Simulation and Optimization of a Hybrid Photovoltaic/Li-Ion Battery System
Abstract
:1. Introduction
2. System Modeling
2.1. DC-DC Buck Converter
2.2. MPPT Algorithm
2.3. Li-Ion Battery Charging Control Method
3. Results and Discussion
3.1. Li-Ion Battery Charging Performance
3.2. MPPT Charging Efficiency
3.3. Overall Charging Efficiency of Li-Ions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Farghali, M.; Osman, A.I.; Mohamed, I.M.A.; Chen, Z.; Chen, L.; Ihara, I.; Yap, P.-S.; Rooney, D.W. Strategies to save energy in the context of the energy crisis: A review. Environ. Chem. Lett. 2023, 21, 2003–2039. [Google Scholar] [CrossRef] [PubMed]
- Ranalder, L.; Gibb, D. Renewables in Cities 2019 Global Status Report; REN21: Paris, France, 2020; Volume 31. [Google Scholar]
- Perez, M.; Perez, R. Update 2022—A fundamental look at supply side energy reserves for the planet. Sol. Energy Adv. 2022, 2, 100014. [Google Scholar] [CrossRef]
- Djørup, S.; Thellufsen, J.Z.; Sorknæs, P. The electricity market in a renewable energy system. Energy 2018, 162, 148–157. [Google Scholar] [CrossRef]
- Gao, Y.; Xiao, Z.; Cui, M.; Saidaminov, M.I.; Tan, F.; Shang, L.; Li, W.; Qin, C.; Ding, L. Asymmetric Π-Bridge Engineering Enables High-Permittivity Benzo [1,2-B:4,5-b′] Difuran-Conjugated Polymer for Efficient Organic Solar Cells. Adv. Mater. 2024, 36, 2306373. [Google Scholar] [CrossRef]
- Qi, X.; Song, C.; Zhang, W.; Shi, Y.; Gao, Y.; Liu, H.; Chen, R.; Shang, L.; Tan, H.; Tan, F.; et al. Bidirectional Targeted Therapy Enables Efficient, Stable, and Eco-Friendly Perovskite Solar Cells. Adv. Funct. Mater. 2023, 33, 2214714. [Google Scholar] [CrossRef]
- Gao, Y.; Cui, M.; Qu, S.; Zhao, H.; Shen, Z.; Tan, F.; Dong, Y.; Qin, C.; Wang, Z.; Zhang, W.; et al. Efficient Organic Solar Cells Enabled by Simple Non-Fused Electron Donors with Low Synthetic Complexity. Small 2022, 18, 2104623. [Google Scholar] [CrossRef]
- Huang, X.; Gao, Y.; Li, W.; Wang, J.; Yue, G.; Tan, F.; Wang, H.L. Efficient and Stable Z907-Based Dye-Sensitized Solar Cells Enabled by Suppressed Charge Recombination and Photocatalytic Activity. ACS Sustain. Chem. Eng. 2024, 12, 13007–13016. [Google Scholar] [CrossRef]
- He, S.; Lan, Z.; Zhang, B.; Gao, Y.; Shang, L.; Yue, G.; Chen, S.; Shen, Z.; Tan, F.; Wu, J. Holistically Optimizing Charge Carrier Dynamics Enables High-Performance Dye-Sensitized Solar Cells and Photodetectors. ACS Appl. Mater. Interfaces 2022, 14, 43576–43585. [Google Scholar] [CrossRef]
- Gao, Y.; Shen, Z.; Tan, F.; Yue, G.; Liu, R.; Wang, Z.; Qu, S.; Wang, Z.; Zhang, W. Novel benzo [1,2-b:4,5-b’] difuran-based copolymer enables efficient polymer solar cells with small energy loss and high VOC. Nano Energy 2020, 76, 104964. [Google Scholar] [CrossRef]
- Dubey, S.; Sarvaiya, J.N.; Seshadri, B. Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World—A Review. Energy Procedia 2013, 33, 311–321. [Google Scholar] [CrossRef]
- Koutroulis, E.; Kalaitzakis, K. Novel battery charging regulation system for photovoltaic applications. IEE Proc. Electr. Power Appl. 2004, 151, 191–197. [Google Scholar] [CrossRef]
- Stropnik, R. Increasing the efficiency of PV panel with the use of PCM. Renew. Energy 2016, 97, 671–679. [Google Scholar] [CrossRef]
- Dunn, B.; Kamath, H.; Tarascon, J.-M. Electrical Energy Storage for the Grid: A Battery of Choices. Science 2011, 334, 928–935. [Google Scholar] [CrossRef] [PubMed]
