Characterization of Lithium-Ion Battery Fire Emissions—Part 1: Chemical Composition of Fine Particles (PM2.5)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tested LIBs
2.2. Experimental Setup and Procedures
2.3. Chemical Analysis
2.4. Data Analysis and Quality Assurance
3. Results
3.1. LIB Combustion Behavior
3.2. Chemical Characteristics
3.2.1. Major Compositions
3.2.2. Carbon Fractions
3.2.3. Elemental Abundances
3.2.4. Water-Soluble Ions
3.2.5. Comparison with Previous Studies
4. Discussion and Conclusions
- (1)
- Consistent with the higher thermal stability of LFP than LCO cells, LFP tests did not flame at 0% and 30% SOCs, while LCO tests flamed at all SOCs. LCO tests had more emissions from flaming as SOC increased, while LFP tests had the highest proportion of flaming emissions at 50% and 75% SOCs when higher flame temperatures were detected.
- (2)
- The chemical composition of the PM2.5 emitted from LIB combustion was dominated by OM, EC, and PO43−. While OM was mostly emitted through cell venting, EC and PO43− were generated from flaming combustion. Particles from LFP tests had higher OM but lower EC than those from LCO tests.
- (3)
- OC1–3 fractions that volatilize at a range of temperatures (140–480 °C) were abundant, indicating the presence of a variety of organic compounds. The high abundance of EC2 and the presence of EC3 in some tests are indicators of high combustion temperatures.
- (4)
- Metals were present in small proportions of PM2.5 mass, with the most abundant being Li, Mg, Al, Ca, Fe, and Zn. LCO tests had higher Li and Co abundances than LFP tests, and both elements exhibited a positive correlation with SOC. LFP had more elements (e.g., Mg, Al, Ca, Fe, Ni, and Zn) that increased in abundance with SOC. The metal abundances in PM2.5 were much lower than those reported for larger, settleable particles.
- (5)
- Ionic compounds other than PO43− were detected, primarily F− with lower abundances of Cl− and SO42−. The balance between water-soluble anion and cation species indicates that the freshly emitted particles were strongly acidic.
- (6)
- While multiple tests within the same nominal conditions (LIB cell type and SOC) showed mostly consistent PM2.5 characteristics, some variations were observed. In addition to cell chemistry and SOC, the PM2.5 composition was also affected by the combustion behavior, such as the fraction of vented emission streams that were ignited and combustion temperatures.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
µeq | microequivalent |
Al | aluminum |
Br | bromine |
Ca | calcium |
Ca2+ | calcium ion |
Cl− | chloride |
Co | cobalt |
Cu | copper |
DRI | Desert Research Institute |
EC | elemental carbon |
EC1 | elemental carbon evolved at 580 °C |
EC2 | elemental carbon evolved at 740 °C |
EC3 | elemental carbon evolved at 840 °C |
EDX | energy dispersive X-ray analysis |
ELPI | electrical low-pressure impactor |
EPA | Environmental Protection Agency |
Eu | europium |
EV | electric vehicle |
F− | fluoride |
FAA | Federal Aviation Administration |
Fe | iron |
HCl | hydrochloric acid |
Hg | mercury |
HNO3 | nitric acid |
IC | ion chromatography |
ICP-MS | inductively coupled plasma mass spectrometry |
In | indium |
K+ | potassium ion |
LCO | lithium cobalt oxide |
Li | lithium |
Li+ | lithium ion |
LIB | lithium-ion battery |
LFP | lithium iron phosphate |
Mg | magnesium |
Mg2+ | magnesium ion |
Mn | manganese |
MW | megawatt |
Na | sodium |
Na+ | sodium ion |
NASA | National Aeronautics and Space Administration |
NH4+ | ammonium |
Ni | nickel |
NMC | nickel manganese cobalt oxide |
NO3− | nitrate |
OC | organic carbon |
OC1 | organic carbon evolved at 140 °C |
OC2 | organic carbon evolved at 280 °C |
OC3 | organic carbon evolved at 480 °C |
OC4 | organic carbon evolved at 580 °C |
OP | pyrolyzed carbon |
OM | organic matter |
P | phosphorus |
PAH | polycyclic aromatic hydrocarbons |
Pb | lead |
PM | particulate matter |
PMx | particles with aerodynamic diameters ≤x µm |
PO43− | phosphate |
Pt | platinum |
S | sulfur |
Sb | antimony |
Sc | scandium |
Si | silicon |
SO42− | sulfate |
SOC | state of charge |
SEM | scanning electron microscopy |
TC | total carbon |
Tb | terbium |
Ti | titanium |
TR | thermal runaway |
XRF | X-ray fluorescence |
Zn | zinc |
References
- Doughty, D.H.; Roth, E.P. A General Discussion of Li Ion Battery Safety. Electrochem. Soc. Interface 2012, 21, 37–44. [Google Scholar] [CrossRef]
- Feng, X.; Ouyang, M.; Liu, X.; Lu, L.; Xia, Y.; He, X. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Mater. 2018, 10, 246–267. [Google Scholar] [CrossRef]
- EVFireSafe. Source: evfiresafe.com. Available online: https://www.evfiresafe.com/ (accessed on 31 October 2023).
