Water/N,N-Dimethylacetamide-Based Hybrid Electrolyte and Its Application to Enhanced Voltage Electrochemical Capacitors
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Preparation Methods
2.2. Characterization Methods
3. Results and Discussion
3.1. Physicochemical Properties of Electrolytes
3.2. Electrochemical Properties of Electrolytes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beguin, F.; Presser, V.; Balducci, A.; Frackowiak, E. Carbons and electrolytes for advanced supercapacitors. Adv. Mater. 2014, 26, 2219–2251. [Google Scholar] [CrossRef]
- Wang, Y.; Song, Y.; Xia, Y. Electrochemical capacitors: Mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 2016, 45, 5925–5950. [Google Scholar] [CrossRef]
- Pal, B.; Yang, S.; Ramesh, S.; Thangadurai, V.; Jose, R. Electrolyte selection for supercapacitive devices: A critical review. Nanoscale Adv. 2019, 1, 3807–3835. [Google Scholar] [CrossRef]
- Pineiro-Prado, I.; Salinas-Torres, D.; Ruiz-Rosas, R.; Morallon, E.; Cazorla-Amoros, D. Design of activated carbon/activated carbon asymmetric capacitors. Front. Mater. 2016, 3, 1–12. [Google Scholar] [CrossRef]
- Miao, L.; Song, Z.; Zhu, D.; Li, L.; Gan, L.; Liu, M. Ionic liquids for supercapacitive energy storage: A mini-review. Energ. Fuel. 2021, 35, 8443–8455. [Google Scholar] [CrossRef]
- Salanne, M. Ionic liquids for supercapacitor applications. Top Curr. Chem. 2017, 375, 1–25. [Google Scholar] [CrossRef]
- Puttaswamy, R.; Mondal, C.; Mondal, D.; Ghosh, D. An account on the deep eutectic solvents-based electrolytes for rechargeable batteries and supercapacitors. Sustain. Mater. Technol. 2022, 33, e00477. [Google Scholar] [CrossRef]
- Ruiz, V.; Santamaria, R.; Granda, M.; Blanco, C. Long-term cycling of carbon-based supercapacitors in aqueous media. Electrochim. Acta 2009, 54, 4481–4486. [Google Scholar] [CrossRef]
- Demarconnay, L.; Raymundo-Pinero, E.; Beguin, F. A symmetric carbon/carbon supercapacitor operating at 1.6 V by using a neutral aqueous solution. Electrochem. Commun. 2010, 12, 1275–1278. [Google Scholar] [CrossRef]
- Bichat, M.P.; Raymundo-Pinero, E.; Beguin, F. High voltage supercapacitor built with seaweed carbons in neutral aqueous electrolyte. Carbon 2010, 48, 4351–4361. [Google Scholar] [CrossRef]
- Gao, Q.; Demarconnay, L.; Raymundo-Pinero, E.; Beguin, F. Exploring the large voltage range of carbon/carbon supercapacitors in aqueous lithium sulfate electrolyte. Energy Environ. Sci. 2012, 5, 9611–9617. [Google Scholar] [CrossRef]
- Ratajczak, P.; Jurewicz, K.; Beguin, F. Factors contributing to ageing of high voltage carbon/carbon supercapacitors in salt aqueous electrolyte. J. Appl. Electrochem. 2014, 44, 475–480. [Google Scholar] [CrossRef]
- Ratajczak, P.; Jurewicz, K.; Skowron, P.; Abbas, Q.; Beguin, F. Effect of accelerated ageing on the performance of high voltage carbon/carbon electrochemical capacitors in salt aqueous electrolyte. Electrochim. Acta 2014, 130, 344–350. [Google Scholar] [CrossRef]
- Abbas, Q.; Beguin, F. High voltage AC/AC electrochemical capacitor operating at low temperature in salt aqueous electrolyte. J. Power Sources 2016, 318, 235e241. [Google Scholar] [CrossRef]
- Suo, L.; Borodin, O.; Gao, T.; Olguin, M.; Ho, J.; Fan, X.; Luo, C.; Wang, C.; Xu, K. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 2015, 350, 938–943. [Google Scholar] [CrossRef]
- Bu, X.; Su, L.; Dou, Q.; Lei, S.; Yan, X. A low-cost “water-in-salt” electrolyte for a 2.3 V high-rate carbon-based supercapacitor. J. Mater. Chem. A 2019, 7, 7541–7547. [Google Scholar] [CrossRef]
- Tian, X.; Zhu, Q.; Xu, B. “Water-in-Salt” electrolytes for supercapacitors: A review. ChemSusChem 2021, 14, 2501–2515. [Google Scholar] [CrossRef]
