Optimal Placement and Capacity of BESS and PV in EV Integrated Distribution Systems: The Tenth Feeder of Phitsanulok Substation Case Study
Abstract
:1. Introduction
- The optimal placement and capacity of the BESS and PV in the PLA10 distribution system considering EV penetrations are investigated in this work by considering the overall system costs including installation, replacement, and operational and maintenance costs as the objective functions to be minimized.
- The distribution system performance is improved by reducing line losses, minimizing peak demand, and enhancing the voltage profile after the installation of the BESS and PV.
- Two optimization algorithms including PSO and AVOA are employed to find the optimal solutions, and their simulation results, statistical analysis, and payback period are compared.
2. Input Data Models
2.1. Battery Energy Storage Systems (BESSs) in a Distribution System
2.1.1. BESS Simulation
2.1.2. BESS Simulation
2.2. Charging Station for EV Modeling
3. Problem Formulation
3.1. Objective Function
3.2. Constraints
3.2.1. Equality Constraints
3.2.2. Inequality Constraints
4. Methodology
4.1. Particle Swarm Optimization (PSO)
4.2. African Vulture Optimization Algorithm (AVOA)
4.3. System Efficiency Evaluation
4.3.1. Voltage Deviation Index (VDI)
4.3.2. Transmission Losses
4.3.3. Peak Demand
4.4. Implementation
5. Simulation Results
5.1. Input System Data
5.2. Results and Discussion
5.2.1. Optimal Placement and Capacity of the BESS and PV
5.2.2. System Performance Improvement Comparison
5.2.3. Statistical Analysis and Algorithm Performance Comparison
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviations | |
AHA | artificial hummingbird algorithm |
AVOA | African vulture optimization algorithm |
BESS | battery energy storage system |
COA | coyote optimization algorithm |
DG | distribution generator |
DMS | distribution management system |
DOD | depth of discharge |
EMS | energy management system |
ESS | energy storage system |
EV | electric vehicle |
GA | genetic algorithm |
GWO | grey wolf optimizer |
IC | investment costs |
IPV | Interline-PV |
LCC | lower life cycle costs |
MC | maintenance costs |
MCS | Monte Carlo simulation |
mFBI | modified forensic-based investigation |
MOPSO | multi-objective PSO |
NAA | natural aggregation algorithm |
O&M | operation and maintenance |
PCS | power conversion system |
PLA10 | the tenth feeder of Phitsanulok substation 1 |
PSO | particle swarm optimization |
PV | photovoltaic |
RC | replacement costs |
RES | renewable energy source |
SA | simulated annealing |
SOE | state of energy |
SSA | salp swarm algorithm |
THD | total harmonic distortion |
TLBO | teaching learning-based optimization |
TS | tabu search |
VDI | voltage deviation index |
WT | wind turbine |
Nomenclature | |
symbols | |
a0 | constant Fourier coefficient |
an, bn | Fourier cosine coefficient, Fourier sine coefficient, |
CiF | Fourier coefficient vector |
CiT | charging and discharging rates in the considered duration |
CI | BESS investment cost |
Closs | line loss cost |
CO&M | BESS operation and maintenance costs |
Cp | peak demand cost |
CPV | PV installation cost |
CR | BESS replacement cost |
Csystem | system costs |
CVR | voltage regulation cost |
Cycles | daily cycle of the BESS |
CyclesLife | nominal life cycles of the Li-ion battery |