- FAA. Events with Smoke, Fire, Extreme Heat or Explosion Involving Lithium Batteries Federal Aviation Administration. Available online: https://www.faa.gov/hazmat/resources/lithium_batteries/media/Battery_incident_chart.pdf (accessed on 8 February 2020).
- NASA. Lithium-Ion Battery Fire; 3516; National Aeronautics and Space Administration: Public Lessons Learned System. Available online: https://llis.nasa.gov/lesson/3516 (accessed on 1 February 2024).
- Nigl, T.; Baldauf, M.; Hohenberger, M.; Pomberger, R. Lithium-Ion Batteries as Ignition Sources in Waste Treatment Processes—A Semi-Quantitate Risk Analysis and Assessment of Battery-Caused Waste Fires. Processes 2020, 9, 49. [Google Scholar] [CrossRef]
- U.S. EPA. An Analysis of Lithium-Ion Battery Fires in Waste Management and Recycling; Office of Resource Conservation and Recovery; U.S. Environmental Protection Agency: Washington, DC, USA, 2021. Available online: https://www.epa.gov/system/files/documents/2021-08/lithium-ion-battery-report-update-7.01_508.pdf (accessed on 1 February 2024).
- Yuan, L.; Dubaniewicz, T.; Zlochower, I.; Thomas, R.; Rayyan, N. Experimental study on thermal runaway and vented gases of lithium-ion cells. Process Saf. Environ. Prot. 2020, 144, 186–192. [Google Scholar] [CrossRef]
- Nedjalkov, A.; Meyer, J.; Köhring, M.; Doering, A.; Angelmahr, M.; Dahle, S.; Sander, A.; Fischer, A.; Schade, W. Toxic gas emissions from damaged lithium ion batteries—Analysis and safety enhancement solution. Batteries 2016, 2, 5. [Google Scholar] [CrossRef]
- Larsson, F.; Andersson, P.; Blomqvist, P.; Mellander, B.-E. Toxic fluoride gas emissions from lithium-ion battery fires. Sci. Rep. 2017, 7, 10018. [Google Scholar] [CrossRef]
- Essl, C.; Seifert, L.; Rabe, M.; Fuchs, A. Early Detection of Failing Automotive Batteries Using Gas Sensors. Batteries 2021, 7, 25. [Google Scholar] [CrossRef]
- Koch, S.; Fill, A.; Birke, K.P. Comprehensive gas analysis on large scale automotive lithium-ion cells in thermal runaway. J. Power Sources 2018, 398, 106–112. [Google Scholar] [CrossRef]
- Fernandes, Y.; Bry, A.; De Persis, S. Identification and quantification of gases emitted during abuse tests by overcharge of a commercial Li-ion battery. J. Power Sources 2018, 389, 106–119. [Google Scholar] [CrossRef]
- Willstrand, O.; Pushp, M.; Andersson, P.; Brandell, D. Impact of different Li-ion cell test conditions on thermal runaway characteristics and gas release measurements. J. Energy Storage 2023, 68, 107785. [Google Scholar] [CrossRef]
- Baird, A.R.; Archibald, E.J.; Marr, K.C.; Ezekoye, O.A. Explosion hazards from lithium-ion battery vent gas. J. Power Sources 2020, 446, 227257. [Google Scholar] [CrossRef]
- Sun, J.; Li, J.; Zhou, T.; Yang, K.; Wei, S.; Tang, N.; Dang, N.; Li, H.; Qiu, X.; Chen, L. Toxicity, a serious concern of thermal runaway from commercial Li-ion battery. Nano Energy 2016, 27, 313–319. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, H.; Li, W.; Li, C.; Ouyang, M. Size distribution and elemental composition of vent particles from abused prismatic Ni-rich automotive lithium-ion batteries. J. Energy Storage 2019, 26, 100991. [Google Scholar] [CrossRef]