- Maheswari, L.; Sornavadivu, R.; Vijayalakshmi, S. Modeling and Simulation of Buck Converter for Charging Battery by Solar Photovoltaic System. Appl. Mech. Mater. 2014, 592, 2379–2385. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, J.; Pollard, T.P.; Li, Q.; Tan, S.; Hou, S.; Wang, C. Electrolyte design for Li-ion batteries under extreme operating conditions. Nature 2023, 614, 694–700. [Google Scholar] [CrossRef] [PubMed]
- Kebede, A.A.; Coosemans, T.; Messagie, M.; Jemal, T.; Behabtu, H.A.; Van Mierlo, J.; Berecibar, M. Techno-economic analysis of lithium-ion and lead-acid batteries in stationary energy storage application. J. Energy Storage 2021, 40, 102748. [Google Scholar] [CrossRef]
- Anuphappharadorn, S.; Sukchai, S.; Sirisamphanwong, C.; Ketjoy, N. Comparison the Economic Analysis of the Battery between Lithium-ion and Lead-acid in PV Stand-alone Application. Energy Procedia 2014, 56, 352–358. [Google Scholar] [CrossRef]
- Guo, L.; Brewer, A.; Speiser, B. Design and Implementation of A Solar Battery Charger. In Proceedings of the 2010 Annual Conference & Exposition, Louisville, KY, USA, 20 June 2010. [Google Scholar]
- López, J.; Seleme Jr, S.I.; Donoso, P.F.; Morais LM, F.; Cortizo, P.C.; Severo, M.A. Digital control strategy for a buck converter operating as a battery charger for stand-alone photovoltaic systems. Sol. Energy 2016, 140, 171–187. [Google Scholar] [CrossRef]
- Bhan, V.; Shaikh, S.A.; Khand, Z.H.; Ahmed, T.; Khan, L.A.; Chachar, F.A.; Shaikh, A.M. Performance Evaluation of Perturb and Observe Algorithm for MPPT with Buck–Boost Charge Controller in Photovoltaic Systems. J. Control Autom. Electr. Syst. 2021, 32, 1652–1662. [Google Scholar] [CrossRef]
- Szczepaniak, M.; Otręba, P.; Otręba, P.; Sikora, T. Use of the Maximum Power Point Tracking Method in a Portable Lithium-Ion Solar Battery Charger. Energies 2021, 15, 26. [Google Scholar] [CrossRef]
- Anowar, M.H.; Roy, P. A Modified Incremental Conductance Based Photovoltaic MPPT Charge Controller. In Proceedings of the 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE), Cox’s Bazar, Bangladesh, 7–9 February 2019; IEEE: New York, NY, USA, 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Z.; Cao, P.; Zhang, S. A Maximum Power Point Tracking Algorithm of Load Current Maximization-Perturbation and Observation Method with Variable Step Size. Symmetry 2020, 12, 244. [Google Scholar] [CrossRef]
- Gibson, T.L.; Kelly, N.A. Solar photovoltaic charging of lithium-ion batteries. J. Power Sources 2010, 195, 3928–3932. [Google Scholar] [CrossRef]
- Aljarhizi, Y.; Hassoune, A.; Al Ibrahmi, E.M. Control Management System of a Lithium-ion Battery Charger Based MPPT algorithm and Voltage Control. In Proceedings of the 2019 5th International Conference on Optimization and Applications (ICOA), Kenitra, Morocco, 25–26 April 2019; IEEE: New York, NY, USA, 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Mirzaei, A. Design and construction of a charge controller for stand-alone PV/battery hybrid system by using a new control strategy and power management. Sol. Energy 2017, 149, 132–144. [Google Scholar] [CrossRef]
- Taghvaee, M.H.; Radzi, M.A.M.; Moosavain, S.M.; Hizam, H.; Marhaban, M.H. A current and future study on non-isolated DC–DC converters for photovoltaic applications. Renew. Sustain. Energy Rev. 2013, 17, 216–227. [Google Scholar] [CrossRef]
- Coelho, R.F. Influence of Power Converters on PV Maximum Power Point Tracking Efficiency. In Proceedings of the 2012 10th IEEE/IAS International Conference on Industry Applications, Fortaleza, Brazil, 5–7 November 2012; IEEE: New York, NY, USA, 2012. [Google Scholar]