D | operation days |
DODmax | maximum DOD |
EB | energy in the BESS (MWh) |
EBmin, EBmax | minimum and maximum energies of the BESS |
changes in energies in the BESS at two continuous times | |
Nbat | BESS size (kWh) |
Nbr | total number of branches |
Nbus | total number of buses |
Npv | PV size (kW) |
n | number of Fourier coefficients |
PB | BESS power |
PBmin, PBmax | minimum and maximum powers of the BESS |
Ptcha, Ptdis | charging and discharging of the BESS at a time t |
PD | power of the load demand |
Ptd(n), Qtd(n) | total active and reactive power loads integrating EV penetration at the nth bus |
P0ev(n), Q0ev(n) | additional active and reactive loads by the EV penetrations at the nth bus |
Pgrid | power of the grid |
P0L(n), Q0L(n) | nominal active and reactive load power at the nth bus |
PtL, QtL | active and reactive power losses of line l at each time t |
PL | real loss in each line |
Ploss | active power loss for each period T |
Pmax | maximum power demand |
Ppv | power of the PV |
Q | lifespan of the BESS in years |
Qloss | reactive power loss for each period T |
Sloss | apparent power loss for each period T |
T | total period |
t | time |
tyear | study duration |
sampling interval time | |
Vi | voltage at the ith bus (p.u.) |
Vmin, Vmax | minimum and maximum voltages of each bus |
Vref | reference voltage |
Vt(n), V0(n) | time and initial nominal voltages |
%VDI | total percentage of VDI in the system |
%VDIi | maximum percentage of VDI at bus i for each period T |
active and reactive power exponents of the load demand | |
active and reactive power exponents of the EV load demand | |
rates of the BESS installation cost, voltage regulation cost, transmission loss cost, maximum energy demand cost and PV installation cost | |
cycle efficiency of BESS | |
, | Charging and discharging efficiencies of the BESS |
scale factor | |
AC/DC converter power factor | |
symbols for PSO | |
c1, c2 | positive constant values |
gbest | best position of the entire particle (global best) |
itermax | maximum iteration |
k | iteration |
pbest,i | best position of the particle i (personal best) |
r1, r2 | random values between 0 and 1 |
vi | velocity of particle i |
w | inertia weight |
wmax, wmin | maximum and minimum inertia weight |
xi | position of particle i |
symbols for AVOA | |
A1, A2 | rivalries for food |
BestVulture1(i), BestVulture2(i) | best vulture of the first and second groups at iteration i |
D | parameter adopted to update the best vulture positions in two groups |
d | distance of the vulture from one of the best vultures in two groups |
F | starvation rate of the vultures |
h | number randomly chosen between −2 and 2 |
i | iteration |
L1, L2 | indicators determined before the searching process |
Levy(d) | Levy flight |
n | number of vulture groups |
P | vector of the vulture position |
pi | probability of selecting the best solution |
R | one of best vultures |
rand1, rand2, rand3, rand4, rand5, rand6 | random number between 0 and 1 |
S1, S2 | spiral equation obtained between all vultures and one of the best vultures in two groups |
t | parameter used to enhance the searching operation |
ub, lb | variable upper and lower bounds |
w | parameter used to balance exploration and exploitation phases |
X | movement of vultures randomly move to protect food from others |