- Barone, T.L.; Dubaniewicz, T.H.; Friend, S.A.; Zlochower, I.A.; Bugarski, A.D.; Rayyan, N.S. Lithium-ion battery explosion aerosols: Morphology and elemental composition. Aerosol Sci. Technol. 2021, 55, 1183–1201. [Google Scholar] [CrossRef] [PubMed]
- Premnath, V.; Wang, Y.; Wright, N.; Khalek, I.; Uribe, S. Detailed characterization of particle emissions from battery fires. Aerosol Sci. Technol. 2022, 56, 337–354. [Google Scholar] [CrossRef]
- Held, M.; Tuchschmid, M.; Zennegg, M.; Figi, R.; Schreiner, C.; Mellert, L.D.; Welte, U.; Kompatscher, M.; Hermann, M.; Nachef, L. Thermal runaway and fire of electric vehicle lithium-ion battery and contamination of infrastructure facility. Renew. Sustain. Energy Rev. 2022, 165, 112474. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Q.; Jin, C.; Xu, C.; Zhao, Y.; Li, Y.; Zhong, C.; Feng, X. Detailed characterization of particle emissions due to thermal failure of batteries with different cathodes. J. Hazard. Mater. 2023, 458, 131646. [Google Scholar] [CrossRef]
- Padilla, R.E.; Meyer, M.; Dietrich, D.L.; Ruff, G.A.; Urban, D.L. Hazardous Effercts of Li-Ion Battery Based Fires. In Proceedings of the 50th International Conference on Environmental Systems, Boston, MA, USA, 12–16 July 2020. [Google Scholar]
- Li, W.; Xue, Y.; Feng, X.; Rao, S.; Zhang, T.; Gao, Z.; Guo, Y.; Zhou, H.; Zhao, H.; Song, Z.; et al. Characteristics of particle emissions from lithium-ion batteries during thermal runaway: A review. J. Energy Storage 2024, 78, 109980. [Google Scholar] [CrossRef]
- Chen, S.; Wang, Z.; Yan, W. Identification and characteristic analysis of powder ejected from a lithium ion battery during thermal runaway at elevated temperatures. J. Hazard. Mater. 2020, 400, 123169. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, Y.; Chen, X.; Pang, K.; Deng, B.; Han, Z.; Shao, J.; Qian, K.; Chen, D. Thermal runaway and soot production of lithium-ion batteries: Implications for safety and environmental concerns. Appl. Therm. Eng. 2024, 248, 123193. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, Y.; Chen, D. Soot formation and its hazards in battery thermal runaway. J. Aerosol Sci. 2024, 181, 106420. [Google Scholar] [CrossRef]
- ICRP. Human Respiratory Tract Model for Radiological Protection, ICRP Publication 66; International Commission on Radiological Protection (ICRP): Ottawa, ON, Canada, 1994; Volume 24, pp. 1–3. [Google Scholar]
- Thangavel, P.; Park, D.; Lee, Y.C. Recent Insights into Particulate Matter (PM(2.5))-Mediated Toxicity in Humans: An Overview. Int. J. Env. Res. Public Health 2022, 19, 7511. [Google Scholar] [CrossRef]
- Claassen, M.; Bingham, B.; Chow, J.C.; Watson, J.G.; Wang, Y.; Wang, X.L. Characterization of Lithium-ion Battery Fire Emissions—Part 2: Particle Size Distributions and Emission Factors. Batteries, 2024; Submitted. [Google Scholar]
- Lithiumwerks. APR18650M1B Nanophosphate® Technology Data Sheet. Austin, Texas. 2023. Available online: https://lithiumwerks.com/products/lithium-ion-18650-cells/ (accessed on 1 February 2024).
