Chiral Excitation of Exchange Spin Waves Using Gold Nanowire Grating
Abstract
:1. Introduction
2. Experimental Setup
2.1. Design of the Au Nanowire for the Chiral Excitation
2.2. Measurement Protocol
3. Unidirectional Excitation of Spin Waves
4. Modal Analysis of the Propagating Spin Waves
4.1. Wave Vector Identification
4.2. Group Velocity and Attenuation Length
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
YIG | Yttrium Iron Garnet |
CMOS | Complementary metal–oxide semiconductor |
FMR | Feromagnetic resonance |
LPE | Liquid Phase Epitaxy |
CPW | Coplanar Waveguide |
PSSW | Perpendicular Standing Spin Wave |
References
- Chumak, A.V.; Kabos, P.; Wu, M.; Abert, C.; Adelmann, C.; Adeyeye, A.; Akerman, J.; Aliev, F.; Anane, A.; Awad, A.; et al. Advances in Magnetics Roadmap on Spin-Wave Computing. IEEE Trans. Magn. 2022, 58, 1–72. [Google Scholar] [CrossRef]
- Barman, A.; Gubbiotti, G.; Ladak, S.; Adeyeye, A.O.; Krawczyk, M.; Gräfe, J.; Adelmann, C.; Cotofana, S.; Naeemi, A.; Vasyuchka, V.I.; et al. The 2021 Magnonics Roadmap. J. Phys. Condens. Matter 2021, 33, 413001. [Google Scholar] [CrossRef] [PubMed]
- Pirro, P.; Vasyuchka, V.I.; Serga, A.A.; Hillebrands, B. Advances in coherent magnonics. Nat. Rev. Mater. 2021, 6, 1114–1135. [Google Scholar] [CrossRef]
- Chumak, A.V. Fundamentals of Magnon-Based Computing. arXiv 2019, arXiv:1901.08934. [Google Scholar]
- Papp, Á.; Porod, W.; Csaba, G. Nanoscale neural network using non-linear spin-wave. Nat. Comm. 2021, 12, 6422. [Google Scholar] [CrossRef]
- Stigloher, J.; Decker, M.; Körner, H.S.; Tanabe, K.; Moriyama, T.; Taniguchi, T.; Hata, H.; Madami, M.; Gubbiotti, G.; Kobayashi, K.; et al. Snell’s Law for Spin Waves. Phys. Rev. Lett. 2016, 117, 037204. [Google Scholar] [CrossRef] [Green Version]
- Loayza, N.; Jungfleisch, M.B.; Hoffmann, A.; Bailleul, M.; Vlaminck, V. Fresnel Diffraction of Spin Waves. Phys. Rev. B 2018, 98, 144430. [Google Scholar] [CrossRef] [Green Version]
- Gräfe, J.; Decker, M.; Keskinbora, K.; Noske, M.; Gawronski, P.; Stoll, H.; Back, C.H.; Goering, E.J.; Schütz, G. Direct observation of spin-wave focusing by a Fresnel lens. Phys. Rev. B 2020, 102, 024420. [Google Scholar] [CrossRef]
- Vlaminck, V.; Temdie, L.; Castel, V.; Jungfleisch, M.B.; Stoeffler, D.; Henry, Y.; Bailleul, M. Spin wave diffraction model for perpendicularly magnetized films. J. Appl. Phys. 2023, 133, 053903. [Google Scholar] [CrossRef]
- Zografos, O.; Sorée, B.; Vaysset, A.; Cosemans, S.; Amaru, L.; Gaillardon, P.-E.; De Micheli, G.; Lauwereins, R.; Sayan, S.; Raghavan, P.; et al. Design and benchmarking of hybrid cmos-spin wave device circuits compared to 10 nm cmos. In Proceedings of the 15th International Conference on Nanotechnology (IEEE-NANO), IEEE, Rome, Italy, 27–30 July 2015; pp. 686–689. [Google Scholar]
- Weiler, M.; Dreher, L.; Heeg, C.; Huebl, H.; Gross, R.; Brandt, M.S.; Gönnenwein, S.T. Elastically driven ferromagnetic resonance in nickel thin films. Phys. Rev. Lett. 2011, 106, 117601. [Google Scholar] [CrossRef]
