Regeneration of Hybrid and Electric Vehicle Batteries: State-of-the-Art Review, Current Challenges, and Future Perspectives
Abstract
:1. Introduction
2. Types of Batteries and Vehicle Applications
2.1. Lead–Acid Technology
2.2. Nickel–Cadmium Technology
2.3. Nickel–Metal Hydride (NiMH) Technology
2.4. Li-Ion Technology
3. Battery Regeneration Technologies
3.1. Regeneration Systems in Lead–Acid Batteries
3.2. Regeneration Systems in Ni-Cd Batteries
3.3. Regeneration Systems in NiMH Batteries
3.3.1. Material Regeneration Processes
3.3.2. Material Recycling Processes
3.3.3. Battery Regeneration Discussion
3.4. Regeneration Systems in Li-Ion Batteries
3.4.1. Material Regeneration Processes
3.4.2. Material Recycling Processes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hawkins, T.R.; Gausen, O.M.; Strømman, A.H. Environmental impacts of hybrid and electric vehicles—A review. Int. J. Life Cycle Assess. 2012, 17, 997–1014. [Google Scholar] [CrossRef]
- Shafique, M.; Luo, X. Environmental life cycle assessment of battery electric vehicles from the current and future energy mix perspective. J. Environ. Manag. 2022, 303, 114050. [Google Scholar] [CrossRef] [PubMed]
- Guzmán, J.I.; Faúndez, P.; Jara, J.J.; Retamal, C. On the source of metals and the environmental sustainability of battery electric vehicles versus internal combustion engine vehicles: The lithium production case study. J. Clean. Prod. 2022, 376, 133588. [Google Scholar] [CrossRef]
- Kotak, Y.; Fernández, C.M.; Casals, L.C.; Kotak, B.S.; Koch, D.; Geisbauer, C.; Trilla, L.; Gómez-Núñez, A.; Schweiger, H.-G. End of Electric Vehicle Batteries: Reuse vs. Recycle. Energies 2021, 14, 2217. [Google Scholar] [CrossRef]
- Cusenza, M.A.; Guarino, F.; Longo, S.; Ferraro, M.; Cellura, M. Energy and environmental benefits of circular economy strategies: The case study of reusing used batteries from electric vehicles. J. Energy Storage 2019, 25, 100845. [Google Scholar] [CrossRef]
- Casals, L.C.; García, B.A.; Cremades, L.V. Electric vehicle battery reuse: Preparing for a second life. J. Ind. Eng. Manag. 2017, 10, 266–285. [Google Scholar] [CrossRef]
- Andersson, B.A.; Råde, I. Metal resource constraints for electric-vehicle batteries. Transp. Res. Part D Transp. Environ. 2001, 6, 297–324. [Google Scholar] [CrossRef]
- Manzetti, S.; Mariasiu, F. Electric vehicle battery technologies: From present state to future systems. Renew. Sustain. Energy Rev. 2015, 51, 1004–1012. [Google Scholar] [CrossRef]
- Budde-Meiwes, H.; Drillkens, J.; Lunz, B.; Muennix, J.; Rothgang, S.; Kowal, J.; Sauer, D.U. A review of current automotive battery technology and future prospects. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2013, 227, 761–776. [Google Scholar] [CrossRef]
- Sharma, S.; Panwar, A.K.; Tripathi, M. Storage technologies for electric vehicles. J. Traffic Transp. Eng. Engl. Ed. 2020, 7, 340–361. [Google Scholar] [CrossRef]
- Mohammadi, F.; Saif, M. A comprehensive overview of electric vehicle batteries market. e-Prime 2023, 3, 100127. [Google Scholar] [CrossRef]
- REVA Web Page. Available online: https://www.reva-car.be/electric-cars/index.htm (accessed on 17 October 2023).
- Alke Web Page. Available online: https://www.alke.com/ (accessed on 17 October 2023).
- MELEX Web Page. Available online: https://melex.com.pl/en/ (accessed on 17 October 2023).
