Flexible Carbon Fiber/SnO2@rGO Electrode with Long Cyclability for Lithium-Ion Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Preparation
2.2. Material Characterizations
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, H.; Wang, H.; Chan, D.; Xu, Z.; Wang, K.; Ge, M.; Zhang, Y.; Chen, S.; Tang, Y. Nature-inspired materials and designs for flexible lithium-ion batteries. Carbon Energy 2022, 4, 878–900. [Google Scholar] [CrossRef]
- Zhang, W.; Shen, W.; Weng, Y.; Lv, R.; Kang, F.; Huang, Z.-H. Steam selective etching: A strategy to effectively enhance the flexibility and suppress the volume change of carbonized paper-supported electrodes. ACS Nano 2019, 13, 5731–5741. [Google Scholar] [CrossRef] [PubMed]
- Han, D.Y.; Son, H.B.; Han, S.H.; Song, C.K.; Jung, J.; Lee, S.; Choi, S.S.; Song, W.J.; Park, S. Hierarchical 3D electrode design with high mass loading enabling high-energy-density flexible lithium-ion batteries. Small 2023, 19, 2305416. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Yang, J.; Liu, Y.; Zhang, J.; Shang, J.; Liu, B.; Li, S.; Li, W. Material choice and structure design of flexible battery electrode. Adv. Sci. 2023, 10, 2204875. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Guo, Z.; Liang, Q.; Lv, R.; Shen, W.; Kang, F.; Weng, Y.; Huang, Z.-H. Flexible C-Mo2C fiber film with self-fused junctions as a long cyclability anode material for sodium-ion battery. RSC Adv. 2018, 8, 16657–16662. [Google Scholar] [CrossRef]
- Zhang, W.; Pan, Z.-Z.; Lv, W.; Lv, R.; Shen, W.; Kang, F.; Yang, Q.-H.; Weng, Y.; Huang, Z.-H. Wasp nest-imitated assembly of elastic rGO/p-Ti3C2Tx MXene-cellulose nanofibers for high-performance sodium-ion batteries. Carbon 2019, 153, 625–633. [Google Scholar] [CrossRef]
- Min, X.; Sun, B.; Chen, S.; Fang, M.; Wu, X.; Liu, Y.g.; Abdelkader, A.; Huang, Z.; Liu, T.; Xi, K. A textile-based SnO2 ultra-flexible electrode for lithium-ion batteries. Energy Storage Mater. 2019, 16, 597–606. [Google Scholar] [CrossRef]
- Zhang, W.; Weng, Y.; Shen, W.; Lv, R.; Kang, F.; Huang, Z.-H. Scalable synthesis of lotus-seed-pod-like Si/SiOx@ CNF: Applications in freestanding electrode and flexible full lithium-ion batteries. Carbon 2020, 158, 163–171. [Google Scholar] [CrossRef]
- Lauro, S.N.; Burrow, J.N.; Mullins, C.B. Restructuring the lithium-ion battery: A perspective on electrode architectures. EScience 2023, 3, 100152. [Google Scholar] [CrossRef]
- Huang, A.; Ma, Y.; Peng, J.; Li, L.; Chou, S.-l.; Ramakrishna, S.; Peng, S. Tailoring the structure of silicon-based materials for lithium-ion batteries via electrospinning technology. EScience 2021, 1, 141–162. [Google Scholar] [CrossRef]
- Wang, L.; He, Y.; Liu, D.; Liu, L.; Chen, H.; Hu, Q.; Liu, X.; Zhou, A. SnO2 Quantum dots interspersed d-Ti3C2Tx MXene heterostructure with enhanced performance for lithium ion battery. J. Electrochem. Soc. 2020, 167, 116522. [Google Scholar] [CrossRef]