- Venkatramanan, D.; John, V. Dynamic Modeling and Analysis of Buck Converter Based Solar PV Charge Controller for Improved MPPT Performance. IEEE Trans. Ind. Appl. 2019, 55, 6234–6246. [Google Scholar] [CrossRef]
- Pathare, M.; Shetty, V.; Datta, D.; Valunjkar, R.; Sawant, A.; Pai, S. Designing and Implementation of Maximum Power Point Tracking(MPPT) Solar Charge Controller. In Proceedings of the 2017 International Conference on Nascent Technologies in Engineering, Navi Mumbai, India, 27–28 January 2017; p. 5. [Google Scholar]
- Tan, R.H.; Er, C.K.; Solanki, S.G. Modeling of Photovoltaic MPPT Lead Acid Battery Charge Controller for Standalone System Applications. E3S Web Conf. 2020, 182, 03005. [Google Scholar] [CrossRef]
- Kaur, T.; Gambhir, J.; Kumar, S. Arduino based solar powered battery charging system for rural SHS. In Proceedings of the 2016 7th India International Conference on Power Electronics (IICPE), Patiala, India, 17–19 November 2016; IEEE: New York, NY, USA, 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Salman, S.; Ai, X.; Wu, Z. Design of a P-&-O algorithm based MPPT charge controller for a stand-alone 200W PV system. Prot. Control Mod. Power Syst. 2018, 3, 25. [Google Scholar]
- de Brito, M.A.G.; Galotto, L.; Sampaio, L.P.; e Melo, G.D.A.; Canesin, C.A. Evaluation of the Main MPPT Techniques for Photovoltaic Applications. IEEE Trans. Ind. Electron. 2013, 60, 1156–1167. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, X.; Cheng, Q.; Guo, B.; Yang, J. Classification and Review of the Charging Strategies for Commercial Lithium-Ion Batteries. IEEE Access 2019, 7, 43511–43524. [Google Scholar] [CrossRef]
- Palmiro, F.; Rayudu, R.; Ford, R. Modelling and simulation of a solar PV lithium ion battery charger for energy kiosks application. In Proceedings of the 2015 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Brisbane, Australia, 15–18 November 2015; IEEE: New York, NY, USA, 2015; pp. 1–5. [Google Scholar] [CrossRef]
Parameters | Values | |
---|---|---|
Li-ion battery | Rated capacity | 50 Ah |
Nominal voltage | 12 V | |
Full charge voltage | 13.97 V | |
Constant-current charging current | 10 A | |
MPPT charging current | 50 A | |
Constant-voltage charging voltage | 14.1 V | |
Float charging voltage | 13.97 V | |
Solar panel | Maximum output power (Pmax) | 174 W |
Open circuit voltage (Voc) | 36.3 V | |
Maximum power point voltage (Vmp) | 29 V | |
Short-circuit current (Isc) | 6.5 A | |
Maximum power point current (Imp) | 6 A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, X.; Fan, J.; Wu, Z.; Hong, H.; Xie, H.; Dong, L.; Li, Y. Simulation and Optimization of a Hybrid Photovoltaic/Li-Ion Battery System. Batteries 2024, 10, 393. https://doi.org/10.3390/batteries10110393
Yu X, Fan J, Wu Z, Hong H, Xie H, Dong L, Li Y. Simulation and Optimization of a Hybrid Photovoltaic/Li-Ion Battery System. Batteries. 2024; 10(11):393. https://doi.org/10.3390/batteries10110393
Chicago/Turabian StyleYu, Xiaoxiao, Juntao Fan, Zihua Wu, Haiping Hong, Huaqing Xie, Lan Dong, and Yihuai Li. 2024. "Simulation and Optimization of a Hybrid Photovoltaic/Li-Ion Battery System" Batteries 10, no. 11: 393. https://doi.org/10.3390/batteries10110393
APA StyleYu, X., Fan, J., Wu, Z., Hong, H., Xie, H., Dong, L., & Li, Y. (2024). Simulation and Optimization of a Hybrid Photovoltaic/Li-Ion Battery System. Batteries, 10(11), 393. https://doi.org/10.3390/batteries10110393