Safety and Reliability Analysis of Reconfigurable Battery Energy Storage System
Abstract
:1. Introduction
- A simplified mathematical model is established, which accurately describes the external characteristics of the battery during thermal runaway. This provides a theoretical foundation for early warning.
- A novel reliability assessment algorithm is devised, based on the specific structure topology and component characteristics of the energy storage system. This enables a more precise quantification of system-level thermal runaway risks.
- An operational control algorithm for a reconfigurable battery energy storage system (RBESS) is designed with the objective of enhancing system reliability, reducing failure rates, and mitigating safety risks.
2. Materials and Methods
2.1. Battery Operating Temperature Calculation
2.2. TR Reaction Modeling
2.3. The Simplified Model of the Battery TR Onset Point
3. System Reliability Assessment Method
3.1. Topology of RBESS
3.2. Reliability Assessment for Reconfigurable Topology
3.3. Reliability Assessment for RBESS
4. System Operational Control Strategies for Reliability Enhancement
4.1. Weakpoint Analysis of the System
- 1.
- Calculate the Proportion of the Sample Value for the Indicator:Determine the proportion of the sample value relative to the total value of the indicator.
- 2.
- Calculate the Entropy Value for the Indicator:Compute the entropy value of the indicator, reflecting the level of uncertainty or diversity within the data.
- 3.
- Calculate the Information Entropy Redundancy:Evaluate the redundancy or difference in information entropy for the indicator.
- 4.
- Calculate the Weight of Each Indicator:Determine the weight of each indicator based on the calculated entropy values, highlighting the relative importance of each indicator.
- 5.
- Obtain the Final Comprehensive Score and Risk Index () Rank:Combine the weighted indicators to produce a comprehensive score for each sample.
4.2. Operation Control Strategy
- Parameter Preparation: Gather the initial operating state set for all battery modules , the number of series and parallel connections , and the network topology reconfiguration interval . Also, obtain the redundancy status for series and parallel connections, including the minimum number of parallel branches (to meet current output requirements) and the minimum number of series-connected batteries per branch (to meet voltage output requirements).
- Weak Link Identification: Assess the risk indicators for each battery using the algorithm described in Section 4.1.
- Module Selection within Series Units: Rank the parallel modules within each series unit according to their risk indicators. Select the top-performing batteries to form new series units.
- Series Unit Selection: Based on the risk indicators and the rankings from the previous step, select the top series units to form a new complete topology.
- Charge-Discharge Simulation: Over the , perform charge and discharge operations using the network topology selected in steps (3) and (4). Recalculate the SOC and temperature changes for the battery modules (the number of series and parallel connections will directly affect SOC and temperature variations; for instance, reducing the number of series units lowers the voltage, increases the total current, and affects the depth of charge-discharge). Assess the system’s reliability under this topology using the methods from Chapter 3.
- Move to the Next : Repeat steps (2) to (6) until the system meets the scheduling requirements.
5. Case Study
5.1. TR Test
5.2. Experimental Results Analysis
5.3. BESS Operation Risk Analysis and Operation Optimization
5.3.1. Analysis of Operating Risks and Weak Points of BESS
5.3.2. Optimization Effect of Control Strategy
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Electrochemical-Thermal Model
Appendix A.2
References
- Wu, D.; Zhou, D.; Zhu, Q.; Wu, L. An Investigation into the Role of Residents’ Cognitive Preferences in Distributed Renewable Energy Development. Appl. Energy 2024, 372, 123814. [Google Scholar] [CrossRef]
- Amir, M.; Deshmukh, R.G.; Khalid, H.M.; Said, Z.; Raza, A.; Muyeen, S.M.; Nizami, A.-S.; Elavarasan, R.M.; Saidur, R.; Sopian, K. Energy Storage Technologies: An Integrated Survey of Developments, Global Economical/Environmental Effects, Optimal Scheduling Model, and Sustainable Adaption Policies. J. Energy Storage 2023, 72, 108694. [Google Scholar] [CrossRef]
- IEA World Energy Outlook 2023–Analysis. Available online: https://www.iea.org/reports/world-energy-outlook-2023 (accessed on 23 December 2024).
