[SBP]BF4 Additive Stabilizing Zinc Anode by Simultaneously Regulating the Solvation Shell and Electrode Interface
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of [SBP]BF4
2.3. The Chemical Structure Characterization of [SBP]BF4
2.4. Preparation of V2O5 Cathode
2.5. Materials Characterization
2.6. Electrochemical Tests
3. Result and Discussion
3.1. Structural Characterization Analysis
3.2. Electrochemical Measurement
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chayambuka, K.; Mulder, G.; Danilov, D.L.; Notten, P.H.L. From Li-Ion Batteries toward Na-Ion Chemistries: Challenges and Opportunities. Adv. Energy Mater. 2020, 10, 2001310. [Google Scholar] [CrossRef]
- Ma, L.; Schroeder, M.A.; Borodin, O.; Pollard, T.P.; Ding, M.S.; Wang, C.; Xu, K. Realizing High Zinc Reversibility in Rechargeable Batteries. Nat. Energy 2020, 5, 743–749. [Google Scholar] [CrossRef]
- Raza, H.; Cheng, J.; Lin, C.; Majumder, S.; Zheng, G.; Chen, G. High-Entropy Stabilized Oxides Derived via a Low-Temperature Template Route for High-Performance Lithium-Sulfur Batteries. EcoMat 2023, 5, e12324. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, A.; Hu, X.; Hu, Z.; Zhang, F.; Huang, Y.; Li, L.; Wu, F.; Chen, R. Bifunctional Dynamic Adaptive Interphase Reconfiguration for Zinc Deposition Modulation and Side Reaction Suppression in Aqueous Zinc Ion Batteries. ACS Nano 2023, 17, 11946–11956. [Google Scholar] [CrossRef]
- Zhou, T.; Xie, L.; Han, Q.; Qiu, X.; Xiao, Y.; Yang, X.; Liu, X.; Yang, S.; Zhu, L.; Cao, X. Progress and Prospect of Vanadates as Aqueous Zn-Ion Batteries Cathodes. Coord. Chem. Rev. 2024, 498, 215461. [Google Scholar] [CrossRef]
- Deng, W.; Xu, Z.; Wang, X. High-Donor Electrolyte Additive Enabling Stable Aqueous Zinc-Ion Batteries. Energy Storage Mater. 2022, 52, 52–60. [Google Scholar] [CrossRef]
- Deng, R.; He, Z.; Chu, F.; Lei, J.; Cheng, Y.; Zhou, Y.; Wu, F. An Aqueous Electrolyte Densified by Perovskite SrTiO3 Enabling High-Voltage Zinc-Ion Batteries. Nat. Commun. 2023, 14, 4981. [Google Scholar] [CrossRef] [PubMed]
- Kuai, X.; Li, K.; Chen, J.; Wang, H.; Yao, J.; Chiang, C.-L.; Liu, T.; Ye, H.; Zhao, J.; Lin, Y.-G.; et al. Interfacial Engineered Vanadium Oxide Nanoheterostructures Synchronizing High-Energy and Long-Term Potassium-Ion Storage. ACS Nano 2022, 16, 1502–1510. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhu, X.; Li, S.; Xu, Y.; Sun, L.; Shi, L.; Song, M. In Situ Constructing Solid Electrolyte Interphase and Optimizing Solvation Shell for a Stable Zn Anode. J. Electron. Mater. 2024, 53, 288–297. [Google Scholar] [CrossRef]
- Shi, X.; Wang, J.; Yang, F.; Liu, X.; Yu, Y.; Lu, X. Metallic Zinc Anode Working at 50 and 50 mAh cm−2 with High Depth of Discharge via Electrical Double Layer Reconstruction. Adv. Funct. Mater. 2023, 33, 2211917. [Google Scholar] [CrossRef]