z | number randomly generated between −1 and 1 |
Appendix A
From Bus | To Bus | Transmission Line | Load at Receiving Bus | ||
---|---|---|---|---|---|
Resistance (p.u.) | Reactance (p.u.) | Active Power (MW) | Reactive Power (MVar) | ||
1 | 2 | 0.00066753 | 0.00131316 | 0.040000 | 0.040000 |
2 | 3 | 0.00304984 | 0.00599965 | 0.080000 | 0.050000 |
3 | 4 | 0.03190178 | 0.06275724 | 0 | 0 |
4 | 5 | 0.00615880 | 0.01211575 | 0.000170 | 0.002000 |
5 | 6 | 0.00416107 | 0.00818577 | 0.000160 | 0.002000 |
6 | 7 | 0.04335671 | 0.09034338 | 0.040000 | 0.030000 |
7 | 8 | 0.08122618 | 0.18842561 | 0 | 0 |
8 | 9 | 0.01395848 | 0.03238038 | 0.010000 | 0.010000 |
9 | 10 | 0.00213025 | 0.00494169 | 0 | 0 |
10 | 11 | 0.04919453 | 0.11411968 | 0 | 0 |
10 | 60 | 0.00384937 | 0.00757257 | 3.008000 | 1.864000 |
11 | 12 | 0.00912894 | 0.02117700 | 0.000160 | 0.003400 |
11 | 62 | 0.02639606 | 0.05192700 | 0.804000 | 0.498200 |
12 | 13 | 0.01396787 | 0.03240218 | 0 | 0 |
13 | 14 | 0.00314541 | 0.00729661 | 0.381700 | 0.023600 |
13 | 65 | 0.01438785 | 0.00797073 | 0.014620 | 0.016500 |
14 | 15 | 0.00615577 | 0.01427993 | 0.000160 | 0.002050 |
15 | 16 | 0.04016105 | 0.09316418 | 0 | 0 |
16 | 17 | 0.00439902 | 0.01020468 | 0.000160 | 0.001030 |
17 | 18 | 0.02003538 | 0.04647736 | 0.005770 | 0.005510 |
18 | 19 | 0.09222763 | 0.21394636 | 0.005570 | 0.038620 |
19 | 20 | 0.06495031 | 0.15066940 | 0.178560 | 0.121240 |
20 | 21 | 0.02132539 | 0.04946987 | 0 | 0 |
21 | 22 | 0.01916562 | 0.04445972 | 0.028680 | 0.023040 |
21 | 66 | 0.15693050 | 0.06482364 | 0.090740 | 0.063640 |
22 | 23 | 0.00740378 | 0.01717504 | 0.086560 | 0.064230 |
23 | 24 | 0.01236938 | 0.02869405 | 0.021610 | 0.018740 |
24 | 25 | 0.06179254 | 0.14487545 | 0.003180 | 0.001976 |
25 | 26 | 0.00572173 | 0.01327308 | 0.007210 | 0.006480 |
26 | 27 | 0.00073966 | 0.00171583 | 0 | 0 |
27 | 28 | 0.00213266 | 0.00494727 | 0.147400 | 0.104600 |
27 | 68 | 0.09849954 | 0.19377077 | 0 | 0 |
28 | 29 | 0.01063023 | 0.02465962 | 0.007530 | 0.004660 |
29 | 30 | 0.01916156 | 0.04445031 | 0 | 0.320350 |
30 | 31 | 0.01916156 | 0.04445031 | 0 | 0 |
31 | 32 | 0.01198843 | 0.02781033 | 0.203700 | 0.134600 |
31 | 71 | 0.00393335 | 0.00162476 | 0.168000 | 0.104100 |
32 | 33 | 0.01265207 | 0.02934982 | 0.004640 | 0.003810 |
33 | 34 | 0.04567201 | 0.10594830 | 0.016490 | 0.011470 |
34 | 35 | 0.03290951 | 0.07634231 | 0 | 0 |
35 | 36 | 0.04224496 | 0.09642051 | 0.001760 | 0.001090 |
36 | 37 | 0.05730026 | 0.11272252 | 0.005335 | 0.003306 |
37 | 38 | 0.06691377 | 0.13163447 | 0.000584 | 0.000362 |
38 | 39 | 0.01909708 | 0.03756826 | 0.000160 | 0.001000 |
39 | 40 | 0.14006092 | 0.27553140 | 0.006120 | 0.004730 |
40 | 41 | 0.00481246 | 0.00946720 | 0 | 0 |
41 | 42 | 0.06041173 | 0.11884350 | 0 | 0 |
41 | 74 | 0.00490924 | 0.00202787 | 0.807000 | 0.500000 |
42 | 43 | 0.02607389 | 0.05129321 | 0.000400 | 0.003450 |
42 | 78 | 0.02676599 | 0.01105629 | 0.000436 | 0.000270 |
43 | 44 | 0.26283988 | 0.51706521 | 0 | 0 |
44 | 45 | 0.00748726 | 0.01472912 | 0.001320 | 0.000820 |
45 | 46 | 0.01764724 | 0.03471611 | 0.008250 | 0.007050 |
46 | 47 | 0.08322179 | 0.05876720 | 0.003240 | 0.003940 |
47 | 48 | 0.04592143 | 0.03242749 | 0 | 0 |
48 | 49 | 0.03547341 | 0.01465309 | 0.004280 | 0.004510 |
48 | 80 | 0.00871169 | 0.00359856 | 0.054010 | 0.033460 |
49 | 50 | 0.11240115 | 0.21125256 | 0 | 0.311800 |