- BESS Failure Incident Database-EPRI Storage Wiki. Available online: https://storagewiki.epri.com/index.php/BESS_Failure_Incident_Database (accessed on 23 December 2024).
- Shen, X.; Hu, Q.; Zhang, Q.; Wang, D.; Yuan, S.; Jiang, J.; Qian, X.; Yuan, M. An Analysis of Li-Ion Induced Potential Incidents in Battery Electrical Energy Storage System by Use of Computational Fluid Dynamics Modeling and Simulations: The Beijing April 2021 Case Study. Eng. Fail. Anal. 2023, 151, 107384. [Google Scholar] [CrossRef]
- Sun, J.; Mao, B.; Wang, Q. Progress on the Research of Fire Behavior and Fire Protection of Lithium Ion Battery. Fire Saf. J. 2020, 120, 103119. [Google Scholar] [CrossRef]
- Gao, T.; Bai, J.; Ouyang, D.; Wang, Z.; Bai, W.; Mei, N.; Zhu, Y. Effect of Aging Temperature on Thermal Stability of Lithium-Ion Batteries: Part a—High-Temperature Aging. Renew. Energy 2023, 203, 592–600. [Google Scholar] [CrossRef]
- Baakes, F.; Witt, D.; Krewer, U. Impact of Electrolyte Impurities and SEI Composition on Battery Safety. Chem. Sci. 2023, 14, 13783–13798. [Google Scholar] [CrossRef]
- Maleki, H.; Deng, G.; Anani, A.; Howard, J. Thermal Stability Studies of Li-Ion Cells and Components. J. Electrochem. Soc. 1999, 146, 3224–3229. [Google Scholar] [CrossRef]
- Andersson, A.M.; Herstedt, M.; Bishop, A.G.; Edström, K. The Influence of Lithium Salt on the Interfacial Reactions Controlling the Thermal Stability of Graphite Anodes. Electrochim. Acta 2002, 47, 1885–1898. [Google Scholar] [CrossRef]
- Pastor, J.V.; García, A.; Monsalve-Serrano, J.; Golke, D. Analysis of the Aging Effects on the Thermal Runaway Characteristics of Lithium-Ion Cells through Stepwise Reactions. Appl. Therm. Eng. 2023, 230, 120685. [Google Scholar] [CrossRef]
- Liu, X.; Ren, D.; Hsu, H.; Feng, X.; Xu, G.-L.; Zhuang, M.; Gao, H.; Lu, L.; Han, X.; Chu, Z.; et al. Thermal Runaway of Lithium-Ion Batteries without Internal Short Circuit. Joule 2018, 2, 2047–2064. [Google Scholar] [CrossRef]
- Xu, C.; Wang, H.; Jiang, F.; Feng, X.; Lu, L.; Jin, C.; Zhang, F.; Huang, W.; Zhang, M.; Ouyang, M. Modelling of Thermal Runaway Propagation in Lithium-Ion Battery Pack Using Reduced-Order Model. Energy 2023, 268, 126646. [Google Scholar] [CrossRef]
- Shah, K.; Chalise, D.; Jain, A. Experimental and Theoretical Analysis of a Method to Predict Thermal Runaway in Li-Ion Cells. J. Power Sources 2016, 330, 167–174. [Google Scholar] [CrossRef]
- Esho, I.; Shah, K.; Jain, A. Measurements and Modeling to Determine the Critical Temperature for Preventing Thermal Runaway in Li-Ion Cells. Appl. Therm. Eng. 2018, 145, 287–294. [Google Scholar] [CrossRef]
- Ali, H.A.A.; Raijmakers, L.H.; Tempel, H.; Danilov, D.L.; Notten, P.H.; Eichel, R.A. A Hybrid Electrochemical Multi-Particle Model for Li-Ion Batteries. J. Electrochem. Soc. 2024, 171, 110523. [Google Scholar] [CrossRef]
- Tredenick, E.; Wheeler, S.; Drummond, R.; Sun, Y.; Duncan, S.; Grant, P. A Multilayer Doyle-Fuller-Newman Model to Optimise the Rate Performance of Bilayer Cathodes in Li Ion Batteries. J. Electrochem. Soc. 2024, 171, 060531. [Google Scholar] [CrossRef]
