Diphenylphosphoryl Azide as a Multifunctional Flame Retardant Electrolyte Additive for Lithium-Ion Batteries
Abstract
:1. Introduction
2. Experimental Section
2.1. Raw Materials
2.2. Electrolyte Preparation
2.3. Flame Retardant Tests of Electrolyte
2.4. Electrochemical Measurements
2.5. Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, N.; Xie, K.; Huang, H. Ferroelectric Materials for High Energy Density Batteries: Progress and Outlook. ACS Energy Lett. 2023, 8, 4357–4370. [Google Scholar] [CrossRef]
- Armand, M.; Tarascon, J.M. Building better batteries. Nature 2008, 451, 652–657. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 2016, 16, 16013. [Google Scholar] [CrossRef]
- Choi, N.S.; Chen, Z.; Freunberger, S.A.; Ji, X.; Sun, Y.K.; Amine, K.; Yushin, G.; Nazar, L.F.; Cho, J.; Bruce, P.G. Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors. Angew. Chem. Int. Ed. 2012, 51, 9994–10024. [Google Scholar] [CrossRef] [PubMed]
- Ning, J.; Duan, K.; Wang, K.; Liu, J.; Wang, S.; Zhang, J. Boosting practical high voltage lithium metal batteries by butyronitrile in ether electrolytes via coordination, hydrolysis of C N and relatively mild concentration strategy. J. Energy Chem. 2022, 67, 290–299. [Google Scholar] [CrossRef]
- Chen, K.; Yang, H.; Liang, F.; Xue, D. Microwave-Irradiation-Assisted Combustion toward Modified Graphite as Lithium Ion Battery Anode. ACS Appl. Mater. Interfaces 2018, 10, 909–914. [Google Scholar] [CrossRef] [PubMed]
- Heng, S.; Shan, X.; Wang, W.; Wang, Y.; Zhu, G.; Qu, Q.; Zheng, H. Controllable solid electrolyte interphase precursor for stabilizing natural graphite anode in lithium ion batteries. Carbon 2020, 159, 390–400. [Google Scholar] [CrossRef]
- Gogoi, N.; Bowall, E.; Lundström, R.; Mozhzhukhina, N.; Hernández, G.; Broqvist, P.; Berg, E.J. Silyl-Functionalized Electrolyte Additives and Their Reactivity toward Lewis Bases in Li-Ion Cells. Chem. Mater. 2022, 34, 3831–3838. [Google Scholar] [CrossRef]
- Han, X.; Chen, J.; Chen, M.; Zhou, W.; Zhou, X.; Wang, G.; Wong, C.-P.; Liu, B.; Luo, L.; Chen, S.; et al. Induction of planar Li growth with designed interphases for dendrite-free Li metal anodes. Energy Storage Mater. 2021, 39, 250–258. [Google Scholar] [CrossRef]
- Lee, T.; Kim, N.; Lee, J.; Lee, Y.; Sung, J.; Kim, H.; Chae, S.; Cha, H.; Son, Y.; Kwak, S.K.; et al. Suppressing Deformation of Silicon Anodes via Interfacial Synthesis for Fast-Charging Lithium-Ion Batteries. Adv. Energy Mater. 2023, 13, 2301139. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, Y.; Kim, S.C.; Pei, A.; Li, Y.; Boyle, D.T.; Wang, H.; Zhang, Z.; Ye, Y.; Huang, W.; et al. Underpotential lithium plating on graphite anodes caused by temperature heterogeneity. Proc. Natl. Acad. Sci. USA 2020, 117, 29453–29461. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Tsolakidou, C.; Mariyappan, S.; Tarascon, J.-M.; Trabesinger, S. Unraveling gas evolution in sodium batteries by online electrochemical mass spectrometry. Energy Storage Mater. 2021, 42, 12–21. [Google Scholar] [CrossRef]