- Wang, L.; Wang, D.; Dong, Z.; Zhang, F.; Jin, J. Interface chemistry engineering for stable cycling of reduced GO/SnO2 nanocomposites for lithium ion battery. Nano Lett. 2013, 13, 1711–1716. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Guo, X.; Ding, H.; Yu, D.; Chen, Y.; Li, N.; Zhou, H.; Zhang, S.; Wu, J.; Pang, H. Construction of ternary Sn/SnO2/nitrogen-doped carbon superstructures as anodes for advanced lithium-ion batteries. Nano Res. 2024, 17, 9721–9727. [Google Scholar] [CrossRef]
- Lu, Z.; Kong, Z.; Jing, L.; Wang, T.; Liu, X.; Fu, A.; Guo, P.; Guo, Y.-G.; Li, H. Porous SnO2/graphene composites as anode materials for lithium-ion batteries: Morphology control and performance improvement. Energy & Fuels 2020, 34, 13126–13136. [Google Scholar]
- Jung, S.M.; Kim, D.W.; Jung, H.Y. Unconventional capacity increase kinetics of a chemically engineered SnO2 aerogel anode for long-term stable lithium-ion batteries. J. Mater. Chem. A 2020, 8, 8244–8254. [Google Scholar] [CrossRef]
- Cui, D.; Zheng, Z.; Peng, X.; Li, T.; Sun, T.; Yuan, L. Fluorine-doped SnO2 nanoparticles anchored on reduced graphene oxide as a high-performance lithium ion battery anode. J. Power Sources 2017, 362, 20–26. [Google Scholar] [CrossRef]
- Xie, W.; Gu, L.; Xia, F.; Liu, B.; Hou, X.; Wang, Q.; Liu, D.; He, D. Fabrication of voids-involved SnO2@C nanofibers electrodes with highly reversible Sn/SnO2 conversion and much enhanced coulombic efficiency for lithium-ion batteries. J. Power Sources 2016, 327, 21–28. [Google Scholar] [CrossRef]
- Gao, C.; Jiang, Z.; Wang, P.; Jensen, L.R.; Zhang, Y.; Yue, Y. Optimized assembling of MOF/SnO2/Graphene leads to superior anode for lithium ion batteries. Nano Energy 2020, 74, 104868. [Google Scholar] [CrossRef]
- Hu, R.; Chen, D.; Waller, G.; Ouyang, Y.; Chen, Y.; Zhao, B.; Rainwater, B.; Yang, C.; Zhu, M.; Liu, M. Dramatically enhanced reversibility of Li2O in SnO2-based electrodes: The effect of nanostructure on high initial reversible capacity. Energ. Environ. Sci. 2016, 9, 595–603. [Google Scholar] [CrossRef]
- Gervillié, C.; Boisard, A.; Labbé, J.; Guérin, K.; Berthon-Fabry, S. Relationship between tin environment of SnO2 nanoparticles and their electrochemical behaviour in a lithium ion battery. Mater. Chem. Phys. 2021, 257, 123461. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, S.; Zhou, L.; Chang, L.; Liu, W.; Yin, D.; Yi, Z.; Wang, L. SnO2 quantum dots: Rational design to achieve highly reversible conversion reaction and stable capacities for lithium and sodium storage. Small 2020, 16, 2000681. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; El-Khodary, S.A.; Li, S.; Zou, B.; Kang, R.; Li, G.; Ng, D.H.; Liu, X.; Qiu, J.; Zhao, Y. Roselle-like Zn2Ti3O8/rGO nanocomposite as anode for lithium ion capacitor. Chem. Eng. J. 2020, 385, 123881. [Google Scholar] [CrossRef]
- Wu, K.; Shi, B.; Qi, L.; Mi, Y.; Zhao, B.; Yang, C.; Wang, Q.; Tang, H.; Lu, J.; Liu, W. SnO2 quantum dots@3D sulfur-doped reduced graphene oxides as active and durable anode for lithium ion batteries. Electrochim. Acta 2018, 291, 24–30. [Google Scholar] [CrossRef]