- Ha, S.; Onori, S. COBRAPRO: An Open-Source Software for the Doyle-Fuller-Newman Model with Co-Simulation Parameter Optimization Framework. J. Electrochem. Soc. 2024, 171, 090522. [Google Scholar] [CrossRef]
- Doyle, M.; Fuller, T.F.; Newman, J. Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell. J. Electrochem. Soc. 1993, 140, 1526–1533. [Google Scholar] [CrossRef]
- Yu, Z.; Tian, Y.; Li, B. A Simulation Study of Li-Ion Batteries Based on a Modified P2D Model. J. Power Sources 2024, 618, 234376. [Google Scholar] [CrossRef]
- Xu, J.; Sun, C.; Ni, Y.; Lyu, C.; Wu, C.; Zhang, H.; Yang, Q.; Feng, F. Fast Identification of Micro-Health Parameters for Retired Batteries Based on a Simplified P2D Model by Using Padé Approximation. Batteries 2023, 9, 64. [Google Scholar] [CrossRef]
- Li, H.; Saini, A.; Liu, C.; Yang, J.; Wang, Y.; Yang, T.; Pan, C.; Chen, L.; Jiang, H. Electrochemical and Thermal Characteristics of Prismatic Lithium-Ion Battery Based on a Three-Dimensional Electrochemical-Thermal Coupled Model. J. Energy Storage 2021, 42, 102976. [Google Scholar] [CrossRef]
- Mastali, M.; Foreman, E.; Modjtahedi, A.; Samadani, E.; Amirfazli, A.; Farhad, S.; Fraser, R.; Fowler, M. Electrochemical-Thermal Modeling and Experimental Validation of Commercial Graphite/LiFePO4 Pouch Lithium-Ion Batteries. Int. J. Therm. Sci. 2018, 129, 218–230. [Google Scholar] [CrossRef]
- Baba, N.; Yoshida, H.; Nagaoka, M.; Okuda, C.; Kawauchi, S. Numerical Simulation of Thermal Behavior of Lithium-Ion Secondary Batteries Using the Enhanced Single Particle Model. J. Power Sources 2014, 252, 214–228. [Google Scholar] [CrossRef]
- Xue, C.; Jiang, B.; Zhu, J.; Wei, X.; Dai, H. An Enhanced Single-Particle Model Using a Physics-Informed Neural Network Considering Electrolyte Dynamics for Lithium-Ion Batteries. Batteries 2023, 9, 511. [Google Scholar] [CrossRef]
- Hariharan, K.S. A Coupled Nonlinear Equivalent Circuit–Thermal Model for Lithium Ion Cells. J. Power Sources 2013, 227, 171–176. [Google Scholar] [CrossRef]
- He, J.; Sazzad Hosen, M.; Youssef, R.; Kalogiannis, T.; Van Mierlo, J.; Berecibar, M. A Lumped Electro-Thermal Model for a Battery Module with a Novel Hybrid Cooling System. Appl. Therm. Eng. 2023, 221, 119874. [Google Scholar] [CrossRef]
- Liu, C.; Liu, W.; Wang, L.; Hu, G.; Ma, L.; Ren, B. A New Method of Modeling and State of Charge Estimation of the Battery. J. Power Sources 2016, 320, 1–12. [Google Scholar] [CrossRef]
- Bernardi, D. A General Energy Balance for Battery Systems. J. Electrochem. Soc. 1985, 132, 5. [Google Scholar] [CrossRef]
- Kim, G.-H.; Pesaran, A.; Spotnitz, R. A Three-Dimensional Thermal Abuse Model for Lithium-Ion Cells. J. Power Sources 2007, 170, 476–489. [Google Scholar] [CrossRef]
- Wang, Z.; He, T.; Bian, H.; Jiang, F.; Yang, Y. Characteristics of and Factors Influencing Thermal Runaway Propagation in Lithium-Ion Battery Packs. J. Energy Storage 2021, 41, 102956. [Google Scholar] [CrossRef]
- Wu, H.; Chen, S.; Chen, J.; Jin, C.; Xu, C.; Rui, X.; Hsu, H.; Zheng, Y.; Feng, X. Dimensionless Normalized Concentration Based Thermal-Electric Regression Model for the Thermal Runaway of Lithium-Ion Batteries. J. Power Sources 2022, 521, 230958. [Google Scholar] [CrossRef]