- Jia, X.; Liu, C.; Neale, Z.G.; Yang, J.; Cao, G. Active Materials for Aqueous Zinc Ion Batteries: Synthesis, Crystal Structure, Morphology, and Electrochemistry. Chem. Rev. 2020, 120, 7795–7866. [Google Scholar] [CrossRef]
- Wang, M.; Wu, X.; Yang, D.; Zhao, H.; He, L.; Su, J.; Zhang, X.; Yin, X.; Zhao, K.; Wang, Y.; et al. A Colloidal Aqueous Electrolyte Modulated by Oleic Acid for Durable Zinc Metal Anode. Chem. Eng. J. 2023, 451, 138589. [Google Scholar] [CrossRef]
- Jia, H.; Wang, Z.; Tawiah, B.; Wang, Y.; Chan, C.-Y.; Fei, B.; Pan, F. Recent Advances in Zinc Anodes for High-Performance Aqueous Zn-Ion Batteries. Nano Energy 2020, 70, 104523. [Google Scholar] [CrossRef]
- Raza, H.; Bai, S.; Cheng, J.; Majumder, S.; Zhu, H.; Liu, Q.; Zheng, G.; Li, X.; Chen, G. Li-S Batteries: Challenges, Achievements and Opportunities. Electrochem. Energy Rev. 2023, 6, 29. [Google Scholar] [CrossRef]
- Chao, D.; Zhou, W.; Xie, F.; Ye, C.; Li, H.; Jaroniec, M.; Qiao, S.-Z. Roadmap for Advanced Aqueous Batteries: From Design of Materials to Applications. Sci. Adv. 2020, 6, eaba4098. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Jia, C.; Zhang, J.; Zhang, L.; Liu, X. Smart Aqueous Zinc Ion Battery: Operation Principles and Design Strategy. Adv. Sci. 2024, 11, 2305201. [Google Scholar] [CrossRef] [PubMed]
- Yoo, G.; Lee, Y.-G.; Im, B.; Kim, D.G.; Jo, Y.-R.; An, G. Integrated Solution for a Stable and High-Performance Zinc-Ion Battery Using an Electrolyte Additive. Energy Storage Mater. 2023, 61, 102845. [Google Scholar] [CrossRef]
- Fang, T.; Liu, Q.; Hu, A.; Meng, J.; Fu, Y.; Shi, Z. Dendrite-Free and Stable Zinc-Ion Batteries Enabled by a Cation-Anion Synergistic Regulation Additive. J. Power Sources 2023, 581, 233521. [Google Scholar] [CrossRef]
- Yin, J.; Li, M.; Feng, X.; Cui, T.; Chen, J.; Li, F.; Wang, M.; Cheng, Y.; Ding, S.; Xu, X.; et al. Unveiling the Multifunctional Regulation Effect of a Glutamine Additive for Highly Reversible Zn Metal Anodes. J. Mater. Chem. A 2024, 12, 1543–1550. [Google Scholar] [CrossRef]
- Abdulla, J.; Cao, J.; Zhang, D.; Zhang, X.; Sriprachuabwong, C.; Kheawhom, S.; Wangyao, P.; Qin, J. Elimination of Zinc Dendrites by Graphene Oxide Electrolyte Additive for Zinc-Ion Batteries. ACS Appl. Energ. Mater. 2021, 4, 4602–4609. [Google Scholar] [CrossRef]
- Lin, Y.; Mai, Z.; Liang, H.; Li, Y.; Yang, G.; Wang, C. Dendrite-Free Zn Anode Enabled by Anionic Surfactant-Induced Horizontal Growth for Highly-Stable Aqueous Zn-Ion Pouch Cells. Energy Environ. Sci. 2023, 16, 687–697. [Google Scholar] [CrossRef]
- Su, K.; Chen, J.; Zhang, X.; Feng, J.; Xu, Y.; Pu, Y.; Wang, C.; Ma, P.; Wang, Y.; Lang, J. Inhibition of Zinc Dendrites by Dopamine Modified Hexagonal Boron Nitride Electrolyte Additive for Zinc-Ion Batteries. J. Power Sources 2022, 548, 232074. [Google Scholar] [CrossRef]
- Wei, T.; Zhang, X.; Ren, Y.; Wang, Y.; Li, Z.; Zhang, H.; Hu, L. Reconstructing Anode/Electrolyte Interface and Solvation Structure towards High Stable Zinc Anode. Chem. Eng. J. 2023, 457, 141272. [Google Scholar] [CrossRef]