- Pang, M.; Jiang, S.; Zhao, J.; Zhang, S.; Wang, R.; Li, N.; Liu, R.; Pan, Q.; Qu, W.; Xing, B. “Water-in-salt” electrolyte enhanced high voltage aqueous supercapacitor with carbon electrodes derived from biomass waste-ground grain hulls. RSC Adv. 2020, 10, 35545. [Google Scholar] [CrossRef]
- Lannelongue, P.; Bouchal, R.; Mourad, E.; Bodin, C.; Olarte, M.; le Vot, S.; Favier, F.; Fontaine, O. “Water-in-Salt” for supercapacitors: A compromise between voltage, power density, energy density and stability. J. Electrochem. Soc. 2018, 165, A657–A663. [Google Scholar] [CrossRef]
- Park, J.; Lee, J.; Kim, W. Water-in-Salt Electrolyte enables ultrafast supercapacitors for AC line filtering. ACS Energy Lett. 2021, 6, 769–777. [Google Scholar] [CrossRef]
- Dou, Q.; Lei, S.; Wang, D.-W.; Zhang, Q.; Xiao, D.; Guo, H.; Wang, A.; Yang, H.; Li, Y.; Shi, S.; et al. Safe and high-rate supercapacitors based on an ‘‘acetonitrile/water in salt’’ hybrid electrolyte. Energy Environ. Sci. 2018, 11, 3212–3219. [Google Scholar] [CrossRef]
- Xiao, D.; Dou, Q.; Zhang, L.; Ma, Y.; Shi, S.; Lei, S.; Yu, H.; Yan, X. Optimization of organic/water hybrid electrolytes for high-rate carbon-based supercapacitor. Adv. Funct. Mater. 2019, 29, 1904136. [Google Scholar] [CrossRef]
- Ye, W.; Wang, H.; Ning, J.; Zhong, Y.; Hu, Y. New types of hybrid electrolytes for supercapacitors. J. Energy Chem. 2021, 57, 219–232. [Google Scholar] [CrossRef]
- Khosrozadeh, A.; Tao, L.; Zhao, P.; Miller, M.B.; Voznyy, O.; Liu, J. Water/acetonitrile hybrid electrolyte enables using smaller ions for achieving superior energy density in carbon-based supercapacitors. J. Power Sources 2021, 498, 229905. [Google Scholar] [CrossRef]
- Dsoke, S.; Abbas, Q. Benefits of organo-aqueous binary solvents for redox supercapacitors based on polyoxometalates. ChemElectroChem 2020, 7, 2466–2476. [Google Scholar] [CrossRef]
- Wang, H.; Deng, Y.; Qiu, J.; Wu, J.; Zhang, K.; Shao, J.; Yan, L. In situ formation of “Dimethyl Sulfoxide/Water-in-Salt”-based chitosan hydrogel electrolyte for advanced all-solid-state supercapacitors. ChemSusChem 2021, 14, 632–641. [Google Scholar] [CrossRef]
- Dou, Q.; Lu, Y.; Su, L.; Zhang, X.; Lei, S.; Bu, X.; Liu, L.; Xiao, D.; Chen, J.; Shi, S.; et al. A sodium perchlorate-based hybrid electrolyte with high salt-to-water molar ratio for safe 2.5 V carbon-based supercapacitor. Energy Storage Mater. 2019, 23, 603–609. [Google Scholar] [CrossRef]
- Wu, S.; Su, B.; Sun, M.; Gu, S.; Lu, Z.; Zhang, K.; Yu, D.Y.W.; Huang, B.; Wang, P.; Lee, C.-S.; et al. Dilute aqueous-aprotic hybrid electrolyte enabling a wide electrochemical window through solvation structure engineering. Adv. Mater. 2021, 33, 2102390. [Google Scholar] [CrossRef]
- Nian, Q.; Zhang, X.; Feng, Y.; Liu, S.; Sun, T.; Zheng, S.; Ren, X.; Tao, Z.; Zhang, D.; Chen, J. Designing electrolyte structure to suppress hydrogen evolution reaction in aqueous batteries. ACS Energy Lett. 2021, 6, 2174–2180. [Google Scholar] [CrossRef]
- Wang, L.; Uosaki, K.; Noguchi, H. Effect of electrolyte concentration on the solvation structure of gold/LITFSI−DMSO Solution Interface. J. Phys. Chem. C 2020, 124, 12381–12389. [Google Scholar] [CrossRef]
- Cao, L.; Li, D.; Hu, E.; Xu, J.; Deng, T.; Ma, L.; Wang, Y.; Yang, X.-Q.; Wang, C. Solvation structure design for aqueous Zn metal batteries. J. Am. Chem. Soc. 2020, 142, 21404–21409. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 31374, N,N-Dimethylacetamide. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/N_N-Dimethylacetamide (accessed on 12 June 2024).