- AA Portable Power Corp. Model 544792 Polymer Lithium-Ion Battery Data Sheet; AA Portable Power Corp.: Richmond, CA, USA; Available online: https://www.batteryspace.com/prod-specs/3175.pdf (accessed on 1 February 2024).
- Chombo, P.V.; Laoonual, Y. Prediction of the onset of thermal runaway and its thermal hazards in 18650 lithium-ion battery abused by external heating. Fire Saf. J. 2022, 129, 103560. [Google Scholar] [CrossRef]
- Peng, P.; Jiang, F. Thermal safety of lithium-ion batteries with various cathode materials: A numerical study. Int. J. Heat Mass Transf. 2016, 103, 1008–1016. [Google Scholar] [CrossRef]
- Nitta, N.; Wu, F.; Lee, J.T.; Yushin, G. Li-ion battery materials: Present and future. Mater. Today 2015, 18, 252–264. [Google Scholar] [CrossRef]
- Barkholtz, H.M.; Preger, Y.; Ivanov, S.; Langendorf, J.; Torres-Castro, L.; Lamb, J.; Chalamala, B.; Ferreira, S.R. Multi-scale thermal stability study of commercial lithium-ion batteries as a function of cathode chemistry and state-of-charge. J. Power Sources 2019, 435, 226777. [Google Scholar] [CrossRef]
- Anand, M.D.; Sasidharakurup, R.; Mercy, T.; Jacob, T.M.; Devi, S.A. Lithium-ion cells for space applications: Aspects of durability. Adv. Space Res. 2023, 72, 2948–2958. [Google Scholar] [CrossRef]
- Dalton, P.J.; Schwanbeck, E.; North, T.; Balcer, S. International Space Station Lithium-Ion Battery. In Proceedings of the NASA Aerospace Battery Workshop, Huntsville, AL, USA, 15–17 November 2016. [Google Scholar]
- Tian, J.; Chow, J.C.; Cao, J.; Han, Y.; Ni, H.; Chen, L.-W.A.; Wang, X.; Huang, R.; Moosmu, H.; Watson, J.G. A biomass combustion chamber: Design, evaluation, and a case study of wheat straw combustion emission tests. Aerosol Air Qual. Res. 2015, 15, 2104–2114. [Google Scholar] [CrossRef]
- Goupil, V.; Gaya, C.; Boisard, A.; Robert, E. Effect of the heating rate on the degassing and combustion of cylindrical Li-Ion cells. Fire Saf. J. 2022, 133, 103648. [Google Scholar] [CrossRef]
- Wang, X.L.; Zhou, H.; Arnott, W.P.; Meyer, M.E.; Taylor, S.; Firouzkouhi, H.; Moosmüller, H.; Chow, J.C.; Watson, J.G. Characterization of smoke for spacecraft fire safety. J. Aerosol Sci. 2019, 136, 36–47. [Google Scholar] [CrossRef]
- Wang, X.L.; Firouzkouhi, H.; Chow, J.C.; Watson, J.G.; Carter, W.; De Vos, A.S. Characterization of gas and particle emissions from open burning of household solid waste from South Africa. Atmos. Chem. Phys. 2023, 23, 8921–8937. [Google Scholar] [CrossRef]
- Wang, X.L.; Zhou, H.; Arnott, W.P.; Meyer, M.E.; Taylor, S.; Firouzkouhi, H.; Moosmüller, H.; Chow, J.C.; Watson, J.G. Evaluation of gas and particle sensors for detecting spacecraft-relevant fire emissions. Fire Saf. J. 2020, 113, 102977. [Google Scholar] [CrossRef]
- Wang, X.L.; Chancellor, G.; Evenstad, J.; Farnsworth, J.E.; Hase, A.; Olson, G.M.; Sreenath, A.; Agarwal, J.K. A Novel Optical Instrument for Estimating Size Segregated Aerosol Mass Concentration in Real Time. Aerosol Sci. Technol. 2009, 43, 939–950. [Google Scholar] [CrossRef]
- Järvinen, A.; Aitomaa, M.; Rostedt, A.; Keskinen, J.; Yli-Ojanperä, J. Calibration of the new electrical low pressure impactor (ELPI+). J. Aerosol Sci. 2014, 69, 150–159. [Google Scholar] [CrossRef]
- Saari, S.; Arffman, A.; Harra, J.; Rönkkö, T.; Keskinen, J. Performance evaluation of the HR-ELPI+ inversion. Aerosol Sci. Technol. 2018, 52, 1037–1047. [Google Scholar] [CrossRef]
