Enhancing Tin Dioxide Anode Performance by Narrowing the Potential Range and Optimizing Electrolytes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Electrode Preparation
2.2. Coin Cell Assembly
2.3. Physical and Electrochemical Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yoshino, A. The birth of the lithium-ion battery. Angew. Chem. Int. Ed. 2012, 51, 5798–5800. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 2016, 1, 16013. [Google Scholar] [CrossRef]
- Goodenough, J.B.; Park, K.-S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176. [Google Scholar] [CrossRef]
- Xu, C.; Behrens, P.; Gasper, P.; Smith, K.; Hu, M.; Tukker, A.; Steubing, B. Electric vehicle batteries alone could satisfy short-term grid storage demand by as early as 2030. Nat. Commun. 2023, 14, 119. [Google Scholar] [CrossRef]
- Wu, F.; Maier, J.; Yu, Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 2020, 49, 1569–1614. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Fu, Y.; Meng, Y.; Wang, Z.; Liu, J.; Gong, X. Challenges and strategies of lithium-ion mass transfer in natural graphite anode. Chem. Eng. J. 2023, 480, 148047. [Google Scholar] [CrossRef]
- Mancini, M.; Martin, J.; Ruggeri, I.; Drewett, N.; Axmann, P.; Wohlfahrt-Mehrens, M. Enabling fast-charging lithium-ion battery anodes: Influence of spheroidization on natural graphite. Batter. Supercaps 2022, 5, e202200109. [Google Scholar] [CrossRef]
- Zhao, L.; Ding, B.; Qin, X.Y.; Wang, Z.; Lv, W.; He, Y.B.; Yang, Q.H.; Kang, F. Revisiting the roles of natural graphite in ongoing lithium-ion batteries. Adv. Mater. 2022, 34, 2106704. [Google Scholar] [CrossRef]
- Iwamura, S.; Nishihara, H.; Ono, Y.; Morito, H.; Yamane, H.; Nara, H.; Osaka, T.; Kyotani, T. Li-rich Li-Si alloy as a lithium-containing negative electrode material towards high energy lithium-ion batteries. Sci. Rep. 2015, 5, 8085. [Google Scholar] [CrossRef]
- Hamon, Y.; Brousse, T.; Jousse, F.; Topart, P.; Buvat, P.; Schleich, D.M. Aluminum negative electrode in lithium ion batteries. J. Power Sources 2001, 97, 185–187. [Google Scholar] [CrossRef]
- Crosnier, O.; Brousse, T.; Schleich, D. Tin based alloys for lithium ion batteries. Ionics 1999, 5, 311–315. [Google Scholar] [CrossRef]
- He, J.; Wei, Y.; Zhai, T.; Li, H. Antimony-based materials as promising anodes for rechargeable lithium-ion and sodium-ion batteries. Mater. Chem. Front. 2018, 2, 437–455. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, F.; Lee, C.S.; Tang, Y. Low-cost metallic anode materials for high performance rechargeable batteries. Adv. Energy Mater. 2017, 7, 1700536. [Google Scholar] [CrossRef]
- Wang, M.; Chen, T.; Liao, T.; Zhang, X.; Zhu, B.; Tang, H.; Dai, C. Tin dioxide-based nanomaterials as anodes for lithium-ion batteries. RSC Adv. 2021, 11, 1200–1221. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Liu, Y.; Zhang, Y.; Li, Y.; Zhang, P.; Yan, Y.; Liu, T. Octahedral tin dioxide nanocrystals anchored on vertically aligned carbon aerogels as high capacity anode materials for lithium-ion batteries. Sci. Rep. 2016, 6, 31496. [Google Scholar] [CrossRef]