- Sato, Y.; Takeuchi, S.; Kobayakawa, K. Cause of the memory effect observed in alkaline secondary batteries using nickel electrode. J. Power Sources 2001, 93, 20–24. [Google Scholar] [CrossRef]
- Young, K.-H.; Yasuoka, S. Capacity Degradation Mechanisms in Nickel/Metal Hydride Batteries. Batteries 2016, 2, 3. [Google Scholar] [CrossRef]
- Xiong, R.; Pan, Y.; Shen, W.; Li, H.; Sun, F. Lithium-ion battery aging mechanisms and diagnosis method for automotive applications: Recent advances and perspectives. Renew. Sustain. Energy Rev. 2020, 131, 110048. [Google Scholar] [CrossRef]
- Collath, N.; Tepe, B.; Englberger, S.; Jossen, A.; Hesse, H. Aging aware operation of lithium-ion battery energy storage systems: A review. J. Energy Storage 2022, 55, 105634. [Google Scholar] [CrossRef]
- Heiskanen, S.K.; Kim, J.; Lucht, B.L. Generation and Evolution of the Solid Electrolyte Interphase of Lithium-Ion Batteries. Joule 2019, 3, 2322–2333. [Google Scholar] [CrossRef]
- Jiang, M.; Danilov, D.L.; Eichel, R.; Notten, P.H.L. A Review of Degradation Mechanisms and Recent Achievements for Ni-Rich Cathode-Based Li-Ion Batteries. Adv. Energy Mater. 2021, 11, 2103005. [Google Scholar] [CrossRef]
- Mayemba, Q.; Mingant, R.; Li, A.; Ducret, G.; Venet, P. Aging datasets of commercial lithium-ion batteries: A review. J. Energy Storage 2024, 83, 110560. [Google Scholar] [CrossRef]
- Han, X.; Lu, L.; Zheng, Y.; Feng, X.; Li, Z.; Li, J.; Ouyang, M. A review on the key issues of the lithium ion battery degradation among the whole life cycle. eTransportation 2019, 1, 100005. [Google Scholar] [CrossRef]
- Li, X.; Liu, S.; Yang, J.; He, Z.; Zheng, J.; Li, Y. Electrochemical methods contribute to the recycling and regeneration path of lithium-ion batteries. Energy Storage Mater. 2023, 55, 606–630. [Google Scholar] [CrossRef]
- Sugiyama, H.; Kondo, T. Method of Regenerating Lead Storage Batteries. 2000. Available online: https://patents.google.com/patent/EP1184928A1/en (accessed on 11 October 2023).
- Caubera Zafra, F. Método para la Regeneración de Baterías de Plomo. 2013. Available online: https://patents.google.com/patent/ES2401387A2/es (accessed on 11 October 2023).
- Maroo Web Page. Available online: http://www.maroomcs.com/ (accessed on 10 November 2023).
- Macbatec Web Page. Available online: https://www.macbatec.com/es/ (accessed on 10 November 2023).
- Amperis Web Page. Available online: https://amperis.com/en/ (accessed on 10 November 2023).
- Prime Web Page. Available online: https://www.repowertek.com/eng/product/rpt-s500.htm (accessed on 10 November 2023).
- BRT Web Page. Available online: https://batteryregeneration.net/?lang=en (accessed on 10 November 2023).
- Battmaster Web Page. Available online: https://www.battmasterkad.com/index.html (accessed on 10 November 2023).
- DF48 Web Page. Available online: https://www.battery-restoration.co.uk/ (accessed on 10 November 2023).
- Emanuelsson, C. Scanning Electron Microscopy study of Macbat Regeneration Effect on Lead-Acid Battery Electrodes. Karlstad, 2013. Available online: www.diva-portal.org/smash/get/diva2:635632/FULLTEXT01.pdf (accessed on 13 November 2023).
- Martin, M.P.; Ponniran, A.; Rahman, R.A.; Ibrahim, N.S.M.; Eahambram, A.; Aziz, M.H.; Yassin, A.M. Decrystallization with high current pulses technique for capacity restoration of industrial nickel-cadmium battery. Int. J. Power Electron. Drive Syst. IJPEDS 2020, 11, 1603–1609. [Google Scholar] [CrossRef]
- Soge, A.O.; Lefley, P.W. Pulse Charging of Nickel Cadmium Batteries for Lost Capacity Recovery. Res. J. Appl. Sci. Eng. Technol. 2012, 4, 4934–4938. [Google Scholar]
- Nan, J.; Han, D.; Yang, M.; Cui, M. Dismantling, Recovery, and Reuse of Spent Nickel–Metal Hydride Batteries. J. Electrochem. Soc. 2006, 153, A101. [Google Scholar] [CrossRef]