- Liao, S.-Y.; Chen, J.; Cui, S.-F.; Shang, J.-Q.; Li, Y.-Z.; Cheng, W.-X.; Liu, Y.-D.; Cui, T.-T.; Shu, X.-G.; Min, Y.-G. CoS2 enhanced SnO2@rGO heterostructure quantum dots for advanced lithium-ion battery anode. J. Power Sources 2023, 553, 232265. [Google Scholar] [CrossRef]
- Zhao, K.; Zhang, L.; Xia, R.; Dong, Y.; Xu, W.; Niu, C.; He, L.; Yan, M.; Qu, L.; Mai, L. SnO2 Quantum dots@graphene oxide as a high-rate and long-life anode material for lithium-ion batteries. small 2016, 12, 588–594. [Google Scholar] [CrossRef]
- Gao, L.; Wu, G.; Ma, J.; Jiang, T.; Chang, B.; Huang, Y.; Han, S. SnO2 quantum dots@graphene framework as a high-performance flexible anode electrode for lithium-ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 12982–12989. [Google Scholar] [CrossRef]
- Cha, H.; Kim, J.; Lee, Y.; Cho, J.; Park, M. Issues and challenges facing flexible lithium-ion batteries for practical application. Small 2018, 14, 1702989. [Google Scholar] [CrossRef]
- Fang, Z.; Wang, J.; Wu, H.; Li, Q.; Fan, S.; Wang, J. Progress and challenges of flexible lithium ion batteries. J. Power Sources 2020, 454, 227932. [Google Scholar] [CrossRef]
- Qian, G.; Liao, X.; Zhu, Y.; Pan, F.; Chen, X.; Yang, Y. Designing flexible lithium-ion batteries by structural engineering. ACS Energy Lett. 2019, 4, 690–701. [Google Scholar] [CrossRef]
- Liu, R.; Su, W.; He, P.; Shen, C.; Zhang, C.; Su, F.; Wang, C.-A. Synthesis of SnO2/Sn hybrid hollow spheres as high performance anode materials for lithium ion battery. J. Alloys Compd. 2016, 688, 908–913. [Google Scholar] [CrossRef]
- Li, Z.; Tan, Y.; Huang, X.; Zhang, W.; Gao, Y.; Tang, B. Three-dimensionally ordered macroporous SnO2 as anode materials for lithium ion batteries. Ceram. Int. 2016, 42, 18887–18893. [Google Scholar] [CrossRef]
- Gurunathan, P.; Ette, P.M.; Ramesha, K. Synthesis of hierarchically porous SnO2 microspheres and performance evaluation as Li-ion battery anode by using different binders. ACS Appl. Mater. Interfaces 2014, 6, 16556–16564. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Du, P.; Liu, D.; Wang, H.; Liu, P. Facile mass production of nanoporous SnO2 nanosheets as anode materials for high performance lithium-ion batteries. J. Colloid Interf. Sci. 2017, 503, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Guo, J.; Liu, T.; Zhang, J.; Jia, Z.; Zhang, C. Mechanical simulation informed rational design of a soft-and-hard double-jacketed SnO2 flexible electrode for high performance lithium-ion battery. Energy Storage Mater. 2021, 35, 520–529. [Google Scholar] [CrossRef]
- Yanfeng, D.; Zongbin, Z.; Zhiyu, W.; Yang, L.; Xuzhen, W.; Jieshan, Q. Dually Fixed SnO2 Nanoparticles on Graphene Nanosheets by Polyaniline Coating for Superior Lithium Storage. ACS Appl. Mater. Interfaces 2015, 7, 2444–2451. [Google Scholar]