- Zheng, H.; Xiang, H.; Jiang, F.; Liu, Y.; Sun, Y.; Liang, X.; Feng, Y.; Yu, Y. Lithium Difluorophosphate-Based Dual-Salt Low Concentration Electrolytes for Lithium Metal Batteries. Adv. Energy Mater. 2020, 10, 2001440. [Google Scholar] [CrossRef]
- Dong, J.; Dai, H.; Fan, Q.; Lai, C.; Zhang, S. Grain refining mechanisms: Initial levelling stage during nucleation for high-stability lithium anodes. Nano Energy 2019, 66, 104128. [Google Scholar] [CrossRef]
- Fang, C.; Ye, Z.; Wang, Y.; Zhao, X.; Huang, Y.; Zhao, R.; Liu, J.; Han, J.; Huang, Y. Immobilizing an organic electrode material through π–π interaction for high-performance Li-organic batteries. J. Mater. Chem. A 2019, 7, 22398–22404. [Google Scholar] [CrossRef]
- Gao, X.; Zhou, Y.-N.; Han, D.; Zhou, J.; Zhou, D.; Tang, W.; Goodenough, J.B. Thermodynamic Understanding of Li-Dendrite Formation. Joule 2020, 4, 1864–1879. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, Y.; Cui, Y. Challenges and opportunities towards fast-charging battery materials. Nat. Energy 2019, 4, 540–550. [Google Scholar] [CrossRef]
- Liu, J.; He, S.; Liu, S.; Wang, S.; Zhang, J. Advanced electrolyte systems with additives for high-cell-voltage and high-energy-density lithium batteries. J. Mater. Chem. A 2022, 10, 22929–22954. [Google Scholar] [CrossRef]
- Giffin, G.A. The role of concentration in electrolyte solutions for non-aqueous lithium-based batteries. Nat. Commun. 2022, 13, 5250. [Google Scholar] [CrossRef]
- Liao, C.; Han, L.; Wang, W.; Li, W.; Mu, X.; Kan, Y.; Zhu, J.; Gui, Z.; He, X.; Song, L.; et al. Non-Flammable Electrolyte with Lithium Nitrate as the Only Lithium Salt for Boosting Ultra-Stable Cycling and Fire-Safety Lithium Metal Batteries. Adv. Funct. Mater. 2023, 33, 2212605. [Google Scholar] [CrossRef]
- Han, L.; Liao, C.; Mu, X.; Wu, N.; Xu, Z.; Wang, J.; Song, L.; Kan, Y.; Hu, Y. Flame-Retardant ADP/PEO Solid Polymer Electrolyte for Dendrite-Free and Long-Life Lithium Battery by Generating Al, P-rich SEI Layer. Nano Lett. 2021, 21, 4447–4453. [Google Scholar] [CrossRef]
- Han, L.; Liu, Y.; Liao, C.; Zhao, Y.; Cao, Y.; Kan, Y.; Zhu, J.; Hu, Y. Noncombustible 7 µm-thick solid polymer electrolyte for highly energy density solid state lithium batteries. Nano Energy 2023, 12, 108448. [Google Scholar] [CrossRef]
- Han, B.; Zhang, Z.; Zou, Y.; Xu, K.; Xu, G.; Wang, H.; Meng, H.; Deng, Y.; Li, J.; Gu, M. Poor Stability of Li2CO3 in the Solid Electrolyte Interphase of a Lithium-Metal Anode Revealed by Cryo-Electron Microscopy. Adv. Mater. 2021, 33, 2100404. [Google Scholar] [CrossRef]
- Peled, E.; Menkin, S. Review—SEI: Past, Present and Future. J. Electrochem. Soc. 2017, 164, A1703–A1719. [Google Scholar] [CrossRef]
- Tan, J.; Matz, J.; Dong, P.; Shen, J.; Ye, M. A Growing Appreciation for the Role of LiF in the Solid Electrolyte Interphase. Adv. Energy Mater. 2021, 11, 2100046. [Google Scholar] [CrossRef]