- U.S. DOD. Military Handbook MIL-HDBK-217F. In Reliability Prediction of Electronic Equipment; Department of Defense: Washington, DC, USA, 1991. [Google Scholar]
- Aquilino, J.W. Report of Transformer Reliability Survey—Industrial Plants and Commercial Buildings. IEEE Trans. Ind. Appl. 1983, IA-19, 858–866. [Google Scholar]
- Pham, T.T.; Kuo, T.-C.; Bui, D.M. Reliability Evaluation of an Aggregate Battery Energy Storage System in Microgrids under Dynamic Operation. Int. J. Electr. Power Energy Syst. 2020, 118, 105786. [Google Scholar] [CrossRef]
- Xia, Q.; Wang, Z.; Ren, Y.; Tao, L.; Lu, C.; Tian, J.; Hu, D.; Wang, Y.; Su, Y.; Chong, J.; et al. A Modified Reliability Model for Lithium-Ion Battery Packs Based on the Stochastic Capacity Degradation and Dynamic Response Impedance. J. Power Sources 2019, 423, 40–51. [Google Scholar] [CrossRef]
Number | Location | System Capacity (MWh) | Date |
---|---|---|---|
1 | USA, CA, San Diego | 250 MWh | 2024.05 |
2 | Taiwan, Lanyu | 1.1 MWh | 2023.12 |
3 | USA, ID, Melba | 8 MWh | 2023.10 |
4 | Australia, Queensland, Bouldercombe | 100 MWh | 2023.09 |
5 | US, CA, Valley Center | 560 MWh | 2023.09 |
6 | France, Saucats, Barban | 98 MWh | 2023.08 |
7 | US, NY, Chaumont | 15 MWh | 2023.07 |
8 | US, NY, East Hampton | 40 MWh | 2023.05 |
9 | Sweden, Gothenburg, Vastra Frolunda | 0.9 MWh | 2023.04 |
10 | South Korea, Jeollanam-do, Yeongam-gun, Geumjeong-myeon | 251 MWh | 2022.12 |
11 | China, Hainan | 50 MWh | 2022.10 |
12 | US, CA, Moss Landing | 730 MWh | 2022.09 |
13 | US, AZ, Chandler | 40 MWh | 2022.04 |
14 | Taiwan, Taichung City, Longjing District | 1 MWh | 2022.03 |
15 | South Korea, Nam-gu, Ulsan | 50 MWh | 2022.01 |
TR Reactions | Reaction Rate Equation | Heat Generation Equation |
---|---|---|
SEI decomposition reactions | ||
negative electrode-electrolyte reactions | ||
positive electrode-electrolyte reactions | ||
electrolyte decomposition reactions |
Parameters | Description | Unit |
frequency factor of the reaction | ||
Activation energy of the reaction | J/mol | |
Dimensionless amount | - | |
Conversion degree of the positive electrode material. | - | |
Reaction order | - | |
Heat of reaction | J/kg | |
Density of reactants in the medium | kg/m3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Cheng, L.; Paizulamu, D.; Zheng, H. Safety and Reliability Analysis of Reconfigurable Battery Energy Storage System. Batteries 2025, 11, 12. https://doi.org/10.3390/batteries11010012
Xu H, Cheng L, Paizulamu D, Zheng H. Safety and Reliability Analysis of Reconfigurable Battery Energy Storage System. Batteries. 2025; 11(1):12. https://doi.org/10.3390/batteries11010012
Chicago/Turabian StyleXu, Helin, Lin Cheng, Daniyaer Paizulamu, and Haoyu Zheng. 2025. "Safety and Reliability Analysis of Reconfigurable Battery Energy Storage System" Batteries 11, no. 1: 12. https://doi.org/10.3390/batteries11010012
APA StyleXu, H., Cheng, L., Paizulamu, D., & Zheng, H. (2025). Safety and Reliability Analysis of Reconfigurable Battery Energy Storage System. Batteries, 11(1), 12. https://doi.org/10.3390/batteries11010012