- Xu, M.; Ivey, D.G.; Qu, W.; Xie, Z. Study of the Mechanism for Electrodeposition of Dendrite-Free Zinc in an Alkaline Electrolyte Modified with 1-Ethyl-3-Methylimidazolium Dicyanamide. J. Power Sources 2015, 274, 1249–1253. [Google Scholar] [CrossRef]
- Bayer, M.; Overhoff, G.M.; Gui, A.L.; Winter, M.; Bieker, P.; Schulze, S. Influence of Water Content on the Surface Morphology of Zinc Deposited from EMImOTf/Water Mixtures. J. Electrochem. Soc. 2019, 166, A909–A914. [Google Scholar] [CrossRef]
- Ma, Z.; Kan, J. Study of Cylindrical Zn/PANI Secondary Batteries with the Electrolyte Containing Alkylimidazolium Ionic Liquid. Synth. Met. 2013, 174, 58–62. [Google Scholar] [CrossRef]
- Lahiri, A.; Yang, L.; Li, G.; Endres, F. Mechanism of Zn-Ion Intercalation/Deintercalation in a Zn-Polypyrrole Secondary Battery in Aqueous and Bio-Ionic Liquid Electrolytes. ACS Appl. Mater. Interfaces 2019, 11, 45098–45107. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Li, D.; Pollard, T.; Deng, T.; Zhang, B.; Yang, C.; Chen, L.; Vatamanu, J.; Hu, E.; Hourwitz, M.J.; et al. Fluorinated Interphase Enables Reversible Aqueous Zinc Battery Chemistries. Nat. Nanotechnol. 2021, 16, 902–910. [Google Scholar] [CrossRef]
- Liu, Z.; El Abedin, S.Z.; Endres, F. Electrodeposition of Zinc Films from Ionic Liquids and Ionic Liquid/Water Mixtures. Electrochim. Acta 2013, 89, 635–643. [Google Scholar] [CrossRef]
- Wang, R.; Fang, C.; Yang, L.; Li, K.; Zhu, K.; Liu, G.; Chen, J. The Novel Ionic Liquid and Its Related Self-Assembly in the Areas of Energy Storage and Conversion. Small Sci. 2022, 2, 2200048. [Google Scholar] [CrossRef]
- Lebedeva, O.; Kultin, D.; Kustov, L. Advanced Research and Prospects on Polymer Ionic Liquids: Trends, Potential and Application. Green Chem. 2023, 25, 9001–9019. [Google Scholar] [CrossRef]
- Zhao, P.; Yang, B.; Chen, J.; Lang, J.; Zhang, T.; Yan, X. A Safe, High-Performance, and Long-Cycle Life Zinc-Ion Hybrid Capacitor Based on Three-Dimensional Porous Activated Carbon. Acta Phys.-Chim. Sin. 2020, 36, 1904050. [Google Scholar] [CrossRef]
- Huo, H.; Li, X.; Chen, Y.; Liang, J.; Deng, S.; Gao, X.; Doyle-Davis, K.; Li, R.; Guo, X.; Shen, Y.; et al. Bifunctional Composite Separator with a Solid-State-Battery Strategy for Dendrite-Free Lithium Metal Batteries. Energy Storage Mater. 2020, 29, 361–366. [Google Scholar] [CrossRef]
- Chen, R.; Zhang, W.; Huang, Q.; Guan, C.; Zong, W.; Dai, Y.; Du, Z.; Zhang, Z.; Li, J.; Guo, F.; et al. Trace Amounts of Triple-Functional Additives Enable Reversible Aqueous Zinc-Ion Batteries from a Comprehensive Perspective. Nano-Micro Lett. 2023, 15, 81. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, W.; Quan, Y.; Liu, B.; Yang, M.; Chen, M.; Han, X.; Xu, X.; Zhang, P.; Shi, S. Ionic Liquid Additive Enabling Anti-Freezing Aqueous Electrolyte and Dendrite-Free Zn Metal Electrode with Organic/Inorganic Hybrid Solid Electrolyte Interphase Layer. Energy Storage Mater. 2022, 53, 629–637. [Google Scholar] [CrossRef]