- Sun, Y.; Li, Y.; Sun, J.; Li, Y.; Pei, A.; Cui, Y. Stabilized Li3N for efficient battery cathode prelithiation. Energy Storage Mater. 2017, 6, 119–124. [Google Scholar] [CrossRef]
- Ye, L.; Liao, M.; Wang, B.; Peng, H. Regulating Interfacial Lithium Ion by Artificial Protective Overlayers for High-Performance Lithium Metal Anodes. Chem. A Eur. J. 2022, 28, 202103300. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Sun, Y.; Pei, A.; Chen, K.; Vailionis, A.; Li, Y.; Zheng, G.; Sun, J.; Cui, Y. Robust Pinhole-free Li3N Solid Electrolyte Grown from Molten Lithium. ACS Cent. Sci. 2017, 4, 97–104. [Google Scholar] [CrossRef]
- Chen, K.; Pathak, R.; Gurung, A.; Adhamash, E.A.; Bahrami, B.; He, Q.; Qiao, H.; Smirnova, A.L.; Wu, J.J.; Qiao, Q.; et al. Flower-shaped lithium nitride as a protective layer via facile plasma activation for stable lithium metal anodes. Energy Storage Mater. 2019, 18, 389–396. [Google Scholar] [CrossRef]
- Park, K.; Goodenough, J.B. Dendrite-Suppressed Lithium Plating from a Liquid Electrolyte via Wetting of Li3N. Adv. Energy Mater. 2017, 7, 1700732. [Google Scholar] [CrossRef]
- Hwang, J.-Y.; Park, S.-J.; Yoon, C.S.; Sun, Y.-K. Customizing a Li–metal battery that survives practical operating conditions for electric vehicle applications. Energy Environ. Sci. 2019, 12, 2174–2184. [Google Scholar] [CrossRef]
- Kang, D.; Xiao, M.; Lemmon, J.P. Artificial Solid-Electrolyte Interphase for Lithium Metal Batteries. Batter. Supercaps 2020, 4, 445–455. [Google Scholar] [CrossRef]
- Kim, M.S.; Ryu, J.-H.; Deepika; Lim, Y.R.; Nah, I.W.; Lee, K.-R.; Archer, L.A.; Il Cho, W. Langmuir–Blodgett artificial solid-electrolyte interphases for practical lithium metal batteries. Nat. Energy 2018, 3, 889–898. [Google Scholar] [CrossRef]
- Wang, T.H.; Chen, C.; Li, N.W.; Su, K.; Wu, X.; Yu, L.; Chen, X.C. Cations and anions regulation through hybrid ionic liquid electrolytes towards stable lithium metal anode. Chem. Eng. J. 2022, 439, 135780. [Google Scholar] [CrossRef]
- Weng, S.; Yang, G.; Zhang, S.; Liu, X.; Zhang, X.; Liu, Z.; Cao, M.; Ateş, M.N.; Li, Y.; Chen, L.; et al. Kinetic Limits of Graphite Anode for Fast-Charging Lithium-Ion Batteries. Nano-Micro Lett. 2023, 15, 215. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.; Wang, L.; Liu, F.; Shi, P.; Wang, H.; Wu, X.; Yu, Y. g-C3N4Derivative Artificial Organic/Inorganic Composite Solid Electrolyte Interphase Layer for Stable Lithium Metal Anode. Adv. Energy Mater. 2020, 10, 202002647. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, J.; Luo, Y.; Sun, S.; Qin, L.; Xu, H.; Zhang, P.; Zhang, W.; Tian, W.; Sun, Z. Lithiophilic metallic nitrides modified nickel foam by plasma for stable lithium metal anode. Energy Storage Mater. 2019, 23, 539–546. [Google Scholar] [CrossRef]
- Li, S.; Li, J.; Wang, P.; Ding, H.; Zhou, J.; Li, C.; Cui, X. Interface Engineering Regulation by Improving Self-Decomposition of Lithium Salt-Type Additive using Ultrasound. Adv. Funct. Mater. 2023, 34, 2307180. [Google Scholar] [CrossRef]