- Wang, R.; Yan, J.; Zhou, Z.; Gao, X.; Song, D.; Zhou, Z. Regeneration of hydrogen storage alloy in spent nickel–metal hydride batteries. J. Alloys Compd. 2002, 336, 237–241. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Wang, L.; Liu, B.; Zhou, H. A facile recycling and regeneration process for spent LiFePO4 batteries. J. Mater. Sci. Mater. Electron. 2019, 30, 14580–14588. [Google Scholar] [CrossRef]
- Mir, S.; Shukla, N.; Dhawan, N. Investigation of Microwave and Thermal Processing of Electrode Material of End-of-Life Ni-MH Battery. JOM 2021, 73, 951–961. [Google Scholar] [CrossRef]
- Tsunekawa, M.; Ito, M.; Furuya, H.; Hiroyoshi, N. The Recovery of Electrode Compounds from Waste Nickel Metal Hydride Batteries by Physical Separation Techniques. Mater. Trans. 2007, 48, 1089–1094. [Google Scholar] [CrossRef]
- Shin, S.; Shin, D.; Jung, G.; Kim, Y.; Wang, J. Recovery of Electrodic Powder From Spent Nickel-Metal Hydride Batteries (NiMH). Arch. Met. Mater. 2015, 60, 1139–1143. [Google Scholar] [CrossRef]
- Bertuol, D.A.; Bernardes, A.M.; Tenório, J.A.S. Spent NiMH batteries: Characterization and metal recovery through mechanical processing. J. Power Sources 2006, 160, 1465–1470. [Google Scholar] [CrossRef]
- Tenório, J.A.S.; Espinosa, D.C.R. Recovery of Ni-based alloys from spent NiMH batteries. J. Power Sources 2002, 108, 70–73. [Google Scholar] [CrossRef]
- Müller, T.; Friedrich, B. Development of a recycling process for nickel-metal hydride batteries. J. Power Sources 2006, 158, 1498–1509. [Google Scholar] [CrossRef]
- Huang, K.; Li, J.; Xu, Z. Enhancement of the recycling of waste Ni–Cd and Ni–MH batteries by mechanical treatment. Waste Manag. 2011, 31, 1292–1299. [Google Scholar] [CrossRef] [PubMed]
- Innocenzi, V.; Vegliò, F. Recovery of rare earths and base metals from spent nickel-metal hydride batteries by sequential sulphuric acid leaching and selective precipitations. J. Power Sources 2012, 211, 184–191. [Google Scholar] [CrossRef]
- Zhang, P.; Yokoyama, T.; Itabashi, O.; Wakui, Y.; Suzuki, T.M.; Inoue, K. Hydrometallurgical process for recovery of metal values from spent nickel-metal hydride secondary batteries. Hydrometallurgy 1998, 50, 61–75. [Google Scholar] [CrossRef]
- Pietrelli, L.; Bellomo, B.; Fontana, D.; Montereali, M. Rare earths recovery from NiMH spent batteries. Hydrometallurgy 2002, 66, 135–139. [Google Scholar] [CrossRef]
- Bertuol, D.A.; Amado, F.D.R.; Veit, H.; Ferreira, J.Z.; Bernardes, A.M. Recovery of Nickel and Cobalt from Spent NiMH Batteries by Electrowinning. Chem. Eng. Technol. 2012, 35, 2084–2092. [Google Scholar] [CrossRef]
- Rabah, M.; Farghaly, F.; Motaleb, M.A.-E. Recovery of nickel, cobalt and some salts from spent Ni-MH batteries. Waste Manag. 2008, 28, 1159–1167. [Google Scholar] [CrossRef]
- Meshram, P.; Somani, H.; Pandey, B.D.; Mankhand, T.R.; Deveci, H.; Abhilash. Two stage leaching process for selective metal extraction from spent nickel metal hydride batteries. J. Clean. Prod. 2017, 157, 322–332. [Google Scholar] [CrossRef]
- Santos, V.; Celante, V.; Lelis, M.; Freitas, M. Chemical and electrochemical recycling of the nickel, cobalt, zinc and manganese from the positives electrodes of spent Ni–MH batteries from mobile phones. J. Power Sources 2012, 218, 435–444. [Google Scholar] [CrossRef]
- Nayl, A. Extraction and separation of Co(II) and Ni(II) from acidic sulfate solutions using Aliquat 336. J. Hazard. Mater. 2010, 173, 223–230. [Google Scholar] [CrossRef]
- Provazi, K.; Campos, B.A.; Espinosa, D.C.R.; Tenório, J.A.S. Metal separation from mixed types of batteries using selective precipitation and liquid–liquid extraction techniques. Waste Manag. 2011, 31, 59–64. [Google Scholar] [CrossRef]
- Kanamori, T.; Matsuda, M.; Miyake, M. Recovery of rare metal compounds from nickel–metal hydride battery waste and their application to CH4 dry reforming catalyst. J. Hazard. Mater. 2009, 169, 240–245. [Google Scholar] [CrossRef]
- Granata, G.; Pagnanelli, F.; Moscardini, E.; Takacova, Z.; Havlik, T.; Toro, L. Simultaneous recycling of nickel metal hydride, lithium ion and primary lithium batteries: Accomplishment of European Guidelines by optimizing mechanical pre-treatment and solvent extraction operations. J. Power Sources 2012, 212, 205–211. [Google Scholar] [CrossRef]
