The Quantum-Inspired Evolutionary Algorithm in the Parametric Optimization of Lithium-Ion Battery Housing in the Multiple-Drop Test
Abstract
:1. Introduction
2. Materials and Methods
2.1. Optimization Algorithm
2.2. Problem Formulation
2.3. Objective Function Evaluation
3. Numerical Example
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Weydanz, W. APPLICATIONS—PORTABLE|Power Tools: Batteries. In Encyclopedia of Electrochemical Power Sources; Elsevier: Amsterdam, The Netherlands, 2009; pp. 46–52. [Google Scholar] [CrossRef]
- Blomgren, G.E. The Development and Future of Lithium Ion Batteries. J. Electrochem. Soc. 2017, 164, A5019–A5025. [Google Scholar] [CrossRef]
- Diouf, B.; Pode, R. Potential of lithium-ion batteries in renewable energy. Renew. Energy 2015, 76, 375–380. [Google Scholar] [CrossRef]
- Abada, S.; Marlair, G.; Lecocq, A.; Petit, M.; Sauvant-Moynot, V.; Huet, F. Safety focused modeling of lithium-ion batteries: A review. J. Power Sources 2016, 306, 178–192. [Google Scholar] [CrossRef]
- Feng, X.; Ren, D.; He, X.; Ouyang, M. Mitigating Thermal Runaway of Lithium-Ion Batteries. Joule 2020, 4, 743–770. [Google Scholar] [CrossRef]
- Cheng, K.W.E.; Divakar, B.P.; Wu, H.; Ding, K.; Ho, H.F. Battery-Management System (BMS) and SOC Development for Electrical Vehicles. IEEE Trans. Veh. Technol. 2011, 60, 76–88. [Google Scholar] [CrossRef]
- Wang, Q.; Ping, P.; Zhao, X.; Chu, G.; Sun, J.; Chen, C. Thermal runaway caused fire and explosion of lithium ion battery. J. Power Sources 2012, 208, 210–224. [Google Scholar] [CrossRef]
- Wen, J.; Yu, Y.; Chen, C. A Review on Lithium-Ion Batteries Safety Issues: Existing Problems and Possible Solutions. Mater. Express 2012, 2, 197–212. [Google Scholar] [CrossRef]
- Lai, X.; Yao, J.; Jin, C.; Feng, X.; Wang, H.; Xu, C.; Zheng, Y. A Review of Lithium-Ion Battery Failure Hazards: Test Standards, Accident Analysis, and Safety Suggestions. Batteries 2022, 8, 248. [Google Scholar] [CrossRef]
- Chen, Y.; Kang, Y.; Zhao, Y.; Wang, L.; Liu, J.; Li, Y.; Liang, Z.; He, X.; Li, X.; Tavajohi, N.; et al. A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards. J. Energy Chem. 2021, 59, 83–99. [Google Scholar] [CrossRef]
- ISO 16750-3; Road Vehicles—Environmental Conditions and Testing for Electrical and Electronic Equipment—Part 3: Mechanical Loads. International Organization for Standardization: London, UK, 2012.