- Chen, X.; Liu, T.; Ding, Y.; Sun, X.; Huang, J.; Qiao, J.; Peng, S. Controlled Nucleation and Growth for the Dendrite-Free Zinc Anode in Aqueous Zinc-Ion Battery. J. Alloys Compd. 2024, 970, 172584. [Google Scholar] [CrossRef]
- Chen, R.; Liu, Q.; Xu, L.; Zuo, X.; Liu, F.; Zhang, J.; Zhou, X.; Mai, L. Zwitterionic Bifunctional Layer for Reversible Zn Anode. ACS Energy Lett. 2022, 7, 1719–1727. [Google Scholar] [CrossRef]
- Zheng, S.; Wei, L.; Zhang, Z.; Pan, J.; He, J.; Gao, L.; Li, C.C. In Situ Polymerization of Ionic Liquid with Tunable Phase Separation for Highly Reversible and Ultralong Cycle Life Zn-Ion Battery. Nano Lett. 2022, 22, 9062–9070. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.; Jae-Sun, S.; Ko, S.; Park, H.; Song, W.-J.; Park, C.B.; Kang, J. Self-Assembled Protective Layer by Symmetric Ionic Liquid for Long-Cycling Lithium-Metal Batteries. Adv. Energy Mater. 2022, 12, 2103955. [Google Scholar] [CrossRef]
- Gou, Q.; Luo, H.; Zhang, Q.; Deng, J.; Zhao, R.; Odunmbaku, O.; Wang, L.; Li, L.; Zheng, Y.; Li, J.; et al. Electrolyte Regulation of Bio-Inspired Zincophilic Additive toward High-Performance Dendrite-Free Aqueous Zinc-Ion Batteries. Small 2023, 19, 2207502. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Schroeder, M.A.; Pollard, T.P.; Borodin, O.; Ding, M.S.; Sun, R.; Cao, L.; Ho, J.; Baker, D.R.; Wang, C.; et al. Critical Factors Dictating Reversibility of the Zinc Metal Anode. Energy Environ. Mater. 2020, 3, 516–521. [Google Scholar] [CrossRef]
- Hao, J.; Li, X.; Zhang, S.; Yang, F.; Zeng, X.; Zhang, S.; Bo, G.; Wang, C.; Guo, Z. Designing Dendrite-Free Zinc Anodes for Advanced Aqueous Zinc Batteries. Adv. Funct. Mater. 2020, 30, 2001263. [Google Scholar] [CrossRef]
- Li, B.; Xue, J.; Lv, X.; Zhang, R.; Ma, K.; Wu, X.; Dai, L.; Wang, L.; He, Z. A Facile Coating Strategy for High Stability Aqueous Zinc Ion Batteries: Porous Rutile Nano-TiO2 Coating on Zinc Anode. Surf. Coat. Technol. 2021, 421, 127367. [Google Scholar] [CrossRef]
- Yong, B.; Ma, D.; Wang, Y.; Mi, H.; He, C.; Zhang, P. Understanding the Design Principles of Advanced Aqueous Zinc-Ion Battery Cathodes: From Transport Kinetics to Structural Engineering, and Future Perspectives. Adv. Energy Mater. 2020, 10, 2002354. [Google Scholar] [CrossRef]
- Xu, J.; Wang, M.; Asraful Alam, M.; Hoang, T.K.A.; Zhang, Y.; Li, H.; Lv, Y.; Zhao, A.; Xiong, W. Employing Cationic Kraft Lignin as Electrolyte Additive to Enhance the Electrochemical Performance of Rechargeable Aqueous Zinc-Ion Battery. Fuel 2023, 333, 126450. [Google Scholar] [CrossRef]
- Sun, P.; Ma, L.; Zhou, W.; Qiu, M.; Wang, Z.; Chao, D.; Mai, W. Simultaneous Regulation on Solvation Shell and Electrode Interface for Dendrite-Free Zn Ion Batteries Achieved by a Low-Cost Glucose Additive. Angew. Chem. Int. Ed. 2021, 60, 18247–18255. [Google Scholar] [CrossRef]