- Gladii, O.; Haidar, M.; Henry, Y.; Kostylev, M.; Bailleul, M. Frequency nonreciprocity of surface spin wave in permalloy. Phys. Rev. B 2016, 93, 054430. [Google Scholar] [CrossRef] [Green Version]
- Grassi, M.; Geilen, M.; Louis, D.; Mohseni, M.; Brächer, T.; Hehn, M.; Stoeffler, D.; Bailleul, M.; Pirro, P.; Henry, Y. Slow-Wave-Based Nanomagnonic Diode. Phys. Rev. Appl. 2020, 14, 024047. [Google Scholar] [CrossRef]
- Moon, J.-H.; Seo, S.-M.; Lee, K.-J.; Kim, K.-W.; Ryu, J.; Lee, H.-W.; McMichael, R.D.; Stiles, M.D. Spin-wave propagation in the presence of interfacial Dzyaloshinskii-Moriya interaction. Phys. Rev. B 2013, 88, 184404. [Google Scholar] [CrossRef] [Green Version]
- Di, K.; Zhang, V.L.; Lim, H.S.; Ng, S.C.; Kuo, M.H.; Yu, J.; Yoon, J.; Qiu, X.; Yang, H. Direct Observation of the Dzyaloshinskii-Moriya Interaction in a Pt/Co/Ni Film. Phys. Rev. Lett. 2015, 114, 047201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otalora, J.A.; Yan, M.; Schultheiss, H.; Hertel, R.; Kakay, A. Curvature-Induced Asymmetric Spin-Wave Dispersion. Phys. Rev. Lett. 2016, 117, 227203. [Google Scholar] [CrossRef]
- Chen, J.; Yu, T.; Liu, C.; Liu, T.; Madami, M.; Shen, K.; Zhang, J.; Tu, S.; Alam, M.S.; Xia, K.; et al. Excitation of unidirectional exchange spin waves by a nanoscale magnetic grating. Phys. Rev. B 2019, 100, 104427. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Chen, J.; Yu, T.; Liu, C.; Guo, C.; Liu, S.; Shen, K.; Jia, H.; Liu, T.; Zhang, J.; et al. Nonreciprocal coherent coupling of nanomagnets by exchange spin waves. Nano Res. 2021, 14, 2133–2138. [Google Scholar] [CrossRef]
- Temdie, L.; Castel, V.; Dubs, C.; Pradhan, G.; Solano, J.; Majjad, H.; Bernard, R.; Henry, Y.; Bailleul, M.; Vlaminck, V. High wave vector non-reciprocal spin wave beams. AIP Adv. 2023, 13, 025207. [Google Scholar] [CrossRef]
- Li, Y.; Lo, T.; Lim, J.; Pearson, J.; Divan, R.; Zhang, W.; Welp, U.; Kwok, W.; Hoffmann, A.; Novosad, V. Unidirectional microwave transduction with chirality selected short-wavelength magnon excitations. Appl. Phys. Lett. 2023, 123, 022406. [Google Scholar] [CrossRef]
- Gurevich, A.G.; Melkov, G.A. Magnetization Oscillations and Waves; CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar]
- Yu, T.; Bauer, G.E.W. Chiral Coupling to Magnetodipolar Radiation; Applied Physics Springer Book Series; Springer: Berlin/Heidelberg, Germany, 2021; Volume 138, pp. 1–23. [Google Scholar]
- Dubs, C.; Surzhenko, O.; Thomas, R.; Osten, J.; Schneider, T.; Lenz, K.; Grenzer, J.; Hübner, R.; Wendler, E. Low damping and microstructural perfection of sub-40nm-thin yttrium iron garnet films grown by liquid phase epitaxy. Phys. Rev. Mater. 2020, 4, 024416. [Google Scholar] [CrossRef] [Green Version]
- Protective Coating AR-PC 5091.02 (Electra 92). Available online: https://www.allresist.com/portfolio-item/protective-coating-ar-pc-5091-02-electra-92/ (accessed on 1 August 2023).