50 | 51 | 0.00259138 | 0.00509782 | 0 | 0 |
51 | 52 | 0.03175833 | 0.06247578 | 0.008020 | 0.005920 |
51 | 82 | 0.00368953 | 0.00725813 | 2.419000 | 1.499000 |
52 | 53 | 0.09577148 | 0.18840408 | 0 | 0 |
53 | 54 | 0.13929892 | 0.27403234 | 0.000340 | 0.002130 |
53 | 83 | 0.08478230 | 0.03502123 | 0 | 0 |
54 | 55 | 0.03304137 | 0.06499981 | 0.000160 | 0.000970 |
55 | 56 | 0.01455318 | 0.02862939 | 0 | 0 |
56 | 57 | 0.11294182 | 0.22218196 | 0.004380 | 0.002718 |
57 | 58 | 0.00454544 | 0.00894190 | 0 | 0 |
58 | 88 | 0.13124128 | 0.05421213 | 0.011150 | 0.006910 |
58 | 59 | 0.11447834 | 0.22728361 | 0.007940 | 0.005870 |
60 | 61 | 0.00227225 | 0.00447004 | 0.000980 | 0.196900 |
62 | 63 | 0.01036553 | 0.02039132 | 0.000160 | 0.027130 |
63 | 64 | 0.00243037 | 0.00478109 | 0.000160 | 0.027130 |
66 | 67 | 0.03859241 | 0.01594146 | 0.007620 | 0.009990 |
68 | 69 | 0.01777059 | 0.03495874 | 0.000160 | 0.003370 |
69 | 70 | 0.20185744 | 0.15214860 | 0.008380 | 0.519700 |
71 | 72 | 0.00347006 | 0.00143339 | 0.000160 | 0.021290 |
72 | 73 | 0.01266308 | 0.00998547 | 0.000160 | 0.013420 |
74 | 75 | 0.00438857 | 0.00181280 | 0.000160 | 0.021030 |
75 | 76 | 0.01184211 | 0.00489165 | 0.000160 | 0.020900 |
76 | 77 | 0.00909933 | 0.00375868 | 0.000160 | 0.021030 |
78 | 79 | 0.02405394 | 0.01813048 | 0.015400 | 0.009580 |
80 | 81 | 0.00446599 | 0.00184478 | 0.008000 | 0.015260 |
83 | 84 | 0.01456305 | 0.00601559 | 0.040970 | 0.030930 |
83 | 86 | 0.03047604 | 0.01258881 | 0.039520 | 0.030000 |
84 | 85 | 0.09970403 | 0.04118499 | 0.042040 | 0.031610 |
86 | 87 | 0.15245500 | 0.06297496 | 0.007440 | 0.009720 |
88 | 89 | 0.02513544 | 0.01038276 | 0 | 0 |
89 | 90 | 0.01389884 | 0.00574123 | 0.004320 | 0.002680 |
89 | 91 | 0.06395522 | 0.02641814 | 0.015780 | 0.009780 |
References
- Raihan, A.; Tuspekova, A. Dynamic Impacts of Economic Growth, Energy Use, Urbanization, Tourism, Agricultural Value-Added, and Forested Area on Carbon Dioxide Emissions in Brazil. J. Environ. Stud. Sci. 2022, 12, 794–814. [Google Scholar] [CrossRef]
- Hassan, M.S.; Mahmood, H.; Javaid, A. The Impact of Electric Power Consumption on Economic Growth: A Case Study of Portugal, France, and Finland. Environ. Sci. Pollut. Res. 2022, 29, 45204–45220. [Google Scholar] [CrossRef] [PubMed]
- Kongkuah, M.; Yao, H.; Yilanci, V. The Relationship between Energy Consumption, Economic Growth, and CO2 Emissions in China: The Role of Urbanisation and International Trade. Environ. Dev. Sustain. 2022, 24, 4684–4708. [Google Scholar] [CrossRef]
- Dai, Q.; Liu, J.; Wei, Q. Optimal Photovoltaic/Battery Energy Storage/Electric Vehicle Charging Station Design Based Onmulti-Agent Particle Swarm Optimization Algorithm. Sustainability 2019, 11, 1973. [Google Scholar] [CrossRef]
- Motalleb, M.; Reihani, E.; Ghorbani, R. Optimal Placement and Sizing of the Storage Supporting Transmission and Distribution Networks. Renew. Energy 2016, 94, 651–659. [Google Scholar] [CrossRef]
- El-Batawy, S.A.; Morsi, W.G. Optimal Design of Community Battery Energy Storage Systems with Prosumers Owning Electric Vehicles. IEEE Trans. Industr. Inform. 2018, 14, 1920–1931. [Google Scholar] [CrossRef]
- Kamel, O.M.; Abdelaziz, A.Y.; Zaki Diab, A.A. Damping Oscillation Techniques for Wind Farm DFIG Integrated into Inter-Connected Power System. Electr. Power Compon. Syst. 2020, 48, 1551–1570. [Google Scholar] [CrossRef]