- Heubner, C.; Liebmann, T.; Voigt, K.; Weiser, M.; Matthey, B.R.; Junker, N.; Lämmel, C.; Schneider, M.; Michaelis, A. Scalable fabrication of nanostructured tin oxide anodes for high-energy lithium-ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 27019–27029. [Google Scholar] [CrossRef]
- Nowak, A.P. Composites of tin oxide and different carbonaceous materials as negative electrodes in lithium-ion batteries. J. Solid State Electrochem. 2018, 22, 2297–2304. [Google Scholar] [CrossRef]
- Zoller, F.; Böhm, D.; Bein, T.; Fattakhova-Rohlfing, D. Tin oxide based nanomaterials and their application as anodes in lithium-ion batteries and beyond. ChemSusChem 2019, 12, 4140–4159. [Google Scholar] [CrossRef]
- Azam, M.A.; Safie, N.E.; Ahmad, A.S.; Yuza, N.A.; Zulkifli, N.S.A. Recent advances of silicon, carbon composites and tin oxide as new anode materials for lithium-ion battery: A comprehensive review. J. Energy Storage 2021, 33, 102096. [Google Scholar] [CrossRef]
- Li, Z.; Wu, G.; Liu, D.; Wu, W.; Jiang, B.; Zheng, J.; Li, Y.; Li, J.; Wu, M. Graphene enhanced carbon-coated tin dioxide nanoparticles for lithium-ion secondary batteries. J. Mater. Chem. A 2014, 2, 7471–7477. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Chen, J.-M.; Huang, Y.-H.; Lee, Y.-R.; Shih, H.C. Size effect of tin oxide nanoparticles on high capacity lithium battery anode materials. Surf. Coat. Technol. 2007, 202, 1313–1318. [Google Scholar] [CrossRef]
- Hong, Y.; Mao, W.; Hu, Q.; Chang, S.; Li, D.; Zhang, J.; Liu, G.; Ai, G. Nitrogen-doped carbon coated SnO2 nanoparticles embedded in a hierarchical porous carbon framework for high-performance lithium-ion battery anodes. J. Power Sources 2019, 428, 44–52. [Google Scholar] [CrossRef]
- Wang, Q.; Xu, J.; Shen, G.; Guo, Y.; Zhao, X.; Xia, Y.; Sun, H.; Hou, P.; Xie, W.; Xu, X. Large-scale carbon framework microbelts anchoring ultrafine SnO2 nanoparticles with enhanced lithium storage properties. Electrochim. Acta 2019, 297, 879–887. [Google Scholar] [CrossRef]
- Bagherian, S.; Zak, A.K. X-ray peak broadening and optical properties analysis of SnO2 nanosheets prepared by sol-gel method. Mater. Sci. Semicond. Process. 2016, 56, 52–58. [Google Scholar] [CrossRef]
- Wen, Z.; Zheng, F.; Liu, K. Synthesis of porous SnO2 nanospheres and their application for lithium-ion battery. Mater. Lett. 2012, 68, 469–471. [Google Scholar] [CrossRef]
- Li, H.; Su, Q.; Kang, J.; Huang, M.; Feng, M.; Feng, H.; Huang, P.; Du, G. Porous SnO2 hollow microspheres as anodes for high-performance lithium ion battery. Mater. Lett. 2018, 217, 276–280. [Google Scholar] [CrossRef]
- Rodriguez, J.R.; Hamann, H.J.; Mitchell, G.M.; Ortalan, V.; Gribble, D.; Xiong, B.; Pol, V.G.; Ramachandran, P.V. Interconnected Sn@ SnO2 nanoparticles as an anode material for lithium-ion batteries. ACS Appl. Nano Mater. 2023, 6, 11070–11076. [Google Scholar] [CrossRef]
- Kilibarda, G.; Szabó, D.; Schlabach, S.; Winkler, V.; Bruns, M.; Hanemann, T. Investigation of the degradation of SnO2 electrodes for use in Li-ion cells. J. Power Sources 2013, 233, 139–147. [Google Scholar] [CrossRef]