- Larsson, K.; Ekberg, C.; Ødegaard-Jensen, A. Using Cyanex 923 for selective extraction in a high concentration chloride medium on nickel metal hydride battery waste. Hydrometallurgy 2012, 129–130, 35–42. [Google Scholar] [CrossRef]
- Larsson, K.; Ekberg, C.; Ødegaard-Jensen, A. Using Cyanex 923 for selective extraction in a high concentration chloride medium on nickel metal hydride battery waste: Part II: Mixer–settler experiments. Hydrometallurgy 2013, 133, 168–175. [Google Scholar] [CrossRef]
- Fernandes, A.; Afonso, J.C.; Dutra, A.J.B. Separation of nickel(II), cobalt(II) and lanthanides from spent Ni-MH batteries by hydrochloric acid leaching, solvent extraction and precipitation. Hydrometallurgy 2013, 133, 37–43. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, J.; Fang, X. Rare earth element recycling from waste nickel-metal hydride batteries. J. Hazard. Mater. 2014, 279, 384–388. [Google Scholar] [CrossRef]
- Larsson, K.; Binnemans, K. Metal Recovery from Nickel Metal Hydride Batteries Using Cyanex 923 in Tricaprylylmethylammonium Nitrate from Chloride Aqueous Media. J. Sustain. Met. 2015, 1, 161–167. [Google Scholar] [CrossRef]
- Zhang, P.; Yokoyama, T.; Itabashi, O.; Wakui, Y.; Suzuki, T.M.; Inoue, K. Recovery of metal values from spent nickel–metal hydride rechargeable batteries. J. Power Sources 1999, 77, 116–122. [Google Scholar] [CrossRef]
- Li, L.; Xu, S.; Ju, Z.; Wu, F. Recovery of Ni, Co and rare earths from spent Ni–metal hydride batteries and preparation of spherical Ni(OH)2. Hydrometallurgy 2009, 100, 41–46. [Google Scholar] [CrossRef]
- Rodrigues, L.E.O.C.; Mansur, M.B. Hydrometallurgical separation of rare earth elements, cobalt and nickel from spent nickel–metal–hydride batteries. J. Power Sources 2010, 195, 3735–3741. [Google Scholar] [CrossRef]
- Gasser, M.; Aly, M. Separation and recovery of rare earth elements from spent nickel–metal-hydride batteries using synthetic adsorbent. Int. J. Miner. Process. 2013, 121, 31–38. [Google Scholar] [CrossRef]
- Innocenzi, V.; Veglio, F. Separation of manganese, zinc and nickel from leaching solution of nickel-metal hydride spent batteries by solvent extraction. Hydrometallurgy 2012, 129–130, 50–58. [Google Scholar] [CrossRef]
- Ahn, N.-K.; Shim, H.-W.; Kim, D.-W.; Swain, B. Valorization of waste NiMH battery through recovery of critical rare earth metal: A simple recycling process for the circular economy. Waste Manag. 2020, 104, 254–261. [Google Scholar] [CrossRef]
- Petranikova, M.; Herdzik-Koniecko, I.; Steenari, B.-M.; Ekberg, C. Hydrometallurgical processes for recovery of valuable and critical metals from spent car NiMH batteries optimized in a pilot plant scale. Hydrometallurgy 2017, 171, 128–141. [Google Scholar] [CrossRef]
- Jiang, Y.-J.; Deng, Y.-C.; Bu, W.-G. Pyrometallurgical Extraction of Valuable Elements in Ni-Metal Hydride Battery Electrode Materials. Met. Mater. Trans. B 2015, 46, 2153–2157. [Google Scholar] [CrossRef]
- Tang, K.; Ciftja, A.; Maria, A.; Martinez, C.; Der Eijk, V.; Bian, Y.; Guo, S.; Ding, W. Recycling the Rare Earth Elements from Waste NiMH Batteries and Magnet Scraps by Pyrometallurgical Processes. In Proceedings of the First International Symposium on Development of Rare Earths, Baotou, China, 15–20 July 2014. [Google Scholar]
- Minohara, T. Recycling Method of Nickel-Hydrogen Secondary Battery. U.S. Patent 6077622A, 25 September 1997. [Google Scholar]
- Rodrigo Gomez Perez, R.; Omaña Martin, A. Método para Regenerar Baterías de Ni-MH. WO2015092107A1, 25 June 2015. [Google Scholar]
- Shen, Y.; Starborg, S. Method for Reconditioning Nimh Battery Cells. U.S. Patent 20230102119A1, 30 March 2021. [Google Scholar]
- Li, L.; Wu, F.; Chen, R.; Gao, X.; Shan, Z. A new regeneration process for spent nickel/metal hydride batteries. Trans. Noferrous Met. Soc. China 2005, 4, 764–768. [Google Scholar]