- Kamel, O.M.; Diab, A.A.Z.; Mahmoud, M.M.; Al-Sumaiti, A.S.; Sultan, H.M. Performance Enhancement of an Islanded Microgrid with the Support of Electrical Vehicle and STATCOM Systems. Energies 2023, 16, 1577. [Google Scholar] [CrossRef]
- Tovilović, D.M.; Rajaković, N.L.J. The Simultaneous Impact of Photovoltaic Systems and Plug-in Electric Vehicles on the Daily Load and Voltage Profiles and the Harmonic Voltage Distortions in Urban Distribution Systems. Renew. Energy 2015, 76, 454–464. [Google Scholar] [CrossRef]
- Babacan, O.; Torre, W.; Kleissl, J. Siting and Sizing of Distributed Energy Storage to Mitigate Voltage Impact by Solar PV in Distribution Systems. Sol. Energy 2017, 146, 199–208. [Google Scholar] [CrossRef]
- Das, C.K.; Bass, O.; Kothapalli, G.; Mahmoud, T.S.; Habibi, D. Overview of Energy Storage Systems in Distribution Networks: Placement, Sizing, Operation, and Power Quality. Renew. Sustain. Energy Rev. 2018, 91, 1205–1230. [Google Scholar] [CrossRef]
- Desai, B.G. Electrical Energy Storage; White Paper; IEC: Geneva, Switzerland, 1981; Volume 1. [Google Scholar] [CrossRef]
- Fathy, A. A Novel Artificial Hummingbird Algorithm for Integrating Renewable Based Biomass Distributed Generators in Radial Distribution Systems. Appl. Energy 2022, 323, 119605. [Google Scholar] [CrossRef]
- Boonluk, P.; Siritaratiwat, A.; Fuangfoo, P.; Khunkitti, S. Optimal Siting and Sizing of Battery Energy Storage Systems for Distribution Network of Distribution System Operators. Batteries 2020, 6, 56. [Google Scholar] [CrossRef]
- Tolba, M.A.; Houssein, E.H.; Eisa, A.A.; Hashim, F.A. Optimizing the Distributed Generators Integration in Electrical Distribution Networks: Efficient Modified Forensic-Based Investigation. Neural Comput. Appl. 2023, 35, 8307–8342. [Google Scholar] [CrossRef]
- Mazza, A.; Mirtaheri, H.; Chicco, G.; Russo, A.; Fantino, M. Location and Sizing of Battery Energy Storage Units in Low Voltage Distribution Networks. Energies 2019, 13, 52. [Google Scholar] [CrossRef]
- Jayasekara, N.; Masoum, M.A.S.; Wolfs, P.J. Optimal Operation of Distributed Energy Storage Systems to Improve Distribution Network Load and Generation Hosting Capability. IEEE Trans. Sustain. Energy 2016, 7, 250–261. [Google Scholar] [CrossRef]
- Khalid, M.; Akram, U.; Shafiq, S. Optimal Planning of Multiple Distributed Generating Units and Storage in Active Distribution Networks. IEEE Access 2018, 6, 55234–55244. [Google Scholar] [CrossRef]
- Zheng, Y.; Song, Y.; Huang, A.; Hill, D.J. Hierarchical Optimal Allocation of Battery Energy Storage Systems for Multiple Services in Distribution Systems. IEEE Trans. Sustain. Energy 2020, 11, 1911–1921. [Google Scholar] [CrossRef]
- Ahmadian, A.; Sedghi, M.; Aliakbar-Golkar, M. Fuzzy Load Modeling of Plug-in Electric Vehicles for Optimal Storage and DG Planning in Active Distribution Network. IEEE Trans. Veh. Technol. 2017, 66, 3622–3631. [Google Scholar] [CrossRef]
- Sadeghi, D.; Hesami Naghshbandy, A.; Bahramara, S. Optimal Sizing of Hybrid Renewable Energy Systems in Presence of Electric Vehicles Using Multi-Objective Particle Swarm Optimization. Energy 2020, 209, 118471. [Google Scholar] [CrossRef]
