Advanced Materials and Technologies in All-Solid-State Lithium Batteries

A special issue of Batteries (ISSN 2313-0105). This special issue belongs to the section "Battery Materials and Interfaces: Anode, Cathode, Separators and Electrolytes or Others".

Deadline for manuscript submissions: closed (5 November 2024) | Viewed by 3872

Special Issue Editor


E-Mail Website
Guest Editor
Institute of New Energy Materials and Engineering, Fuzhou University, Fuzhou 350108, China
Interests: lithium batteries; flame retardant; separator; electrolyte; safety batteries

Special Issue Information

Dear Colleagues,

All-solid-state electrolyte design is a crucial strategy to enhance the energy density and safety performance of lithium batteries to meet the development needs of future energy storage systems. In general, all-solid-state batteries can be classified as inorganic all-solid-state electrolytes, polymer all-solid-state electrolytes, or organic-inorganic composite all-solid-state electrolytes. Up to now, promising progress has been made in all-solid-state lithium battery research. However, the development of all-solid-state batteries, which is still at the laboratory level, still has many challenges, such as process complexity, difficulty in scaling up, and unsatisfactory electrochemical performance.

Therefore, in order to accelerate the commercialisation of all-solid-state lithium batteries, in this Special Issue, “Advanced Materials and Technologies in All-Solid-State Lithium Batteries”, we aim to publish research papers related to the development of advanced materials and key technologies for all-solid-state lithium batteries, such as novel electrolyte materials, creative electrolyte structure design, advanced electrolyte preparation technology, safe electrolyte protection strategy, etc. We encourage experts and researchers to contribute relevant articles, letters, and reviews to this Special Issue of Batteries.

Dr. Can Liao
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Batteries is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • all-solid-state lithium batteries
  • advanced materials
  • in situ technology
  • calculations and simulations
  • machine learning
  • thermal management technologies
  • safety batteries

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 5696 KiB  
Article
Functionalization of Cathode–Electrolyte Interface with Ionic Liquids for High-Performance Quasi-Solid-State Lithium–Sulfur Batteries: A Low-Sulfur Loading Study
by Milinda Kalutara Koralalage, Varun Shreyas, William R. Arnold, Sharmin Akter, Arjun Thapa, Badri Narayanan, Hui Wang, Gamini U. Sumanasekera and Jacek B. Jasinski
Batteries 2024, 10(5), 155; https://doi.org/10.3390/batteries10050155 - 30 Apr 2024
Cited by 1 | Viewed by 1619
Abstract
We introduce a quasi-solid-state electrolyte lithium-sulfur (Li–S) battery (QSSEB) based on a novel Li-argyrodite solid-state electrolyte (SSE), Super P–Sulfur cathode, and Li-anode. The cathode was prepared using a water-based carboxymethyl cellulose (CMC) solution and styrene butadiene rubber (SBR) as the binder while Li [...] Read more.
We introduce a quasi-solid-state electrolyte lithium-sulfur (Li–S) battery (QSSEB) based on a novel Li-argyrodite solid-state electrolyte (SSE), Super P–Sulfur cathode, and Li-anode. The cathode was prepared using a water-based carboxymethyl cellulose (CMC) solution and styrene butadiene rubber (SBR) as the binder while Li6PS5F0.5Cl0.5 SSE was synthesized using a solvent-based process, via the introduction of LiF into the argyrodite crystal structure, which enhances both the ionic conductivity and interface-stabilizing properties of the SSE. Ionic liquids (IL) were prepared using lithium bis(trifluoromethyl sulfonyl)imide (LiTFSI) as the salt, with pre-mixed pyrrolidinium bis(trifluoromethyl sulfonyl)imide (PYR) as solvent and 1,3-dioxolane (DOL) as diluent, and they were used to wet the SSE–electrode interfaces. The effect of IL dilution, the co-solvent amount, the LiTFSI concentration, the C rate at which the batteries are tested and the effect of the introduction of SSE in the cathode, were systematically studied and optimized to develop a QSSEB with higher capacity retention and cyclability. Interfacial reactions occurring at the cathode–SSE interface during cycling were also investigated using electrochemical impedance spectroscopy, cyclic voltammetry, and X-ray photoelectron spectroscopy supported by ab initio molecular dynamics simulations. This work offers a new insight into the intimate interfacial contacts between the SSE and carbon–sulfur cathodes, which are critical for improving the electrochemical performance of quasi-solid-state lithium–sulfur batteries. Full article
Show Figures

Figure 1

15 pages, 4255 KiB  
Article
Diphenylphosphoryl Azide as a Multifunctional Flame Retardant Electrolyte Additive for Lithium-Ion Batteries
by Zhirui Li, Longfei Han, Yongchun Kan, Can Liao and Yuan Hu
Batteries 2024, 10(4), 117; https://doi.org/10.3390/batteries10040117 - 30 Mar 2024
Viewed by 1679
Abstract
Graphite anode materials and carbonate electrolyte have been the top choices for commercial lithium-ion batteries (LIBS) for a long time. However, the uneven deposition and stripping of lithium cause irreversible damage to the graphite structure, and the low flash point and high flammability [...] Read more.
Graphite anode materials and carbonate electrolyte have been the top choices for commercial lithium-ion batteries (LIBS) for a long time. However, the uneven deposition and stripping of lithium cause irreversible damage to the graphite structure, and the low flash point and high flammability of the carbonate electrolyte pose a significant fire safety risk. Here, we proposed a multifunctional electrolyte additive diphenylphosphoryl azide (DPPA), which can construct a solid electrolyte interphase (SEI) with high ionic conductivity lithium nitride (Li3N) to ensure efficient transport of Li+. This not only protects the artificial graphite (AG) electrode but also inhibits lithium dendrites to achieve excellent electrochemical performance. Meanwhile, the LIBS with DPPA offers satisfactory flame retardancy performance. The AG//Li half cells with DPPA-0.5M can still maintain a specific capacity of about 350 mAh/g after 200 cycles at 0.2 C. Its cycle performance and rate performance were better than commercial electrolyte (EC/DMC). After cycling, the microstructure surface of the AG electrode was complete and flat, and the surface of the lithium metal electrode had fewer lithium dendrites. Importantly, we found that the pouch cell with DPPA-0.5M had low peak heat release rate. When exposed to external conditions of continuous heating, DPPA significantly improved the fire safety of the LIBS. The research of DPPA in lithium electrolyte is a step towards the development of safe and efficient lithium batteries. Full article
Show Figures

Graphical abstract

Back to TopTop