehn, J.; Anisimov, S.I. Transient states of matter during short pulse laser ablation. Phys. Rev. Lett. 1998, 81, 224. [Google Scholar] [CrossRef] [Green Version]
- Temnov, V.V.; Sokolowski-Tinten, K.; Zhou, P.; von der Linde, D. Ultrafast imaging interferometry at femtosecond-laser-excited surfaces. JOSA B 2006, 23, 1954–1964. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, D.S.; Zhigilei, L.V. Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films. Phys. Rev. B 2003, 68, 064114. [Google Scholar] [CrossRef] [Green Version]
- Temnov, V.V.; Alekhin, A.; Samokhvalov, A.; Ivanov, D.S.; Lomonosov, A.; Vavassori, P.; Modin, E.; Veiko, V.P. Nondestructive femtosecond laser lithography of Ni nanocavities by controlled thermo-mechanical spallation at the nanoscale. Nano Lett. 2020, 20, 7912–7918. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varlamov, P.; Semisalova, A.; Nguyen, A.D.; Farle, M.; Laplace, Y.; Raynaud, M.; Noel, O.; Vavassori, P.; Temnov, V. Femtosecond Laser Ablation-Induced Magnetic Phase Transformations in FeRh Thin Films. Magnetochemistry 2023, 9, 186. https://doi.org/10.3390/magnetochemistry9070186
Varlamov P, Semisalova A, Nguyen AD, Farle M, Laplace Y, Raynaud M, Noel O, Vavassori P, Temnov V. Femtosecond Laser Ablation-Induced Magnetic Phase Transformations in FeRh Thin Films. Magnetochemistry. 2023; 9(7):186. https://doi.org/10.3390/magnetochemistry9070186
Chicago/Turabian StyleVarlamov, Pavel, Anna Semisalova, Anh Dung Nguyen, Michael Farle, Yannis Laplace, Michele Raynaud, Olivier Noel, Paolo Vavassori, and Vasily Temnov. 2023. "Femtosecond Laser Ablation-Induced Magnetic Phase Transformations in FeRh Thin Films" Magnetochemistry 9, no. 7: 186. https://doi.org/10.3390/magnetochemistry9070186
APA StyleVarlamov, P., Semisalova, A., Nguyen, A. D., Farle, M., Laplace, Y., Raynaud, M., Noel, O., Vavassori, P., & Temnov, V. (2023). Femtosecond Laser Ablation-Induced Magnetic Phase Transformations in FeRh Thin Films. Magnetochemistry, 9(7), 186. https://doi.org/10.3390/magnetochemistry9070186