- Janamala, V.; Sreenivasulu Reddy, D. Coyote Optimization Algorithm for Optimal Allocation of Interline –Photovoltaic Battery Storage System in Islanded Electrical Distribution Network Considering EV Load Penetration. J. Energy Storage 2021, 41, 102981. [Google Scholar] [CrossRef]
- Khunkitti, S.; Boonluk, P.; Siritaratiwat, A. Optimal Location and Sizing of BESS for Performance Improvement of Distribution Systems with High DG Penetration. Int. Trans. Electr. Energy Syst. 2022, 2022, 1–16. [Google Scholar] [CrossRef]
- Pompern, N.; Premrudeepreechacharn, S.; Siritaratiwat, A.; Khunkitti, S. Optimal Placement and Capacity of Battery Energy Storage System in Distribution Networks Integrated With PV and EVs Using Metaheuristic Algorithms. IEEE Access 2023, 11, 68379–68394. [Google Scholar] [CrossRef]
- Mclarnon, F.R.; Cairns, E.J. Energy Storage. Annu. Rev. Energy 1989, 14, 241–271. [Google Scholar] [CrossRef]
- Kousksou, T.; Bruel, P.; Jamil, A.; El Rhafiki, T.; Zeraouli, Y. Energy Storage: Applications and Challenges. Sol. Energy Mater. Sol. Cells 2014, 120, 59–80. [Google Scholar] [CrossRef]
- Yekini Suberu, M.; Wazir Mustafa, M.; Bashir, N. Energy Storage Systems for Renewable Energy Power Sector Integration and Mitigation of Intermittency. Renew. Sustain. Energy Rev. 2014, 35, 499–514. [Google Scholar] [CrossRef]
- Stecca, M.; Ramirez Elizondo, L.; Batista Soeiro, T.; Bauer, P.; Palensky, P. A Comprehensive Review of the Integration of Battery Energy Storage Systems into Distribution Networks. IEEE Open J. Ind. Electron. Soc. 2020, 1, 46–65. [Google Scholar] [CrossRef]
- Boonluk, P.; Khunkitti, S.; Fuangfoo, P.; Siritaratiwat, A. Optimal Siting and Sizing of Battery Energy Storage: Case Study Seventh Feeder at Nakhon Phanom Substation in Thailand. Energies 2021, 14, 1458. [Google Scholar] [CrossRef]
- Wolfs, P.; Jayasekera, N.; Subawickrama, S. A Fourier Series Based Approach to the Periodic Optimisation of Finely Dispersed Battery Storage. In Proceedings of the AUPEC 2011, Brisbane, QLD, Australia, 25–28 September 2011; pp. 1–6. [Google Scholar]
- Satyanarayana, S.; Ramana, T.; Sivanagaraju, S.; Rao, G.K. An Efficient Load Flow Solution for Radial Distribution Network Including Voltage Dependent Load Models. Electr. Power Compon. Syst. 2007, 35, 539–551. [Google Scholar] [CrossRef]
- Abualigah, L.; Altalhi, M. A Novel Generalized Normal Distribution Arithmetic Optimization Algorithm for Global Optimization and Data Clustering Problems. J. Ambient. Intell. Humaniz. Comput. 2024, 15, 389–417. [Google Scholar] [CrossRef]
- Chen, X.; Ding, K.; Zhang, J.; Yang, Z.; Liu, Y.; Yang, H. A Two-Stage Method for Model Parameter Identification Based on the Maximum Power Matching and Improved Flow Direction Algorithm. Energy Convers. Manag. 2023, 278, 116712. [Google Scholar] [CrossRef]
- Eberhart, R.; Kennedy, J. A New Optimizer Using Particle Swarm Theory. In Proceedings of the MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995; IEEE: Piscataway, NJ, USA, 1995; pp. 39–43. [Google Scholar]
- Abdollahzadeh, B.; Gharehchopogh, F.S.; Mirjalili, S. African Vultures Optimization Algorithm: A New Nature-Inspired Metaheuristic Algorithm for Global Optimization Problems. Comput. Ind. Eng. 2021, 158, 107408. [Google Scholar] [CrossRef]
- MATPOWER—Free, Open-Source Tools for Electric Power System Simulation and Optimization. Available online: https://matpower.org/ (accessed on 30 April 2024).