- Wang, X.; Firouzkouhi, H.; Chow, J.C.; Watson, J.G.; Ho, S.S.H.; Carter, W.; De Vos, A.S. Chemically speciated air pollutant emissions from open burning of household solid waste from South Africa. Atmos. Chem. Phys. 2023, 23, 15375–15393. [Google Scholar] [CrossRef]
- Watson, J.G.; Tropp, R.J.; Kohl, S.D.; Wang, X.L.; Chow, J.C. Filter processing and gravimetric analysis for suspended particulate matter samples. Aerosol Sci. Eng. 2017, 1, 193–205. [Google Scholar] [CrossRef]
- Watson, J.G.; Chow, J.C.; Frazier, C.A. X-ray fluorescence analysis of ambient air samples. In Elemental Analysis of Airborne Particles; Landsberger, S., Creatchman, M., Eds.; Gordon and Breach Science: Amsterdam, The Netherlands, 1999; Volume 1, pp. 67–96. [Google Scholar]
- Chow, J.C.; Watson, J.G. Enhanced Ion Chromatographic Speciation of Water-Soluble PM_2.5 to Improve Aerosol Source Apportionment. Aerosol Sci. Eng. 2017, 1, 7–24. [Google Scholar] [CrossRef]
- Chow, J.C.; Watson, J.G.; Chen, L.-W.A.; Chang, M.C.O.; Robinson, N.F.; Trimble, D.; Kohl, S. The IMPROVE_A temperature protocol for thermal/optical carbon analysis: Maintaining consistency with a long-term database. J. Air Waste Manag. Assoc. 2007, 57, 1014–1023. [Google Scholar] [CrossRef]
- Chen, L.-W.A.; Chow, J.C.; Wang, X.L.; Robles, J.A.; Sumlin, B.; Lowenthal, D.H.; Zimmermann, R.; Watson, J.G. Multi-wavelength optical measurement to enhance thermal/optical analysis for carbonaceous aerosol. Atmos. Meas. Tech. 2015, 8, 451–461. [Google Scholar] [CrossRef]
- Chow, J.C.; Wang, X.L.; Sumlin, B.J.; Gronstal, S.B.; Chen, L.-W.A.; Hurbain, M.J.; Zimmermann, R.; Watson, J.G. Optical Calibration and Equivalence of a Multiwavelength Thermal/Optical Carbon Analyzer. Aerosol Air Qual. Res. 2015, 15, 1145–1159. [Google Scholar] [CrossRef]
- Watson, J.G.; Turpin, B.J.; Chow, J.C. The measurement process: Precision, accuracy, and validity. In Air Sampling Instruments for Evaluation of Atmospheric Contaminants, 9th ed.; Cohen, B.S., McCammon, C.S., Jr., Eds.; American Conference of Governmental Industrial Hygienists: Cincinnati, OH, USA, 2001; pp. 201–216. [Google Scholar]
- Wang, X.; Chow, J.C.; Kohl, S.D.; Percy, K.E.; Legge, A.H.; Watson, J.G. Characterization of PM2. 5 and PM10 fugitive dust source profiles in the Athabasca Oil Sands Region. J. Air Waste Manag. Assoc. 2015, 65, 1421–1433. [Google Scholar] [CrossRef] [PubMed]
- Chow, J.C.; Lowenthal, D.H.; Chen, L.-W.A.; Wang, X.L.; Watson, J.G. Mass reconstruction methods for PM2.5: A review. Air Qual. Atmos. Health 2015, 8, 243–263. [Google Scholar] [CrossRef]
- Wang, X.; Gronstal, S.; Lopez, B.; Jung, H.; Chen, L.-W.A.; Wu, G.; Ho, S.S.H.; Chow, J.C.; Watson, J.G.; Yao, Q. Evidence of non-tailpipe emission contributions to PM2. 5 and PM10 near southern California highways. Environ. Pollut. 2023, 317, 120691. [Google Scholar] [CrossRef]
- U.S. EPA. Quality Assurance Guidance Document—Quality Assurance Project Plan: PM2.5 Chemical Speciation Sampling at Trends, NCore, Supplemental and Tribal Sites; Ambient Air Monitoring Group, Air Quality Assessment Division, US EPA, Office of Air Quality Planning and Standards: Research Triangle Park, NC, USA, 2012. Available online: https://www3.epa.gov/ttnamti1/files/ambient/pm25/spec/CSN_QAPP_v120_05-2012.pdf (accessed on 26 June 2024).