- Yuan, J.; Chen, C.; Hao, Y.; Zhang, X.; Zou, B.; Agrawal, R.; Wang, C.; Yu, H.; Zhu, X.; Yu, Y. SnO2/polypyrrole hollow spheres with improved cycle stability as lithium-ion battery anodes. J. Alloys Compd. 2017, 691, 34–39. [Google Scholar] [CrossRef]
- Li, B.; Bi, R.; Yang, M.; Gao, W.; Wang, J. Coating conductive polypyrrole layers on multiple shells of hierarchical SnO2 spheres and their enhanced cycling stability as lithium-ion battery anode. Appl. Surf. Sci. 2022, 586, 152836. [Google Scholar] [CrossRef]
- Yi, L.; Liu, L.; Guo, G.; Chen, X.; Zhang, Y.; Yu, S.; Wang, X. Expanded graphite@SnO2@polyaniline composite with enhanced performance as anode materials for lithium ion batteries. Electrochim. Acta 2017, 240, 63–71. [Google Scholar] [CrossRef]
- Ming, L.; Zhang, B.; Zhang, J.-F.; Wang, X.-W.; Li, H.; Wang, C.-H. SnO2@C/expanded graphite nanosheets as high performance anode materials for lithium ion batteries. J. Alloys Compd. 2018, 752, 93–98. [Google Scholar] [CrossRef]
- Lu, X.; Chen, Y.; Tian, Q.; Zhang, W.; Sui, Z.; Chen, J. Enabling improved cycling stability of hollow SnO2/C composite anode for lithium-ion battery by constructing a built-in porous carbon support. Appl. Surf. Sci. 2021, 537, 148052. [Google Scholar] [CrossRef]
- Cao, B.; Liu, Z.; Xu, C.; Huang, J.; Fang, H.; Chen, Y. High-rate-induced capacity evolution of mesoporous C@SnO2@C hollow nanospheres for ultra-long cycle lithium-ion batteries. J. Power Sources 2019, 414, 233–241. [Google Scholar] [CrossRef]
- Liang, J.; Yu, X.Y.; Zhou, H.; Wu, H.B.; Ding, S.; Lou, X.W. Bowl-like SnO2@carbon hollow particles as an advanced anode material for lithium-ion batteries. Angew. Chem. 2014, 126, 13017–13021. [Google Scholar] [CrossRef]
- Bonino, C.A.; Ji, L.; Lin, Z.; Toprakci, O.; Zhang, X.; Khan, S.A. Electrospun carbon-tin oxide composite nanofibers for use as lithium ion battery anodes. ACS Appl. Mater. Interfaces 2011, 3, 2534–2542. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yang, L.; Liu, J.; Li, S.; Fang, L.; Lu, Y.; Yang, H.; Liu, S.; Lei, M. Improved electrochemical performance of yolk-shell structured SnO2@void@C porous nanowires as anode for lithium and sodium batteries. J. Power Sources 2016, 324, 780–787. [Google Scholar] [CrossRef]
- Wang, X.; Sun, N.; Dong, X.; Huang, H.; Qi, M. Electrospun layers by layers orderly stacked SnO2@ aligned carbon nanofibers as high conductivity, long cycle life self-standing anode for reversible lithium ions batteries. Surf. Interfaces 2022, 29, 101814. [Google Scholar] [CrossRef]
- Yang, L.; Dai, T.; Wang, Y.; Xie, D.; Narayan, R.L.; Li, J.; Ning, X. Chestnut-like SnO2/C nanocomposites with enhanced lithium ion storage properties. Nano Energy 2016, 30, 885–891. [Google Scholar] [CrossRef]
- Habibi, A.; Mousavi, M.R.; Yasoubi, M.; Sanaee, Z.; Ghasemi, S. Plasma-enhanced chemical vapor deposition for fabrication of yolk-shell SnO2@ Void@ C nanowires, as an efficient carbon coating technique for improving lithium-ion battery performance. Mat. Sci. Semicon. Proc. 2022, 149, 106901. [Google Scholar] [CrossRef]