- National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 6342, Acetonitrile. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Acetonitrile (accessed on 12 June 2024).
- Wohlfahrt, C. Static dielectric constants of pure Liquids and binary liquid mixtures. In Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology—New Series, IV/17; Lechner, M.D., Ed.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008. [Google Scholar] [CrossRef]
- Zhong, C.; Deng, Y.; Hu, W.; Qiao, J.; Zhang, L.; Zhang, J. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 2015, 44, 7484–7539. [Google Scholar] [CrossRef]
- Zaichikov, A.M.; Bushuev, Y.G. The thermodynamic properties of the water-dimethylacetamide system. Russ. J. Phys. Chem. 1995, 69, 1766–1770. [Google Scholar]
- Manjunath, M.S.; Sivagurunathan, P.; Sannappa, J. Studies of hydrogen bonding between N, N-Dimethylacetamide and primary alcohols. E-J. Chem. 2009, 6, 120362m. [Google Scholar] [CrossRef]
- Schmid, E.; Brodbek, E. Raman intensity calculations with the CNDO method. Part 111: N,N-dimethylamide-water complexes. Can. J. Chem. 1985, 63, 1365–1371. [Google Scholar] [CrossRef]
- Durgaprasad, G.; Sathyanarayana, D.N.; Patel, C.C.; Randhawa, H.S.; Goel, A.; Rao, C.N.R. Normal vibrations of N,N-dimethylacetamide. Spectrochim. Acta Part A Mol. Spectrosc. 1972, 28, 2311–2318. [Google Scholar] [CrossRef]
- Qu, H.; Ling, Z.; Qi, X.; Xin, Y.; Liu, C.; Cao, H. A remote Raman system and its applications for planetary material studies. Sensors 2021, 21, 6973. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Y.-H.; Zhao, L.-J. ATR-FTIR spectroscopic studies on aqueous LiClO4, NaClO4, and Mg(ClO4)2 solutions. Phys. Chem. Chem. Phys. 2004, 6, 537–542. [Google Scholar] [CrossRef]
- Cvjeticanin, N.D.; Sasic, S. Raman spectroscopic study of lithium and sodium perchlorate association in propylene carbonate–water mixed solvents. J. Raman Spectrosc. 2000, 31, 871–876. [Google Scholar] [CrossRef]
- Chabanel, M.; Legoff, D.; Touaj, K. Aggregation of perchlorates in aprotic donor solvents. Part 1.—Lithium and sodium perchlorates. J. Chem. Soc. Faraday Trans. 1996, 92, 4199–4205. [Google Scholar] [CrossRef]
- Chalapathi, V.V.; Ramiah, K.V. Normal vibrations of N, N-dimenthylformamide and N, N-dimethylacetamide. Proc. Ind. Acad. Sci. 1968, 68, 109. [Google Scholar] [CrossRef]
- Kotov, N.; Raus, V.; Dybal, J. Intermolecular interactions in N, N-dimethylacetamide without and with LiCl studied by infrared spectroscopy and quantum chemical model calculations. J. Phys. Chem. B. 2018, 122, 8921–8930. [Google Scholar] [CrossRef]
- Yang, B.; Cao, X.; Wang, C.; Wang, S.; Sun, C. Investigation of hydrogen bonding in Water/DMSO binary mixtures by Raman spectroscopy. Spectrochim. Acta 2020, 228, 117704. [Google Scholar] [CrossRef]
- Wallace, V.M.; Dhumal, N.R.; Zehentbauer, F.M.; Kim, H.J.; Kiefer, J. Revisiting the aqueous solutions of dimethyl sulfoxide by spectroscopy in the mid- and near-infrared: Experiments and CarParrinello simulations. J. Phys. Chem. B 2015, 119, 14780–14789. [Google Scholar] [CrossRef]
