Unravelling Lithium Interactions in Non-Flammable Gel Polymer Electrolytes: A Density Functional Theory and Molecular Dynamics Study
Abstract
:1. Introduction and Background
2. Computational Approach
2.1. Preparation of GPE Systems
2.2. Interaction Energy Calculation
3. Results and Discussion
3.1. Li⁺ Surrounding Environment Through RDF and CN Analyses
3.2. Interaction Energies of Li Ions in GPE
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, Z.; Zhang, Y.; Zhang, Y.; Luo, J.; Chen, W.; Fan, W.; Huo, S.; Jing, X.; Bao, W.; Long, X.; et al. In-situ construction of high-temperature-resistant 3D composite polymer electrolyte membranes towards high-performance all-solid-state lithium metal batteries. J. Power Sources 2022, 548, 232052. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Z.; Liu, D.; Gao, Y.; Wang, Y.; Bu, H.; Li, M.; Zhang, Y.; Gao, G.; Ding, S. A composite solid polymer electrolyte incorporating MnO2 nanosheets with reinforced mechanical properties and electrochemical stability for lithium metal batteries. J. Mater. Chem. A 2020, 8, 2021–2032. [Google Scholar] [CrossRef]
- Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybulin, E.; Zhang, Y.; Zhang, J.-G. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 2014, 7, 513–537. [Google Scholar] [CrossRef]
- Zhang, J.-G.; Xu, W.; Xiao, J.; Cao, X.; Liu, J. Lithium Metal Anodes with Nonaqueous Electrolytes. Chem. Rev. 2020, 120, 13312–13348. [Google Scholar] [CrossRef]
- Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303. [Google Scholar] [CrossRef]
- Dunn, B.; Kamath, H.; Tarascon, J.M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935. [Google Scholar] [CrossRef]
- Hwang, J.; Matsumoto, K.; Chen, C.-Y.; Hagiwara, R. Pseudo-solid-state electrolytes utilizing the ionic liquid family for rechargeable batteries. Energy Environ. Sci. 2021, 14, 5834–5863. [Google Scholar] [CrossRef]
- Sun, M.; Zeng, Z.; Hu, W.; Sheng, K.; Wang, Z.; Han, Z.; Peng, L.; Yu, C.; Cheng, S.; Fan, M.; et al. Scalable fabrication of solid-state batteries through high-energy electronic beam. Chem. Eng. J. 2022, 431, 134323. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, A.; Liu, X.; Luo, J. Dendrites in Lithium Metal Anodes: Suppression, Regulation, and Elimination. Acc. Chem. Res. 2019, 52, 3223–3232. [Google Scholar] [CrossRef]
- Aruchamy, K.; Ramasundaram, S.; Divya, S.; Chandran, M.; Yun, K.; Oh, T.H. Gel Polymer Electrolytes: Advancing Solid-State Batteries for High-Performance Applications. Gels 2023, 9, 585. [Google Scholar] [CrossRef]
- Yu, F.; Zhao, L.; Zhang, H.; Sun, Z.; Li, Y.; Hu, Q.; Chen, Y. Cathode/gel polymer electrolyte integration design based on continuous composition and preparation technique for high performance lithium ion batteries. RSC Adv. 2021, 11, 3854–3862. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Huang, Y.; Li, C.; Li, X. Metal–Organic Framework-Supported Poly(ethylene oxide) Composite Gel Polymer Electrolytes for High-Performance Lithium/Sodium Metal Batteries. ACS Appl. Mater. Interfaces 2021, 13, 37262–37272. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhou, L.; Tufail, M.K.; Yang, L.; Zhai, P.; Chen, R.; Yang, W. In-Situ synthesized Non-flammable gel polymer electrolyte enable highly safe and Dendrite-Free lithium metal batteries. Chem. Eng. J. 2021, 415, 128846. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, P.; Li, S.; Wang, X.; Li, F.; Ma, J.; Chai, J.; Zhang, J.; Xu, G.; Huang, Z.; et al. A Flame Retardant Ionic Conductor Additive for Safety-Reinforced Liquid Electrolyte of Lithium Batteries. J. Electrochem. Soc. 2017, 164, A1559. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, Y.; Huo, S.; Bao, W.; Fan, W.; Zhang, Y.; Jing, X.; Ahmad, N.; Cheng, H.; Zhang, Y. Integrated design of multifunctional all-in-one polymer electrolyte membranes with 3D crosslinking networks toward high-performance lithium metal batteries. J. Membr. Sci. 2023, 677, 121643. [Google Scholar] [CrossRef]
- Hu, Z.; Chen, J.; Guo, Y.; Zhu, J.; Qu, X.; Niu, W.; Liu, X. Fire-resistant, high-performance gel polymer electrolytes derived from poly(ionic liquid)/P(VDF-HFP) composite membranes for lithium ion batteries. J. Membr. Sci. 2020, 599, 117827. [Google Scholar] [CrossRef]
- Wróbel, P.; Kubisiak, P.; Eilmes, A. MeTFSI (Me = Li, Na) Solvation in Ethylene Carbonate and Fluorinated Ethylene Carbonate: A Molecular Dynamics Study. J. Phys. Chem. B 2021, 125, 1248–1258. [Google Scholar] [CrossRef]
- Tasaki, K. Solvent Decompositions and Physical Properties of Decomposition Compounds in Li-Ion Battery Electrolytes Studied by DFT Calculations and Molecular Dynamics Simulations. J. Phys. Chem. B 2005, 109, 2920–2933. [Google Scholar] [CrossRef]
- Haskins, J.B.; Bauschlicher, C.W., Jr.; Lawson, J.W. Ab Initio Simulations and Electronic Structure of Lithium-Doped Ionic Liquids: Structure, Transport, and Electrochemical Stability. J. Phys. Chem. B 2015, 119, 14705–14719. [Google Scholar] [CrossRef]
- Chawla, N.; Bharti, N.; Singh, S. Recent Advances in Non-Flammable Electrolytes for Safer Lithium-Ion Batteries. Batteries 2019, 5, 19. [Google Scholar] [CrossRef]
- Shi, P.; Zheng, H.; Liang, X.; Sun, Y.; Cheng, S.; Chen, C.; Xiang, H. A highly concentrated phosphate-based electrolyte for high-safety rechargeable lithium batteries. Chem. Commun. 2018, 54, 4453–4456. [Google Scholar] [CrossRef]
- Cats, P.; Evans, R.; Härtel, A.; van Roij, R. Primitive model electrolytes in the near and far field: Decay lengths from DFT and simulations. J. Chem. Phys. 2021, 154, 124504. [Google Scholar] [CrossRef]
- Diddens, D.; Heuer, A. Lithium Ion Transport Mechanism in Ternary Polymer Electrolyte-Ionic Liquid Mixtures: A Molecular Dynamics Simulation Study. ACS Macro Lett. 2013, 2, 322–326. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Abrams, C.F. HTPolyNet: A general system generator for all-atom molecular simulations of amorphous crosslinked polymers. SoftwareX 2023, 21, 101303. [Google Scholar] [CrossRef]
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber force field. J. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef] [PubMed]
- Berendsen, H.J.C.; van der Spoel, D.; van Drunen, R. GROMACS: A message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 1995, 91, 43–56. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1–2, 19–25. [Google Scholar] [CrossRef]
- Sousa da Silva, A.W.; Vranken, W.F. ACPYPE—AnteChamber PYthon Parser interfacE. BMC Res. Notes 2012, 5, 367. [Google Scholar] [CrossRef]
- Shen, X.; Hua, H.; Li, H.; Li, R.; Hu, T.; Wu, D.; Zhang, P.; Zhao, J. Synthesis and molecular dynamic simulation of a novel single ion conducting gel polymer electrolyte for lithium-ion batteries. Polymer 2020, 201, 122568. [Google Scholar] [CrossRef]