- Jin, Y.; Kneusels, N.-J.H.; Marbella, L.E.; Castillo-Martínez, E.; Magusin, P.C.; Weatherup, R.S.; Jonsson, E.; Liu, T.; Paul, S.; Grey, C.P. Understanding fluoroethylene carbonate and vinylene carbonate based electrolytes for Si anodes in lithium ion batteries with NMR spectroscopy. J. Am. Chem. Soc. 2018, 140, 9854–9867. [Google Scholar] [CrossRef]
- Mirolo, M.; Wu, X.; Vaz, C.A.; Novák, P.; El Kazzi, M. Unveiling the Complex Redox Reactions of SnO₂ in Li-Ion Batteries Using Operando X-ray Photoelectron Spectroscopy and In Situ X-ray Absorption Spectroscopy. ACS Appl. Mater. Interfaces 2021, 13, 2547–2557. [Google Scholar] [CrossRef]
- Ferraresi, G.; Villevieille, C.; Czekaj, I.; Horisberger, M.; Novák, P.; El Kazzi, M. SnO2 model electrode cycled in Li-ion battery reveals the formation of Li2SnO3 and Li8SnO6 phases through conversion reactions. ACS Appl. Mater. Interfaces 2018, 10, 8712–8720. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Fan, X.; Li, Q.; Yang, H.; Khoshi, M.R.; Xu, Y.; Hwang, S.; Chen, L.; Ji, X.; Yang, C. Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat. Energy 2020, 5, 386–397. [Google Scholar] [CrossRef]
- Wang, C.; Appleby, A.J.; Little, F.E. Electrochemical study of the SnO2 lithium-insertion anode using microperturbation techniques. Solid State Ion. 2002, 147, 13–22. [Google Scholar] [CrossRef]
- Kong, Q.; Zhang, Q.; Yan, B.; Chen, J.; Chen, D.; Jiang, L.; Lan, T.; Zhang, C.; Yang, W.; He, S. N/O co-doped porous carbon synthesized by lewis acid salt activation for high rate performance supercapacitor. J. Energy Storage 2024, 80, 110322. [Google Scholar] [CrossRef]
- Liu, Y.; Xiang, K.; Zhou, W.; Deng, W.; Zhu, H.; Chen, H. Investigations on tunnel-structure MnO2 for utilization as a high-voltage and long-life cathode material in aqueous ammonium-ion and hybrid-ion batteries. Small 2024, 20, 2308741. [Google Scholar] [CrossRef]
- Liu, J.; Li, Y.; Huang, X.; Ding, R.; Hu, Y.; Jiang, J.; Liao, L. Direct growth of SnO2 nanorod array electrodes for lithium-ion batteries. J. Mater. Chem. 2009, 19, 1859–1864. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Florez Gomez, J.F.; Domenech, F.C.; Chang, S.; Dorvilien, V.; Oli, N.; Weiner, B.R.; Morell, G.; Wu, X. Enhancing Tin Dioxide Anode Performance by Narrowing the Potential Range and Optimizing Electrolytes. Batteries 2024, 10, 334. https://doi.org/10.3390/batteries10090334
Florez Gomez JF, Domenech FC, Chang S, Dorvilien V, Oli N, Weiner BR, Morell G, Wu X. Enhancing Tin Dioxide Anode Performance by Narrowing the Potential Range and Optimizing Electrolytes. Batteries. 2024; 10(9):334. https://doi.org/10.3390/batteries10090334
Chicago/Turabian StyleFlorez Gomez, Jose Fernando, Fernando Camacho Domenech, Songyang Chang, Valerio Dorvilien, Nischal Oli, Brad R. Weiner, Gerardo Morell, and Xianyong Wu. 2024. "Enhancing Tin Dioxide Anode Performance by Narrowing the Potential Range and Optimizing Electrolytes" Batteries 10, no. 9: 334. https://doi.org/10.3390/batteries10090334
APA StyleFlorez Gomez, J. F., Domenech, F. C., Chang, S., Dorvilien, V., Oli, N., Weiner, B. R., Morell, G., & Wu, X. (2024). Enhancing Tin Dioxide Anode Performance by Narrowing the Potential Range and Optimizing Electrolytes. Batteries, 10(9), 334. https://doi.org/10.3390/batteries10090334