- Liao, C.; Han, L.; Mu, X.; Zhu, Y.; Wu, N.; Lu, J.; Zhao, Y.; Li, X.; Hu, Y.; Kan, Y.; et al. Multifunctional High-Efficiency Additive with Synergistic Anion and Cation Coordination for High-Performance LiNi0.8Co0.1Mn0.1O2 Lithium Metal Batteries. ACS Appl. Mater. Interfaces 2021, 13, 46783–46793. [Google Scholar] [CrossRef]
- Zhao, W.; Zheng, G.; Ji, Y.; Peng, C.; Ren, F.; Liu, M.; Pan, F.; Yang, Y. Modulation and quantitative study of conformal electrode-electrolyte interfacial chemistry toward high-energy-density LiNi0.6Co0.2Mn0.2O2‖SiO-C pouch cells. Energy Storage Mater. 2022, 53, 424–434. [Google Scholar] [CrossRef]
- Mu, X.; Li, X.; Liao, C.; Yu, H.; Jin, Y.; Yu, B.; Han, L.; Chen, L.; Kan, Y.; Song, L.; et al. Phosphorus-Fixed Stable Interfacial Nonflammable Gel Polymer Electrolyte for Safe Flexible Lithium-Ion Batteries. Adv. Funct. Mater. 2022, 32, 2203006. [Google Scholar] [CrossRef]
- Gachot, G.; Ribière, P.; Mathiron, D.; Grugeon, S.; Armand, M.; Leriche, J.B.; Pilard, S.; Laruelle, S. Gas Chromatography/Mass Spectrometry As a Suitable Tool for the Li-Ion Battery Electrolyte Degradation Mechanisms Study. Anal. Chem. 2011, 83, 478–485. [Google Scholar] [CrossRef] [PubMed]
- Shi, P.; Zhang, L.; Xiang, H.; Liang, X.; Sun, Y.; Xu, W. Lithium Difluorophosphate as a Dendrite-Suppressing Additive for Lithium Metal Batteries. ACS Appl. Mater. Interfaces 2018, 10, 22201–22209. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Ji, X.; Chen, J.; Chen, L.; Fan, X.; Mu, D.; Wang, C. Lithium Nitrate Regulated Sulfone Electrolytes for Lithium Metal Batteries. Angew. Chem. Int. Ed. 2020, 59, 22194–22201. [Google Scholar] [CrossRef]
- Tan, S.J.; Yue, J.; Hu, X.C.; Shen, Z.Z.; Wang, W.P.; Li, J.Y.; Zuo, T.T.; Duan, H.; Xiao, Y.; Yin, Y.X.; et al. Nitriding-Interface-Regulated Lithium Plating Enables Flame-Retardant Electrolytes for High-Voltage Lithium Metal Batteries. Angew. Chem. Int. Ed. 2019, 58, 7802–7807. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Han, L.; Kan, Y.; Liao, C.; Hu, Y. Diphenylphosphoryl Azide as a Multifunctional Flame Retardant Electrolyte Additive for Lithium-Ion Batteries. Batteries 2024, 10, 117. https://doi.org/10.3390/batteries10040117
Li Z, Han L, Kan Y, Liao C, Hu Y. Diphenylphosphoryl Azide as a Multifunctional Flame Retardant Electrolyte Additive for Lithium-Ion Batteries. Batteries. 2024; 10(4):117. https://doi.org/10.3390/batteries10040117
Chicago/Turabian StyleLi, Zhirui, Longfei Han, Yongchun Kan, Can Liao, and Yuan Hu. 2024. "Diphenylphosphoryl Azide as a Multifunctional Flame Retardant Electrolyte Additive for Lithium-Ion Batteries" Batteries 10, no. 4: 117. https://doi.org/10.3390/batteries10040117
APA StyleLi, Z., Han, L., Kan, Y., Liao, C., & Hu, Y. (2024). Diphenylphosphoryl Azide as a Multifunctional Flame Retardant Electrolyte Additive for Lithium-Ion Batteries. Batteries, 10(4), 117. https://doi.org/10.3390/batteries10040117