- Zhang, J.; Yu, J.; Cha, C.; Yang, H. The effects of pulse charging on inner pressure and cycling characteristics of sealed Ni/MH batteries. J. Power Sources 2004, 136, 180–185. [Google Scholar] [CrossRef]
- Chen, P.; Yang, F.; Cao, Z.; Jhang, J.; Gao, H.; Yang, M.; Huang, K.D. Reviving Aged Lithium-Ion Batteries and Prolonging their Cycle Life by Sinusoidal Waveform Charging Strategy. Batter. Supercaps 2019, 2, 673–677. [Google Scholar] [CrossRef]
- Wan, J.; Lyu, J.; Bi, W.; Zhou, Q.; Li, P.; Li, H.; Li, Y. Regeneration of spent lithium-ion battery materials. J. Energy Storage 2022, 51, 104470. [Google Scholar] [CrossRef]
- Wang, C.; Lin, D.; Zhao, B.; Zhang, X.; Wang, Y.; Wang, Y.; Cao, W.; Jiang, F. State estimation and aging mechanism of 2nd life lithium-ion batteries: Non-destructive and postmortem combined analysis. Electrochim. Acta 2023, 443, 141996. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.; Song, D.; Miao, Y.; Song, J.; Zhang, L. Effective regeneration of anode material recycled from scrapped Li-ion batteries. J. Power Sources 2018, 390, 38–44. [Google Scholar] [CrossRef]
- Yang, L.; Feng, Y.; Wang, C.; Fang, D.; Yi, G.; Gao, Z.; Shao, P.; Liu, C.; Luo, X.; Luo, S. Closed-loop regeneration of battery-grade FePO4 from lithium extraction slag of spent Li-ion batteries via phosphoric acid mixture selective leaching. Chem. Eng. J. 2022, 431, 133232. [Google Scholar] [CrossRef]
- Li, X.; Zhang, J.; Song, D.; Song, J.; Zhang, L. Direct regeneration of recycled cathode material mixture from scrapped LiFePO4 batteries. J. Power Sources 2017, 345, 78–84. [Google Scholar] [CrossRef]
- Zhang, B.; Xu, Y.; Makuza, B.; Zhu, F.; Wang, H.; Hong, N.; Long, Z.; Deng, W.; Zou, G.; Hou, H.; et al. Selective lithium extraction and regeneration of LiCoO2 cathode materials from the spent lithium-ion battery. Chem. Eng. J. 2023, 452, 139258. [Google Scholar] [CrossRef]
- Ji, G.; Wang, J.; Liang, Z.; Jia, K.; Ma, J.; Zhuang, Z.; Zhou, G.; Cheng, H.-M. Direct regeneration of degraded lithium-ion battery cathodes with a multifunctional organic lithium salt. Nat. Commun. 2023, 14, 584. [Google Scholar] [CrossRef] [PubMed]
- Liang, Q.; Yue, H.; Wang, S.; Yang, S.; Lam, K.-H.; Hou, X. Recycling and crystal regeneration of commercial used LiFePO4 cathode materials. Electrochim. Acta 2020, 330, 135323. [Google Scholar] [CrossRef]
- Sun, Q.; Li, X.; Zhang, H.; Song, D.; Shi, X.; Song, J.; Li, C.; Zhang, L. Resynthesizing LiFePO4/C materials from the recycled cathode via a green full-solid route. J. Alloys Compd. 2020, 818, 153292. [Google Scholar] [CrossRef]
- Xu, P.; Dai, Q.; Gao, H.; Liu, H.; Zhang, M.; Li, M.; Chen, Y.; An, K.; Meng, Y.S.; Liu, P.; et al. Efficient Direct Recycling of Lithium-Ion Battery Cathodes by Targeted Healing. Joule 2020, 4, 2609–2626. [Google Scholar] [CrossRef]
- Tang, X.; Wang, R.; Ren, Y.; Duan, J.; Li, J.; Li, P. Effective regeneration of scrapped LiFePO4 material from spent lithium-ion batteries. J. Mater. Sci. 2020, 55, 13036–13048. [Google Scholar] [CrossRef]
- Palaniyandy, N.; Rambau, K.; Musyoka, N.; Ren, J. A Facile Segregation Process and Restoration of LiMn2O4Cathode Material from Spent Lithium-Ion Batteries. J. Electrochem. Soc. 2020, 167, 090510. [Google Scholar] [CrossRef]
- Meng, X.; Hao, J.; Cao, H.; Lin, X.; Ning, P.; Zheng, X.; Chang, J.; Zhang, X.; Wang, B.; Sun, Z. Recycling of LiNi1/3Co1/3Mn1/3O2 cathode materials from spent lithium-ion batteries using mechanochemical activation and solid-state sintering. Waste Manag. 2019, 84, 54–63. [Google Scholar] [CrossRef]
- Fan, X.; Tan, C.; Li, Y.; Chen, Z.; Li, Y.; Huang, Y.; Pan, Q.; Zheng, F.; Wang, H.; Li, Q. A green, efficient, closed-loop direct regeneration technology for reconstructing of the LiNi0.5Co0.2Mn0.3O2 cathode material from spent lithium-ion batteries. J. Hazard. Mater. 2021, 410, 124610. [Google Scholar] [CrossRef]