- Chow, J.C.; Watson, J.G.; Crow, D.; Lowenthal, D.H.; Merrifield, T. Comparison of IMPROVE and NIOSH Carbon Measurements. Aerosol Sci. Technol. 2001, 34, 23–34. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, H.; Li, W.; Li, C. Quantitative identification of emissions from abused prismatic Ni-rich lithium-ion batteries. eTransportation 2019, 2, 100031. [Google Scholar] [CrossRef]
- Yang, Y.; Fang, D.; Maleki, A.; Kohzadi, S.; Liu, Y.; Chen, Y.; Liu, R.; Gao, G.; Zhi, J. Characterization of Thermal-Runaway Particles from Lithium Nickel Manganese Cobalt Oxide Batteries and Their Biotoxicity Analysis. ACS Appl. Energy Mater. 2021, 4, 10713–10720. [Google Scholar] [CrossRef]
- Bordes, A.; Marlair, G.; Zantman, A.; Herreyre, S.; Papin, A.; Desprez, P.; Lecocq, A. New insight on the risk profile pertaining to lithium-ion batteries under thermal runaway as affected by system modularity and subsequent oxidation regime. J. Energy Storage 2022, 52, 104790. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; Li, W.; Li, C.; Ouyang, M. Particles released by abused prismatic Ni-rich automotive lithium-ion batteries. WSEAS Trans. Syst. Control 2020, 15, 30–38. [Google Scholar] [CrossRef]
- Krebs, R.; Owens, J.; Luckarift, H. Formation and detection of hydrogen fluoride gas during fire fighting scenarios. Fire Saf. J. 2022, 127, 103489. [Google Scholar] [CrossRef]
- Yuan, S.; Chang, C.; Yan, S.; Zhou, P.; Qian, X.; Yuan, M.; Liu, K. A review of fire-extinguishing agent on suppressing lithium-ion batteries fire. J. Energy Chem. 2021, 62, 262–280. [Google Scholar] [CrossRef]
- Saldaña, G.; San Martín, J.I.; Zamora, I.; Asensio, F.J.; Oñederra, O. Analysis of the current electric battery models for electric vehicle simulation. Energies 2019, 12, 2750. [Google Scholar] [CrossRef]
- Chow, J.C.; Watson, J.G.; Chen, L.-W.A.; Rice, J.; Frank, N.H. Quantification of PM2.5 organic carbon sampling artifacts in US networks. Atmos. Chem. Phys. 2010, 10, 5223–5239. [Google Scholar] [CrossRef]
Cell Type | Cell Format | Cathode Chemistry | Dimensions (mm) | Nominal Voltage (V) | Nominal Capacity (Ah) | Average Cell Mass (g) |
---|---|---|---|---|---|---|
LFP | Cylinder | LiFePO4 | 18 × 18 × 65 | 3.3 | 1.1 | 42 |
LCO | Pouch | LiCoO2 | 5.4 × 47 × 95 | 3.7 | 2.5 | 47 |
Element | This Study | Literature [17,21,25,26,59,60] | Closest Factor Difference | |
---|---|---|---|---|
Measure | % of PM2.5 Mass (≤2.5 µm) | % of Mass (200–15,000 µm) * | ||
LIB Type | LFP | LCO | NMC and LFP | |
TC | 58 (avg.) | 56 (avg.) | 23–94 | 0.6 × lit. values |