- Brächer, T.; Boulle, O.; Gaudin, G.; Pirro, P. Creation of unidirectional spin-wave emitters by utilizing interfacial Dzyaloshinskii-Moriya interaction. Phys. Rev. B 2017, 95, 064429. [Google Scholar] [CrossRef] [Green Version]
- Bailleul, M.; Olligs, D.; Fermon, C. Propagating spin wave spectroscopy in a permalloy film: A quantitative analysis. Appl. Phys. Lett. 2003, 83, 972. [Google Scholar] [CrossRef]
- Vlaminck, V.; Bailleul, M. Spin-wave transduction at the submicrometer scale: Experiment and modeling. Phys. Rev. B 2021, 81, 14425. [Google Scholar] [CrossRef]
- Kittel, C. Ferromagnetic Resonance. J. Phys. Radium 1951, J9, 291. [Google Scholar] [CrossRef]
- Gladii, O.; Collet, M.; Garcia-Hernandez, K.; Cheng, C.; Xavier, S.; Bortolotti, P.; Cros, V.; Henry, Y.; Kim, J.-V.; Anane, A.; et al. Spin wave amplification using the spin Hall effect in permalloy/platinum bilayers. Appl. Phys. Lett. 2016, 108, 202407. [Google Scholar] [CrossRef] [Green Version]
- Kalinikos, B.A.; Slavin, A.N. Theory of dipole-exchange spin wave spectrum for ferromagnetic films with mixed exchange boundary conditions. J. Phys. C Solid State Phys. 1986, 19, 7013–7033. [Google Scholar] [CrossRef]
Modes (n,m) | n | k [rad·μm−1] | [m·s−1] | 10−4 |
---|---|---|---|---|
(0,0) | 0 | 0.03 ± 0.02 | 1614 * | 1.7 ± 0.1 |
(1,0) | 15.7 | 16.5 ± 0.5 | 397 | 1.4 ± 0.2 |
(2,0) | 31.4 | 31.8 ± 0.4 | 535 | 1.3 ± 0.1 |
(3,0) | 47.1 | 47.0 ± 0.2 | 791 | 0.8 ± 0.1 |
(1,1) | 15.7 | 15.8 ± 0.8 | 322 | 2.1 ± 0.2 |
(2,1) | 31.4 | 30.4 ± 0.7 | 587 | 1.9 ± 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Temdie, L.; Castel, V.; Reimann, T.; Lindner, M.; Dubs, C.; Pradhan, G.; Solano, J.; Bernard, R.; Majjad, H.; Henry, Y.; et al. Chiral Excitation of Exchange Spin Waves Using Gold Nanowire Grating. Magnetochemistry 2023, 9, 199. https://doi.org/10.3390/magnetochemistry9080199
Temdie L, Castel V, Reimann T, Lindner M, Dubs C, Pradhan G, Solano J, Bernard R, Majjad H, Henry Y, et al. Chiral Excitation of Exchange Spin Waves Using Gold Nanowire Grating. Magnetochemistry. 2023; 9(8):199. https://doi.org/10.3390/magnetochemistry9080199
Chicago/Turabian StyleTemdie, Loic, Vincent Castel, Timmy Reimann, Morris Lindner, Carsten Dubs, Gyandeep Pradhan, Jose Solano, Romain Bernard, Hicham Majjad, Yves Henry, and et al. 2023. "Chiral Excitation of Exchange Spin Waves Using Gold Nanowire Grating" Magnetochemistry 9, no. 8: 199. https://doi.org/10.3390/magnetochemistry9080199
APA StyleTemdie, L., Castel, V., Reimann, T., Lindner, M., Dubs, C., Pradhan, G., Solano, J., Bernard, R., Majjad, H., Henry, Y., Bailleul, M., & Vlaminck, V. (2023). Chiral Excitation of Exchange Spin Waves Using Gold Nanowire Grating. Magnetochemistry, 9(8), 199. https://doi.org/10.3390/magnetochemistry9080199