- Zou, P.; Lin, R.; Pollard, T.P.; Yao, L.; Hu, E.; Zhang, R.; He, Y.; Wang, C.; West, W.C.; Ma, L.; et al. Localized Hydrophobicity in Aqueous Zinc Electrolytes Improves Zinc Metal Reversibility. Nano Lett. 2022, 22, 7535–7544. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Luan, J.; Fu, L.; Wu, S.; Tang, Y.; Ji, X.; Wang, H. The Three- Dimensional Dendrite-Free Zinc Anode on a Copper Mesh with a Zinc-Oriented Polyacrylamide Electrolyte Additive. Angew. Chem. Int. Ed. 2019, 58, 15841–15847. [Google Scholar] [CrossRef]
- Zhang, Q.; Ma, Y.; Lu, Y.; Zhou, X.; Lin, L.; Li, L.; Yan, Z.; Zhao, Q.; Zhang, K.; Chen, J. Designing Anion-Type Water-Free Zn2+ Solvation Structure for Robust Zn Metal Anode. Angew. Chem. Int. Ed. 2021, 60, 23357–23364. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Liu, X.; Xie, Y.; Wu, K.; Wang, Y.; Liu, Y.; Zhang, J.; Yi, J.; Xia, Y. Improved Electrochemical Reversibility of Zn Plating/Stripping: A Promising Approach to Suppress Water-Induced Issues through the Formation of H-Bonding. Mater. Today Energy 2020, 18, 100563. [Google Scholar] [CrossRef]
- Hao, J.; Long, J.; Li, B.; Li, X.; Zhang, S.; Yang, F.; Zeng, X.; Yang, Z.; Pang, W.K.; Guo, Z. Toward High-Performance Hybrid Zn-Based Batteries via Deeply Understanding Their Mechanism and Using Electrolyte Additive. Adv. Funct. Mater. 2019, 29, 1903605. [Google Scholar] [CrossRef]
- Zeng, X.; Mao, J.; Hao, J.; Liu, J.; Liu, S.; Wang, Z.; Wang, Y.; Zhang, S.; Zheng, T.; Liu, J.; et al. Electrolyte Design for In Situ Construction of Highly Zn2+-Conductive Solid Electrolyte Interphase to Enable High-Performance Aqueous Zn-Ion Batteries under Practical Conditions. Adv. Mater. 2021, 33, 2007416. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Su, K.; Hu, Y.; Xue, K.; Wang, Y.; Han, M.; Lang, J. [SBP]BF4 Additive Stabilizing Zinc Anode by Simultaneously Regulating the Solvation Shell and Electrode Interface. Batteries 2024, 10, 102. https://doi.org/10.3390/batteries10030102
Zhang X, Su K, Hu Y, Xue K, Wang Y, Han M, Lang J. [SBP]BF4 Additive Stabilizing Zinc Anode by Simultaneously Regulating the Solvation Shell and Electrode Interface. Batteries. 2024; 10(3):102. https://doi.org/10.3390/batteries10030102
Chicago/Turabian StyleZhang, Xingyun, Kailimai Su, Yue Hu, Kaiyuan Xue, Yan Wang, Minmin Han, and Junwei Lang. 2024. "[SBP]BF4 Additive Stabilizing Zinc Anode by Simultaneously Regulating the Solvation Shell and Electrode Interface" Batteries 10, no. 3: 102. https://doi.org/10.3390/batteries10030102
APA StyleZhang, X., Su, K., Hu, Y., Xue, K., Wang, Y., Han, M., & Lang, J. (2024). [SBP]BF4 Additive Stabilizing Zinc Anode by Simultaneously Regulating the Solvation Shell and Electrode Interface. Batteries, 10(3), 102. https://doi.org/10.3390/batteries10030102