Refs | Objective Functions | Total System Costs | DGs | Test Systems | Algorithms |
---|---|---|---|---|---|
[13] | minimizing losses and voltage deviation | x | biomass | IEEE 33-, 69-, 119-bus system | AHA |
[14] | minimizing voltage regulation cost, power loss cost, and peak demand cost | x | PV, WT | IEEE 33-bus system | GA, PSO |
[15] | minimizing energy loss, voltage deviation, operation cost while maximizing voltage stability | x | PV, WT | Egypt system | mFBI |
[16] | minimizing investment and O&M costs | ✓ | PV | rural 22-bus network | GA, greedy algorithm |
[17] | minimizing battery costs and system costs due to system losses, peak demand, and voltage regulation. | ✓ | PV, WT | IEEE 33-bus system | interior point method |
[18] | minimizing power losses and improving voltage quality | x | PV, WT, | 17-bus stand-alone microgrid | TLBO |
[19] | minimizing investment cost, operation cost, maintenance cost, and residual value | x | PV | IEEE 15-, 69-bus system | NAA |
[20] | minimizing operation cost and reliability cost | x | N/A | modified 21-node system | TS, SA |
[21] | minimizing life cycle cost including initial, maintenance, and replacement costs | ✓ | PV, WT | a house in Sanandaj | MOPSO, MCS |
[22] | minimizing power losses and improving voltage quality | x | PV | IEEE 33-bus system system | COA, PSO, GWO |
[23] | minimizing reduce system costs consisting of power loss, voltage deviation, and peak demand costs | x | PV, WT | IEEE 33-, 69-bus system | GA, PSO, SSA |
[24] | minimizing system costs consisting of installation, replacement, and O&M costs | ✓ | PV | IEEE 33-, 69-bus system | PSO, SSA, AVOA |
Hr. | Load (p.u.) | PVp (p.u.) | Hr. | Load (p.u.) | PVp (p.u.) |
---|---|---|---|---|---|
1 | 0.366 | 0.000 | 13 | 0.923 | 0.987 |
2 | 0.353 | 0.000 | 14 | 0.964 | 0.916 |
3 | 0.335 | 0.000 | 15 | 0.985 | 0.729 |
4 | 0.315 | 0.000 | 16 | 1.000 | 0.427 |
5 | 0.314 | 0.000 | 17 | 0.817 | 0.179 |
6 | 0.295 | 0.000 | 18 | 0.739 | 0.014 |
7 | 0.292 | 0.072 | 19 | 0.770 | 0.000 |
8 | 0.342 | 0.325 | 20 | 0.748 | 0.000 |
9 | 0.404 | 0.608 | 21 | 0.592 | 0.000 |
10 | 0.485 | 0.820 | 22 | 0.363 | 0.000 |
11 | 0.736 | 0.950 | 23 | 0.323 | 0.000 |
12 | 0.902 | 1.000 | 24 | 0.306 | 0.000 |
Algorithm | BESS Placement | BESS Size (MWh) | PV Placement | PV Size (kW) | Power of BESS (MW) | Lifetime of BESS | System Costs ($) | |
---|---|---|---|---|---|---|---|---|
PSO | 20% | 41 | 17.1415 | 51 | 2356.65 | 2.8215 | 8.824658 | 40,208,157.04 |
40% | 41 | 18.9705 | 51 | 2544.36 | 3.1765 | 8.824658 | 47,213,163.04 | |
60% | 41 | 24.5914 | 51 | 3913.34 | 3.8928 | 8.824658 | 54,148,223.67 | |
AVOA | 20% | 41 | 17.4733 | 51 | 2598.12 | 2.8497 | 8.784056 | 40,283,138.35 |
40% | 31 | 24.5594 | 82 | 2460.39 | 3.6452 | 8.824658 | 47,234,023.75 | |
60% | 41 | 19.7769 | 50 | 3689.10 | 3.4387 | 8.824658 | 54,435,077.17 |