- Yue, L.-P.; Lou, P.; Xu, G.-H.; Xu, H.; Jin, G.; Li, L.; Deng, H.; Cheng, Q.; Tang, S.; Cao, Y.-C. Regeneration of degraded LiNi0.5Co0.2Mn0.3O2 from spent lithium ion batteries. Ionics 2020, 26, 2757–2761. [Google Scholar] [CrossRef]
- Moradi, B.; Botte, G.G. Recycling of graphite anodes for the next generation of lithium ion batteries. J. Appl. Electrochem. 2016, 46, 123–148. [Google Scholar] [CrossRef]
- Liu, K.; Yang, S.; Luo, L.; Pan, Q.; Zhang, P.; Huang, Y.; Zheng, F.; Wang, H.; Li, Q. From spent graphite to recycle graphite anode for high-performance lithium ion batteries and sodium ion batteries. Electrochim. Acta 2020, 356, 136856. [Google Scholar] [CrossRef]
- Yi, C.; Zhou, L.; Wu, X.; Sun, W.; Yi, L.; Yang, Y. Technology for recycling and regenerating graphite from spent lithium-ion batteries. Chin. J. Chem. Eng. 2021, 39, 37–50. [Google Scholar] [CrossRef]
- Natarajan, S.; Subramanyan, K.; Dhanalakshmi, R.B.; Stephan, A.M.; Aravindan, V. Regeneration of Polyolefin Separators from Spent Li-Ion Battery for Second Life. Batter. Supercaps 2020, 3, 581–586. [Google Scholar] [CrossRef]
- Ghasemkhani, A.; Pircheraghi, G.; Shojaei, M. An innovative polymer composite prepared through the recycling of spent lead-acid battery separators. Sustain. Mater. Technol. 2023, 38, e00753. [Google Scholar] [CrossRef]
- Zhang, R.; Shi, X.; Esan, O.C.; An, L. Organic Electrolytes Recycling from Spent Lithium-Ion Batteries. Glob. Chall. 2022, 6, 2200050. [Google Scholar] [CrossRef]
- Yi, C.; Yang, Y.; Zhang, T.; Wu, X.; Sun, W.; Yi, L. A green and facile approach for regeneration of graphite from spent lithium ion battery. J. Clean. Prod. 2020, 277, 123585. [Google Scholar] [CrossRef]
- Zhou, S.; Zhang, Y.; Meng, Q.; Dong, P.; Fei, Z.; Li, Q. Recycling of LiCoO2 cathode material from spent lithium ion batteries by ultrasonic enhanced leaching and one-step regeneration. J. Environ. Manag. 2021, 277, 111426. [Google Scholar] [CrossRef]
- Nie, X.-J.; Xi, X.-T.; Yang, Y.; Ning, Q.-L.; Guo, J.-Z.; Wang, M.-Y.; Gu, Z.-Y.; Wu, X.-L. Recycled LiMn2O4 from the spent lithium ion batteries as cathode material for sodium ion batteries: Electrochemical properties, structural evolution and electrode kinetics. Electrochim. Acta 2019, 320, 134626. [Google Scholar] [CrossRef]
- Sloop, S.; Crandon, L.; Allen, M.; Koetje, K.; Reed, L.; Gaines, L.; Sirisaksoontorn, W.; Lerner, M. A direct recycling case study from a lithium-ion battery recall. Sustain. Mater. Technol. 2020, 25, e00152. [Google Scholar] [CrossRef]
- Cheret, D.; Santen, S. Battery Recycling. U.S. Patent US7169206B2, 30 January 2007. [Google Scholar]
- Mishra, D.; Kim, D.-J.; Ralph, D.; Ahn, J.-G.; Rhee, Y.-H. Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans. Waste Manag. 2008, 28, 333–338. [Google Scholar] [CrossRef]
- Zeng, G.; Deng, X.; Luo, S.; Luo, X.; Zou, J. A copper-catalyzed bioleaching process for enhancement of cobalt dissolution from spent lithium-ion batteries. J. Hazard. Mater. 2012, 199–200, 164–169. [Google Scholar] [CrossRef]
- Xin, B.; Zhang, D.; Zhang, X.; Xia, Y.; Wu, F.; Chen, S.; Li, L. Bioleaching mechanism of Co and Li from spent lithium-ion battery by the mixed culture of acidophilic sulfur-oxidizing and iron-oxidizing bacteria. Bioresour. Technol. 2009, 100, 6163–6169. [Google Scholar] [CrossRef]
- Bajestani, M.I.; Mousavi, S.; Shojaosadati, S. Bioleaching of heavy metals from spent household batteries using Acidithiobacillus ferrooxidans: Statistical evaluation and optimization. Sep. Purif. Technol. 2014, 132, 309–316. [Google Scholar] [CrossRef]
- McLaughlin, W.; Adams, T.S. Li Reclamation Process. U.S. Patent 5888463A, 2 January 1998. [Google Scholar]
- Li, B.; Li, C.; Ruan, D.; Chen, R.; Qiao, Y.; Bao, D. Method for Selectively Extracting Lithium from Retired Battery and Application of Method. PCT/CN2022/097178, 22 July 2021. Available online: https://patents.google.com/patent/WO2023000843A1/en (accessed on 15 December 2023).