- Economic Commission for Europe of the United Nations (UNECE). Uniform Provisions Concerning the Approval of Vehicles with Regard to Specific Requirements for the Electric Power Train; UN Regulation No. 100, Revision 3; UNECE: Geneva, Switzerland, 2013. [Google Scholar]
- International Electrotechnical Commission. Secondary Cells and Batteries Containing Alkaline or Other Non-Acid Electrolytes—Safety Requirements for Portable Sealed Secondary Cells, and for Batteries Made from Them, for Use in Portable Applications—Part 2: Lithium Systems; IEC 62133-2; IEC: London, UK, 2017. [Google Scholar]
- Shu, D.W.; Shi, B.J.; Luo, J. Shock Simulation of Drop Test of Hard Disk Drives. In Structural Dynamics of Electronic and Photonic Systems; Suhir, E., Steinberg, D.S., Yu, T.X., Eds.; Wiley: Hoboken, NJ, USA, 2011; pp. 337–356. [Google Scholar]
- Yeh, M.-K.; Huang, T.-H. Drop Test and Finite Element Analysis of Test Board. Procedia Eng. 2014, 79, 238–243. [Google Scholar] [CrossRef]
- Keane, A.J.; Scanlan, J.P. Design search and optimization in aerospace engineering. Phil. Trans. R. Soc. A 2007, 365, 2501–2529. [Google Scholar] [CrossRef] [PubMed]
- Rajput, S.P.S.; Datta, S. A review on optimization techniques used in civil engineering material and structure design. Mater. Today Proc. 2020, 26, 1482–1491. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Lu, C.; Li, J.; Tan, X.M.; Tse, Y.C. Simulation of drop/impact reliability for electronic devices. Finite Elem. Anal. Des. 2005, 41, 667–680. [Google Scholar] [CrossRef]
- Christensen, J.; Bastien, C. Nonlinear Optimization of Vehicle Safety Structures: Modeling of Structures Subjected to Large Deformations; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Sebastjan, P.; Kuś, W. Optimization of material distribution for forged automotive components using hybrid optimization techniques. Comput. Methods Mater. Sci. 2021, 21, 63–74. [Google Scholar] [CrossRef]
- Burczyński, T.; Kuś, W.; Beluch, W.; Długosz, A.; Poteralski, A.; Szczepanik, M. Intelligent Computing in Optimal Design; Solid Mechanics and Its Applications; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar]
- Han, K.-H.; Kim, J.-H. Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. IEEE Trans. Evol. Computat. 2002, 6, 580–593. [Google Scholar] [CrossRef]
- Kuś, W.; Mrozek, A. Quantum-inspired evolutionary optimization of SLMoS2 two-phase structures. Comput. Methods Mater. Sci. 2022, 22, 67–78. [Google Scholar] [CrossRef]
- Zhang, G. Quantum-inspired evolutionary algorithms: A survey and empirical study. J. Heuristics 2011, 17, 303–351. [Google Scholar] [CrossRef]
- Lahoz-Beltra, R. Quantum Genetic Algorithms for Computer Scientists. Computers 2016, 5, 24. [Google Scholar] [CrossRef]
- Da Silveira, L.R.; Tanscheit, R.; Vellasco, M.M.B.R. Quantum inspired evolutionary algorithm for ordering problems. Expert Syst. Appl. 2017, 67, 71–83. [Google Scholar] [CrossRef]
- Burczyński, T.; Pietrzyk, M.; Kuś, W.; Madej, Ł.; Mrozek, A.; Rauch, Ł. Multiscale Modelling and Optimisation of Materials and Structures; Wiley: Hoboken, NJ, USA, 2022. [Google Scholar]
Fracture Strain [mm/mm] | Stress Triaxiality Factor |
---|---|
1.014 | −0.33 |
0.014 | 0 |
0.014 | 0.33 |
Yield Stress [MPa] | Plastic Strain [mm/mm] |
---|---|
99 | 0 |
175 | 0.01459 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rurański, A.; Kuś, W. The Quantum-Inspired Evolutionary Algorithm in the Parametric Optimization of Lithium-Ion Battery Housing in the Multiple-Drop Test. Batteries 2024, 10, 308. https://doi.org/10.3390/batteries10090308
Rurański A, Kuś W. The Quantum-Inspired Evolutionary Algorithm in the Parametric Optimization of Lithium-Ion Battery Housing in the Multiple-Drop Test. Batteries. 2024; 10(9):308. https://doi.org/10.3390/batteries10090308
Chicago/Turabian StyleRurański, Adam, and Wacław Kuś. 2024. "The Quantum-Inspired Evolutionary Algorithm in the Parametric Optimization of Lithium-Ion Battery Housing in the Multiple-Drop Test" Batteries 10, no. 9: 308. https://doi.org/10.3390/batteries10090308
APA StyleRurański, A., & Kuś, W. (2024). The Quantum-Inspired Evolutionary Algorithm in the Parametric Optimization of Lithium-Ion Battery Housing in the Multiple-Drop Test. Batteries, 10(9), 308. https://doi.org/10.3390/batteries10090308