Algorithm | VDI (%) | Real Power Loss (MW) | Reactive Power Loss (MVAr) | Apparent Power Loss (MVA) | Peak Demand (MW) | |
---|---|---|---|---|---|---|
Base | 20% | 256.99 | 1.515 | 3.256 | 3.591 | 10.786 |
40% | 298.12 | 2.045 | 4.397 | 4.849 | 12.535 | |
60% | 339.84 | 2.661 | 5.722 | 6.31 | 14.293 | |
PSO | 20% | 199.77 | 1.126 | 2.434 | 2.682 | 6.882 |
40% | 233.55 | 1.546 | 3.341 | 3.681 | 8.171 | |
60% | 253.81 | 1.881 | 4.064 | 4.478 | 8.587 | |
AVOA | 20% | 197.60 | 1.125 | 2.432 | 2.679 | 6.749 |
40% | 242.57 | 1.570 | 3.398 | 3.743 | 7.749 | |
60% | 261.65 | 1.921 | 4.153 | 4.575 | 9.143 |
Algorithm | Best | Worst | Mean | Median | Std. | |
---|---|---|---|---|---|---|
PSO | 20% | 40,208,157.04 | 40,476,376.40 | 40,369,678.50 | 40,397,090.20 | 99,605.69 |
40% | 47,213,163.04 | 47,313,442.33 | 47,254,287.65 | 47,236,257.59 | 42,878.09 | |
60% | 54,148,223.67 | 54,333,070.57 | 54,229,925.23 | 54,208,481.46 | 76,971.73 | |
AVOA | 20% | 40,2831,38.35 | 40,814,701.71 | 40,487,523.12 | 40,466,871.68 | 198,660.95 |
40% | 47,234,023.75 | 47,750,305.34 | 47,464,793.62 | 47,410,051.78 | 214,296.01 | |
60% | 54,435,077.17 | 55,431,002.91 | 54,761,252.60 | 54,599,970.51 | 347,863.18 |
Algorithm | System Costs ($) | Operation and Maintenance Costs for 1 Day ($) | Payback (Years) | |
---|---|---|---|---|
Base | 20% | - | 6345.0331 | - |
40% | - | 7454.8843 | - | |
60% | - | 8594.2133 | - | |
PSO | 20% | 40,208,157.04 | 4095.3141 | 7.8274 |
40% | 47,213,163.04 | 4921.6504 | 7.5551 | |
60% | 54,148,223.67 | 5245.0794 | 8.4142 | |
AVOA | 20% | 40,2831,38.35 | 4022.0764 | 8.1893 |
40% | 47,234,023.75 | 4697.4262 | 7.3293 | |
60% | 54,435,077.17 | 5561.2344 | 8.4512 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khunkitti, S.; Pompern, N.; Premrudeepreechacharn, S.; Siritaratiwat, A. Optimal Placement and Capacity of BESS and PV in EV Integrated Distribution Systems: The Tenth Feeder of Phitsanulok Substation Case Study. Batteries 2024, 10, 212. https://doi.org/10.3390/batteries10060212
Khunkitti S, Pompern N, Premrudeepreechacharn S, Siritaratiwat A. Optimal Placement and Capacity of BESS and PV in EV Integrated Distribution Systems: The Tenth Feeder of Phitsanulok Substation Case Study. Batteries. 2024; 10(6):212. https://doi.org/10.3390/batteries10060212
Chicago/Turabian StyleKhunkitti, Sirote, Natsawat Pompern, Suttichai Premrudeepreechacharn, and Apirat Siritaratiwat. 2024. "Optimal Placement and Capacity of BESS and PV in EV Integrated Distribution Systems: The Tenth Feeder of Phitsanulok Substation Case Study" Batteries 10, no. 6: 212. https://doi.org/10.3390/batteries10060212
APA StyleKhunkitti, S., Pompern, N., Premrudeepreechacharn, S., & Siritaratiwat, A. (2024). Optimal Placement and Capacity of BESS and PV in EV Integrated Distribution Systems: The Tenth Feeder of Phitsanulok Substation Case Study. Batteries, 10(6), 212. https://doi.org/10.3390/batteries10060212