- Xu, C.; Dai, Q.; Gaines, L.; Hu, M.; Tukker, A.; Steubing, B. Future material demand for automotive lithium-based batteries. Commun. Mater. 2020, 1, 99. [Google Scholar] [CrossRef]
- Dunn, J.B.; Gaines, L.; Kelly, J.C.; James, C.; Gallagher, K.G. The significance of Li-ion batteries in electric vehicle life-cycle energy and emissions and recycling’s role in its reduction. Energy Environ. Sci. 2014, 8, 158–168. [Google Scholar] [CrossRef]
- Rosenberg, S.; Kurz, L.; Huster, S.; Wehrstein, S.; Kiemel, S.; Schultmann, F.; Reichert, F.; Wörner, R.; Glöser-Chahoud, S. Combining dynamic material flow analysis and life cycle assessment to evaluate environmental benefits of recycling—A case study for direct and hydrometallurgical closed-loop recycling of electric vehicle battery systems. Resour. Conserv. Recycl. 2023, 198, 107145. [Google Scholar] [CrossRef]
- Jiang, S.; Hua, H.; Zhang, L.; Liu, X.; Wu, H.; Yuan, Z. Environmental impacts of hydrometallurgical recycling and reusing for manufacturing of lithium-ion traction batteries in China. Sci. Total Environ. 2021, 811, 152224. [Google Scholar] [CrossRef] [PubMed]
- Velázquez-Martínez, O.; Valio, J.; Santasalo-Aarnio, A.; Reuter, M.; Serna-Guerrero, R. A Critical Review of Lithium-Ion Battery Recycling Processes from a Circular Economy Perspective. Batteries 2019, 5, 68. [Google Scholar] [CrossRef]
- Islam, T.; Iyer-Raniga, U. Lithium-Ion Battery Recycling in the Circular Economy: A Review. Recycling 2022, 7, 33. [Google Scholar] [CrossRef]
Technology | Nominal Voltage (V) | Energy Density (Wh/kg) | Cost (EUR/kWh) | Number of Recharging Cycles (Life Span) | Self-Discharge Coefficient (%/24 h) | Market Size in 2023 (USD B) [11] |
---|---|---|---|---|---|---|
Pb-acid | 2 | 10–40 | 25–40 | 500 | 1 | 12.06 |
Ni-Cd | 1.20 | 30–60 | 200–500 | 1350 | 5 | - |
NiMH | 1.20 | 45–80 | 275–550 | 1350 | 2 | 1.61 |
Li-ion | 3.25–3.60 | 55–200 | 400–800 | 1000 | 1 | 7.33 |
Ref. | Published by | Year of Publication | Process | Physical Method | Chemical Method | Commercial Use | Destructive Testing (DT) |
---|---|---|---|---|---|---|---|
[24] | Patent | 2000 | Regeneration | Current pulses | Carbon electrolyte addition | No | No |
[25] | Patent | 2013 | Regeneration | Current pulses | Yes | No | |
[33] | Journal paper | 2013 | Regeneration | Current pulses | Yes | No |
Ref. | Published by | Year of Publication | Process | Physical Method | Chemical Method | Destructive Testing (DT) |
---|---|---|---|---|---|---|
[47] | Paper | 1998 | Recycling | Mechanical | H2SO4, Ammonia, Oxalic acid | Yes |
[62] | Paper | 1999 | Recycling | Mechanical | H2SO4, Ammonia, Oxalic acid | Yes |
[39] | Paper | 2021 | Recycling | Temperature and microwave | Acid treatment | Yes |
[48] | Paper | 2002 | Recycling | Mechanical | H2SO4 | Yes |
[37] | Paper | 2002 | Material Regeneration | Ultrasound, smelting | Weak acid, Ar | Yes |
[43] | Paper | 2002 | Recycling | Mechanical, Magnetic | Yes | |
[75] | Paper | 2004 | Regeneration | Current pulses | No | |
[74] | Paper | 2005 | Regeneration | Ultrasound | No | |
[42] | Paper | 2006 | Recycling | Mechanical, magnetic | Yes | |
[44] | Paper | 2006 | Recycling | Mechanical | Yes | |
[40] | Paper | 2007 | Recycling | Magnetic field | Yes | |
[50] | Paper | 2008 | Recycling | Mechanical | H2SO4, other acids | Yes |
[63] | Paper | 2009 | Recycling | Mechanical | H2SO4, NaOH | Yes |
[55] | Paper | 2009 | Recycling | Mechanical | H2SO4, HCL, HNO3 | Yes |
[64] | Paper | 2010 | Recycling | Mechanical | H2SO4, NaOH | Yes |
[53] | Paper | 2010 | Recycling | Mechanical | H2SO4, NaOH, HCl, HNO3 | Yes |
[45] | Paper | 2011 | Recycling | Mechanical, magnetic, air vacuum | Yes | |
[54] | Paper | 2011 | Recycling | Mechanical | H2SO4, NaOH | Yes |
[46] | Paper | 2012 | Recycling | Mechanical | H2SO4, NaOH | Yes |
[66] | Paper | 2012 | Recycling | Mechanical | H2SO4, NaOH, Organic Extractants | Yes |
[57] | Paper | 2012 | Recycling | Mechanical | Organic Extractant | Yes |
[52] | Paper | 2012 | Recycling | Mechanical | H2SO4, NaOH | Yes |
[49] | Paper | 2012 | Recycling | Mechanical | H2SO4, other acids | Yes |
[56] | Paper | 2012 | Recycling | Mechanical | Organic Solvents | Yes |
[58] | Paper | 2013 | Recycling | Mechanical | Organic Extractant | Yes |
[65] | Paper | 2013 | Recycling | Mechanical | H2SO4, NaOH | Yes |