- Han, S.; Pu, X.; Li, X.; Liu, M.; Li, M.; Feng, N.; Dou, S.; Hu, W. High areal capacity of Li-S batteries enabled by freestanding CNF/rGO electrode with high loading of lithium polysulfide. Electrochim. Acta 2017, 241, 406–413. [Google Scholar] [CrossRef]
- Li, J.; Zhang, H.; Luo, L.; Li, H.; He, J.; Zu, H.; Liu, L.; Liu, H.; Wang, F.; Song, J. Blocking polysulfides with a Janus Fe3C/N-CNF@RGO electrode via physiochemical confinement and catalytic conversion for high-performance lithium-sulfur batteries. J. Mater. Chem. A 2021, 9, 2205–2213. [Google Scholar] [CrossRef]
- Li, X.; Meng, X.; Liu, J.; Geng, D.; Zhang, Y.; Banis, M.N.; Li, Y.; Yang, J.; Li, R.; Sun, X. Tin oxide with controlled morphology and crystallinity by atomic layer deposition onto graphene nanosheets for enhanced lithium storage. Adv. Funct. Mater. 2012, 22, 1647–1654. [Google Scholar] [CrossRef]
- Lin, J.; Peng, Z.; Xiang, C.; Ruan, G.; Yan, Z.; Natelson, D.; Tour, J.M. Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium ion batteries. ACS Nano 2013, 7, 6001–6006. [Google Scholar] [CrossRef] [PubMed]
- Di Lupo, F.; Gerbaldi, C.; Meligrana, G.; Bodoardo, S.; Penazzi, N. Novel SnO2/mesoporous carbon spheres composite anode for Li-ion batteries. Int. J. Electrochem. Sc. 2011, 6, 3580–3593. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Shen, P.K. Ultrasmall metal oxide nanoparticles anchored on three-dimensional hierarchical porous gaphene-like networks as anode for high-performance lithium ion batteries. Nano Energy 2015, 13, 563–572. [Google Scholar] [CrossRef]
- Liu, Q.; Dou, Y.; Ruan, B.; Sun, Z.; Chou, S.L.; Dou, S.X. Carbon-coated hierarchical SnO2 hollow spheres for lithium ion batteries. Chem-Eur. J. 2016, 22, 5853–5857. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Huang, J.; Li, J.; Xu, Z.; Cao, L.; Ouyang, H.; Yan, J.; Qi, H. SnO2/super P nanocomposites as anode materials for Na-ion batteries with enhanced electrochemical performance. J. Alloys Compd. 2016, 658, 234–240. [Google Scholar] [CrossRef]
- Saikia, D.; Deka, J.R.; Chou, C.-J.; Kao, H.-M.; Yang, Y.-C. 3D interpenetrating cubic mesoporous carbon supported nanosized SnO2 as an efficient anode for high performance lithium-ion batteries. J. Alloys Compd. 2019, 791, 892–904. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, G.; Yu, X.; Li, Q.; Lu, B.; Xu, Z. Graphene double protection strategy to improve the SnO2 electrode performance anodes for lithium-ion batteries. Nano Energy 2014, 3, 80–87. [Google Scholar] [CrossRef]
- Li, L.; Zhang, H.; Li, Z.; Zhong, W.; Liao, H.; Li, Z. Rapid preparation of SnO2/C nanospheres by using organotin as building blocks and their application in lithium-ion batteries. RSC Adv. 2017, 7, 34442–34447. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, X.; Zhang, X.; Xia, L.; Zhong, B.; Zhang, T.; Wen, G. Cotton/rGO/carbon-coated SnO2 nanoparticle-composites as superior anode for Lithium ion battery. Mater. Design 2017, 114, 234–242. [Google Scholar] [CrossRef]