Li | 0.044 | 1.98 | 2.9–4.0 | 1.3 × lit. values |
Na | 0.011 | 0.027 | 0.06–0.1 | 0.45 × lit. values |
Mg | 1.33 | 0.719 | 0.001–0.006 | 120 × lit. values |
Al | 0.720 | 0.688 | 3.6–13.5 | 0.2 × lit. values |
Si | 0.193 | 0.050 | 0.025 | 2 × lit. values |
P | 15.1 | 12.2 | 0.02–2.2 | 5.6 × lit. values |
S | 0 | 0.066 | 0.3–0.9 | 0.22 × lit. values |
Ca | 0.354 | 0.191 | 0.04–0.05 | 3.8 × lit. values |
Ti | 0.026 | 0.013 | 0.003–0.01 | 1.3 × lit. values |
Mn | 0.051 | 0.027 | 5.2–13.1 | 0.01 × lit. values |
Fe | 0.553 | 0.201 | 0.07–0.5 | 1.1 × lit. values |
Co | 0.001 | 0.191 | 5.9–10.5 | 0.032 × lit. values |
Ni | 0.010 | 0.005 | 18–51 | 0.001 × lit. values |
Cu | 0.020 | 0.016 | 2.2–9.5 | 0.009 × lit. values |
Zn | 0.108 | 0.141 | 0.001–0.008 | 14 × lit. values |
Br | 0.006 | 0.001 | 0.01–0.04 | 0.61 × lit. values |
Reference | SOC and Cell Type | Max Particle Size (μm) | Total Carbon | EC/OC | Total P | F and F− | Other Metals |
---|---|---|---|---|---|---|---|
This study | 100% LFP | 2.5 | 68 | 16/52 | 3.4 | 3.1 (F−) | 2 |
[17] | 100% NMC | 850 | 30 | 0.55 | 0.002 | 42 | |
[19] | 100% LFP | 2.5 | 63 | 20/43 | |||
[20] | 100% NMC | Settleable | 10–15 | 2.5 (F−) | 24 | ||
[21] | 100% NMC | 850 | 23 | 0.81 | 0.60 | 63 | |
[24] | Var. NMC | Settleable | 68 | 27 | |||
[25,26] | 100% LFP | Soot | 90–94 | 0.02–0.1 | 1–2 | <2 | |
[59] | 100% NMC | Settleable | 28 | 0.31 | 0.34 | 57 | |
[60] | 100% NMC | 200 | 2.2 | 4.1 | 92 | ||
[62] | 100% NMC | 50 | 53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Claassen, M.; Bingham, B.; Chow, J.C.; Watson, J.G.; Wang, Y.; Wang, X. Characterization of Lithium-Ion Battery Fire Emissions—Part 1: Chemical Composition of Fine Particles (PM2.5). Batteries 2024, 10, 301. https://doi.org/10.3390/batteries10090301
Claassen M, Bingham B, Chow JC, Watson JG, Wang Y, Wang X. Characterization of Lithium-Ion Battery Fire Emissions—Part 1: Chemical Composition of Fine Particles (PM2.5). Batteries. 2024; 10(9):301. https://doi.org/10.3390/batteries10090301
Chicago/Turabian StyleClaassen, Matthew, Bjoern Bingham, Judith C. Chow, John G. Watson, Yan Wang, and Xiaoliang Wang. 2024. "Characterization of Lithium-Ion Battery Fire Emissions—Part 1: Chemical Composition of Fine Particles (PM2.5)" Batteries 10, no. 9: 301. https://doi.org/10.3390/batteries10090301
APA StyleClaassen, M., Bingham, B., Chow, J. C., Watson, J. G., Wang, Y., & Wang, X. (2024). Characterization of Lithium-Ion Battery Fire Emissions—Part 1: Chemical Composition of Fine Particles (PM2.5). Batteries, 10(9), 301. https://doi.org/10.3390/batteries10090301