[72] | Patent | 2014 | Regeneration | Current pulses | No | |
[60] | Paper | 2014 | Recycling | Mechanical | Hydrochloric | Yes |
[70] | Paper | 2014 | Recycling | Temperature | Yes | |
[41] | Paper | 2015 | Recycling | Temperature | Yes | |
[69] | Paper | 2015 | Recycling | Temperature | Yes | |
[61] | Paper | 2015 | Recycling | Mechanical | HCl, Organic Extractant | Yes |
[68] | Paper | 2017 | Recycling | Mechanical | HCl, Organic extractants | Yes |
[51] | Paper | 2017 | Recycling | Mechanical | H2SO4, NaOH | Yes |
[76] | Paper | 2019 | Regeneration | Current pulses | No | |
[67] | Paper | 2020 | Recycling | Mechanical | H2SO4, Organic Extractants | Yes |
[73] | Patent | 2021 | Regeneration | O2 adding | Yes |
Technique | Li | Co | Ni | Mn | Al | Cu | Graphite | Si | GHG Reduction |
---|---|---|---|---|---|---|---|---|---|
Pyro | EU | EP | EP | EU | NC | EP | NC | EU | 43 |
Hydro | EU | EP | EP | EP | EU | EP | EU | EU | 90 |
Direct | EP | EP | EP | EP | EU | EP | EU | EU | 16 |
Ref. | Published by | Year of Publication | Process | Physical Method | Chemical Method | Destructive Testing (DT) |
---|---|---|---|---|---|---|
[107] | Patent | 1998 | Material Regeneration | Cryogenic | LiOH addition | Yes |
[103] | Paper | 2008 | Recycling | Bacteria | Yes | |
[105] | Paper | 2009 | Recycling | Bacteria | Yes | |
[54] | Paper | 2011 | Recycling | Mechanical | H2SO4, NaOH, organic solvents | |
[52] | Paper | 2012 | Recycling | Mechanical | H2SO4 | Yes |
[104] | Paper | 2012 | Recycling | Bacteria | Yes | |
[106] | Paper | 2014 | Recycling | Bacteria | Yes | |
[81] | Paper | 2017 | Material Regeneration | NaOH solution | Yes | |
[79] | Paper | 2018 | Regeneration | Heat | Phenolic resin–ethanol solution | Yes |
[38] | Paper | 2019 | Material Regeneration | Temperature | Li2CO3 addition | Yes |
[100] | Paper | 2019 | Recycling | Temperature | Yes | |
[89] | Paper | 2019 | Material Regeneration | Temperature | Li2CO3 addition | Yes |
[91] | Paper | 2020 | Material Regeneration | Temperature | Yes | |
[88] | Paper | 2020 | Material Regeneration | Ultrasound temperature | Yes | |
[87] | Paper | 2020 | Material Regeneration | Temperature | DMC, NMP, LI2CO3 addition, glucose addition, Cu(NO3)2 addition | Yes |
[86] | Paper | 2020 | Material Regeneration | Temperature | DMC, NMP, Li addition | Yes |
[98] | Paper | 2020 | Recycling | Ultrasound | Nitrogen | Yes |
[85] | Paper | 2020 | Material Regeneration | Temperature | Yes | |
[84] | Paper | 2020 | Recycling | Temperature | NaOH solution Li, Fe, P addition | Yes |
[86] | Paper | 2020 | Material Regeneration | Re-lithiation | Yes | |
[101] | Paper | 2020 | Recycling | Temperature | Li addition | Yes |
[93] | Paper | 2020 | Material regeneration | Temperature | H2SO4, HCl | Yes |
[90] | Paper | 2021 | Material Regeneration | Temperature | Li addition | Yes |
[108] | Patent | 2021 | Recycling | Temperature | Manganese | Yes |
[99] | Paper | 2021 | Recycling | Ultrasound | Malic acid, DL, H2O2 | Yes |
[80] | Paper | 2022 | Recycling | Several | Yes | |
[82] | Paper | 2023 | Regeneration | Several | Yes | |
[83] | Paper | 2023 | Regeneration | Organic Lithium salt | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Sánchez, R.; Molina-García, A.; Ramallo-González, A.P. Regeneration of Hybrid and Electric Vehicle Batteries: State-of-the-Art Review, Current Challenges, and Future Perspectives. Batteries 2024, 10, 101. https://doi.org/10.3390/batteries10030101
Martínez-Sánchez R, Molina-García A, Ramallo-González AP. Regeneration of Hybrid and Electric Vehicle Batteries: State-of-the-Art Review, Current Challenges, and Future Perspectives. Batteries. 2024; 10(3):101. https://doi.org/10.3390/batteries10030101
Chicago/Turabian StyleMartínez-Sánchez, Rafael, Angel Molina-García, and Alfonso P. Ramallo-González. 2024. "Regeneration of Hybrid and Electric Vehicle Batteries: State-of-the-Art Review, Current Challenges, and Future Perspectives" Batteries 10, no. 3: 101. https://doi.org/10.3390/batteries10030101
APA StyleMartínez-Sánchez, R., Molina-García, A., & Ramallo-González, A. P. (2024). Regeneration of Hybrid and Electric Vehicle Batteries: State-of-the-Art Review, Current Challenges, and Future Perspectives. Batteries, 10(3), 101. https://doi.org/10.3390/batteries10030101