- Wang, M.-S.; Wang, Z.-Q.; Yang, Z.-L.; Huang, Y.; Zheng, J.; Li, X. Carbon nanotube-graphene nanosheet conductive framework supported SnO2 aerogel as a high performance anode for lithium ion battery. Electrochim. Acta 2017, 240, 7–15. [Google Scholar] [CrossRef]
- Tian, R.; Zhang, Y.; Chen, Z.; Duan, H.; Xu, B.; Guo, Y.; Kang, H.; Li, H.; Liu, H. The effect of annealing on a 3D SnO2/graphene foam as an advanced lithium-ion battery anode. Sci. Rep. 2016, 6, 19195. [Google Scholar] [CrossRef] [PubMed]
Sample | Rf (Ω) | Rct (Ω) | σ (Ω cm2 s−1/2) | DLi+ (cm2 s−1) |
---|---|---|---|---|
carbon fiber/SnO2@rGO | 228.6 | 100.9 | 172 | 2.7 × 10−14 |
carbon fiber/SnO2 | 321.4 | 464 | 187.5 | 2.2 × 10−14 |
Electrodes | Capacity Retention | Rate Capability | References |
---|---|---|---|
carbon fiber/SnO2@rGO | 88% (1000 cycles at 2 A g−1) | 453 mAh g−1 (0.05 A g−1); | this work |
393 mAh g−1 (0.2 A g−1); | |||
290 mAh g−1 (1 A g−1); | |||
234 mAh g−1 (2 A g−1); | |||
125 mAh g−1 (5 A g−1) | |||
SnO2@graphene@graphene | 60% (120 cycles at 0.08 A g−1) | 658.2 mAh g−1 (0.16 A g−1); | [57] |
466.5 mAh g−1 (0.4 A g−1); | |||
308.2 mAh g−1 (0.8 A g−1); | |||
212.8 mAh g−1 (4 A g−1) | |||
SnO2/C | 84.5% (1000 cycles at 1 A g−1) | 705 mAh g−1 (0.2 A g−1); | [58] |
213 mAh g−1 (5 A g−1) | |||
CGN/SnO2-C | 71% (200 cycles at 0.1 A g−1) | 686.5 mAh g−1 (0.05 A g−1); | [59] |
361.1 mAh g−1 (0.4 A g−1); | |||
270.2 mAh g−1 (0.8 A g−1) | |||
SnO2/CNT-GN | 87% (100 cycles at 0.2 A g−1) | 1033 mAh g−1 (0.5 A g−1); | [60] |
887 mAh g−1 (2 A g−1); | |||
787 mAh g−1 (5 A g−1) | |||
SnO2@OSA-CNFs | 75% (100 cycles at 0.1 A g−1) | 601 mAh g−1 (0.5 A g−1); | [45] |
505 mAh g−1 (1 A g−1); | |||
470 mAh g−1 (2 A g−1); | |||
208 mAh g−1 (5 A g−1) | |||
3D SnO2/graphene | 73.9% (50 cycles at 0.2 A g−1) | 770.5 mAh g−1 (0.2 A g−1); | [61] |
582.8 mAh g−1 (1.5 A g−1); | |||
480.3 mAh g−1 (3 A g−1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Liu, Y.; Qin, Z.; Yu, L.; Lian, J.; Tao, Z.; Huang, Z.-H. Flexible Carbon Fiber/SnO2@rGO Electrode with Long Cyclability for Lithium-Ion Batteries. Batteries 2024, 10, 412. https://doi.org/10.3390/batteries10120412
Zhang W, Liu Y, Qin Z, Yu L, Lian J, Tao Z, Huang Z-H. Flexible Carbon Fiber/SnO2@rGO Electrode with Long Cyclability for Lithium-Ion Batteries. Batteries. 2024; 10(12):412. https://doi.org/10.3390/batteries10120412
Chicago/Turabian StyleZhang, Wenjie, Yongqi Liu, Zhouyang Qin, Lingxiao Yu, Jiabiao Lian, Zhanliang Tao, and Zheng-Hong Huang. 2024. "Flexible Carbon Fiber/SnO2@rGO Electrode with Long Cyclability for Lithium-Ion Batteries" Batteries 10, no. 12: 412. https://doi.org/10.3390/batteries10120412
APA StyleZhang, W., Liu, Y., Qin, Z., Yu, L., Lian, J., Tao, Z., & Huang, Z. -H. (2024). Flexible Carbon Fiber/SnO2@rGO Electrode with Long Cyclability for Lithium-Ion Batteries. Batteries, 10(12), 412. https://doi.org/10.3390/batteries10120412