- Levine, B.G.; Stone, J.E.; Kohlmeyer, A. Fast analysis of molecular dynamics trajectories with graphics processing units—Radial distribution function histogramming. J. Comput. Phys. 2011, 230, 3556–3569. [Google Scholar] [CrossRef]
- Valiev, M.; Bylaska, E.J.; Govind, N.; Kowalski, K.; Straatsma, T.P.; Van Dam, H.J.J.; Wang, D.; Nieplocha, J.; Apra, E.; Windus, T.L.; et al. NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations. Comput. Phys. Commun. 2010, 181, 1477–1489. [Google Scholar] [CrossRef]
- Hertwig, R.H.; Koch, W. On the parameterization of the local correlation functional. What is Becke-3-LYP? Chem. Phys. Lett. 1997, 268, 345–351. [Google Scholar] [CrossRef]
- Chen, X.; Yao, N.; Zeng, B.-S.; Zhang, Q. Ion–solvent chemistry in lithium battery electrolytes: From mono-solvent to multi-solvent complexes. Fundam. Res. 2021, 1, 393–398. [Google Scholar] [CrossRef]
- Boys, S.F.; Bernardi, F. The calculation of small molecular interactions by the differences of separate total energies. Some Proced. Reduc. Errors. Mol. Phys. 1970, 19, 553–566. [Google Scholar]
- Simon, S.; Duran, M.; Dannenberg, J.J. How does basis set superposition error change the potential surfaces for hydrogen-bonded dimers? J. Chem. Phys. 1996, 105, 11024–11031. [Google Scholar] [CrossRef]
- Ademmer, M.; Su, P.-H.; Dodell, L.; Asenbauer, J.; Osenberg, M.; Hilger, A.; Chang, J.-K.; Manke, I.; Neumann, M.; Schmidt, V.; et al. Unveiling the Impact of Cross-Linking Redox-Active Polymers on Their Electrochemical Behavior by 3D Imaging and Statistical Microstructure Analysis. J. Phys. Chem. C 2023, 127, 19366–19377. [Google Scholar] [CrossRef]
- Luque Di Salvo, J.; De Luca, G.; Cipollina, A.; Micale, G. Effect of ion exchange capacity and water uptake on hydroxide transport in PSU-TMA membranes: A DFT and molecular dynamics study. J. Membr. Sci. 2020, 599, 117837. [Google Scholar] [CrossRef]
- Luque Di Salvo, J.; De Luca, G.; Cipollina, A.; Micale, G. A full-atom multiscale modelling for sodium chloride diffusion in anion exchange membranes. J. Membr. Sci. 2021, 637, 119646. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
AL-Hamdani, N.; Saravia, P.V.; Luque Di Salvo, J.; Paz, S.A.; De Luca, G. Unravelling Lithium Interactions in Non-Flammable Gel Polymer Electrolytes: A Density Functional Theory and Molecular Dynamics Study. Batteries 2025, 11, 27. https://doi.org/10.3390/batteries11010027
AL-Hamdani N, Saravia PV, Luque Di Salvo J, Paz SA, De Luca G. Unravelling Lithium Interactions in Non-Flammable Gel Polymer Electrolytes: A Density Functional Theory and Molecular Dynamics Study. Batteries. 2025; 11(1):27. https://doi.org/10.3390/batteries11010027
Chicago/Turabian StyleAL-Hamdani, Nasser, Paula V. Saravia, Javier Luque Di Salvo, Sergio A. Paz, and Giorgio De Luca. 2025. "Unravelling Lithium Interactions in Non-Flammable Gel Polymer Electrolytes: A Density Functional Theory and Molecular Dynamics Study" Batteries 11, no. 1: 27. https://doi.org/10.3390/batteries11010027
APA StyleAL-Hamdani, N., Saravia, P. V., Luque Di Salvo, J., Paz, S. A., & De Luca, G. (2025). Unravelling Lithium Interactions in Non-Flammable Gel Polymer Electrolytes: A Density Functional Theory and Molecular Dynamics Study. Batteries, 11(1), 27. https://doi.org/10.3390/batteries11010027