- Li, M.; Feng, X.; Yin, J.; Cui, T.; Li, F.; Chen, J.; Lin, Y.; Xu, X.; Ding, S.; Wang, J. Regulating the solvation structure with N,N-dimethylacetamide co-solvent for high-performance zinc-ion batteries. J. Mater. Chem. A 2023, 11, 2554. [Google Scholar] [CrossRef]
- Weingarth, D.; Noh, H.; Foelske-Schmitz, A.; Wokaun, A.; Kötz, R. A reliable determination method of stability limits for electrochemical, double layer capacitors. Electrochim. Acta 2013, 103, 119–124. [Google Scholar] [CrossRef]
- Oukaour, A.; Tala-Ighil, B.; AlSakka, M.; Gualous, H.; Gallay, R.; Boudart, B. Calendar ageing and health diagnosis of supercapacitor. Elec. Power. Sys. Res. 2013, 95, 330–338. [Google Scholar] [CrossRef]
- Piwek, J.; Platek-Mielczarek, A.; Frackowiak, E.; Fic, K. Enhancing capacitor lifetime by alternate constant polarization. J. Power Sources 2021, 506, 230131. [Google Scholar] [CrossRef]
- Taberna, P.L.; Simon, P.; Fauvarque, J.F. Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J. Electrochem. Soc. 2003, 150, A292e–A300. [Google Scholar] [CrossRef]
- Azmi, S.; Koudahia, M.F.; Frackowiak, E. Reline deep eutectic solvent as a green electrolyte for electrochemical energy storage applications. Energy Environ. Sci. 2022, 15, 1156–1171. [Google Scholar] [CrossRef]
- Tee, E.; Tallo, I.; Thomberg, T.; Janes, A.; Lust, E. Supercapacitors Based on Activated Silicon Carbide-Derived Carbon Materials and Ionic Liquid. J. Electrochem. Soc. 2016, 163, A131. [Google Scholar]
Solvent | Molar Mass (g mol−1) | Density * (g cm−3) | Dielectric Constant * | Viscosity * (mPa s) | Boling Point (°C) | Flash Point (°C) |
---|---|---|---|---|---|---|
H2O | 18.01 | 0.997 | 78.30 | 0.89 | 100 | - |
DMAc | 87.12 | 0.937 | 37.76 | 0.92 | 165 | 63 |
Electrolyte | Conductivity (mS cm−1) | Viscosity (mPa s) | Density (g cm−3) |
---|---|---|---|
H2O/NaClO4 | 126.50 | 1.33 | 1.145 |
H2O/DMAc/NaClO4 | 39.02 | 3.84 | 1.125 |
DMAc/NaClO4 | 12.24 | 6.79 | 1.087 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mroziewicz, A.A.; Solska, K.; Żukowska, G.Z.; Skunik-Nuckowska, M. Water/N,N-Dimethylacetamide-Based Hybrid Electrolyte and Its Application to Enhanced Voltage Electrochemical Capacitors. Batteries 2024, 10, 213. https://doi.org/10.3390/batteries10060213
Mroziewicz AA, Solska K, Żukowska GZ, Skunik-Nuckowska M. Water/N,N-Dimethylacetamide-Based Hybrid Electrolyte and Its Application to Enhanced Voltage Electrochemical Capacitors. Batteries. 2024; 10(6):213. https://doi.org/10.3390/batteries10060213
Chicago/Turabian StyleMroziewicz, Aleksandra A., Karolina Solska, Grażyna Zofia Żukowska, and Magdalena Skunik-Nuckowska. 2024. "Water/N,N-Dimethylacetamide-Based Hybrid Electrolyte and Its Application to Enhanced Voltage Electrochemical Capacitors" Batteries 10, no. 6: 213. https://doi.org/10.3390/batteries10060213
APA StyleMroziewicz, A. A., Solska, K., Żukowska, G. Z., & Skunik-Nuckowska, M. (2024). Water/N,N-Dimethylacetamide-Based Hybrid Electrolyte and Its Application to Enhanced Voltage Electrochemical Capacitors. Batteries, 10(6), 213. https://doi.org/10.3390/batteries10060213