S, Se-Codoped Dual Carbon Coating and Se Substitution in Co-Alkoxide-Derived CoS2 Through SeS2 Triggered Selenization for High-Performance Sodium-Ion Batteries
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.-Y.; Myung, S.-T.; Sun, Y.-K. Sodium-ion batteries: Present and future. Chem. Soc. Rev. 2017, 46, 3529–3614. [Google Scholar] [CrossRef]
- Fan, E.; Li, L.; Wang, Z.; Lin, J.; Huang, Y.; Yao, Y.; Chen, R.; Wu, F. A Universal Molten Salt Method for Direct Upcycling of Spent Ni-rich Cathode towards Single-crystalline Li-rich Cathode. Chem. Rev. 2020, 120, 7020–7063. [Google Scholar] [CrossRef] [PubMed]
- Nayak, P.K.; Yang, L.; Brehm, W.; Adelhelm, P. Screening Heteroatom Configurations for Reversible Sloping Capacity Promises High-Power Na-Ion Batteries. Angew. Chem. Int. Ed. 2017, 57, 102–120. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, H.; Peng, J.; Li, L.; Xiao, Y.; Li, L.; Liu, Y.; Qiao, Y.; Chou, S.L. A 30-year overview of sodium-ion batteries. Carbon Energy 2024, 6, e464. [Google Scholar] [CrossRef]
- Rojo, T.; Hu, Y.-S.; Forsyth, M.; Li, X. Sodium-Ion Batteries. Adv. Energy Mater. 2018, 8, 1800880. [Google Scholar] [CrossRef]
- Zhao, Y.; Kang, Y.; Wozny, J.; Lu, J.; Du, H.; Li, C.; Li, T.; Kang, F.; Tavajohi, N.; Li, B. Recycling of sodium-ion batteries. Nat. Rev. Mater. 2023, 8, 623–634. [Google Scholar] [CrossRef]
- Zeng, C.; Zheng, R.; Fan, F.; Wang, X.; Tian, G.; Liu, S.; Liu, P.; Wang, C.; Wang, S.; Shu, C. Phase compatible surface engineering to boost the cycling stability of single-crystalline Ni-rich cathode for high energy density lithium-ion batteries. Energy Storage Mater. 2024, 72, 103788. [Google Scholar] [CrossRef]
- Yan, Y.; Shu, C.; Zheng, R.; Li, M.; Ran, Z.; He, M.; Hu, A.; Zeng, T.; Xu, H.; Zeng, Y. Modulating Sand’s time by ion-transport-enhancement toward dendrite-free lithium metal anode. Nano Res. 2022, 15, 3150–3160. [Google Scholar] [CrossRef]
- Wang, S.; Wen, X.; Huang, Z.; Xu, H.; Fan, F.; Wang, X.; Tian, G.; Liu, S.; Liu, P.; Wang, C.; et al. High-Entropy Strategy Flattening Lithium Ion Migration Energy Landscape to Enhance the Conductivity of Garnet-Type Solid-State Electrolytes. Adv. Funct. Mater. 2024, 34, 2416389. [Google Scholar] [CrossRef]
- Wu, Y.; Shuang, W.; Wang, Y.; Chen, F.; Tang, S.; Wu, X.-L.; Bai, Z.; Yang, L.; Zhang, J. Enhanced Electrochemical Energy Storage of RGO@CoxSy through Nanostructural Modulation. Electrochem. Energy Rev. 2024, 7, 17. [Google Scholar]
- Li, T.; Wang, B.; Song, H.; Mei, P.; Hu, J.; Zhang, M.; Chen, G.; Yan, D.; Zhang, D.; Huang, S. Deciphering the Performance Enhancement, Cell Failure Mechanism, and Amelioration Strategy of Sodium Storage in Metal Chalcogenides-Based Anodes. Adv. Mater. 2024, 36, 2314271. [Google Scholar] [CrossRef] [PubMed]
- Qiao, S.; Zhou, Q.; Ma, M.; Liu, H.K.; Dou, S.X.; Chong, S. Interfacial electronic interaction enabling exposed Pt (110) facets with high specific activity in hydrogen evolution reaction. ACS Nano 2023, 17, 11220–11252. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Jaffer, S.; Yu, H. Understanding the mechanism of hydrogenated NiCo2O4 nanograss supported on Ni foam for enhanced-performance supercapacitors. Energy Storage Mater. 2016, 5, 116–131. [Google Scholar] [CrossRef]
- Yang, M.; Chang, X.; Wang, L.; Wang, X.; Gu, M.; Huang, H.; Tang, L.; Zhong, Y.; Xia, H. Interface Modulation of Metal Sulfide Anodes for Long-Cycle-Life Sodium-Ion Batteries. Adv. Mater. 2023, 35, 2208705. [Google Scholar] [CrossRef] [PubMed]
- Von Lim, Y.; Huang, S.; Zhang, Y.; Kong, D.; Wang, Y.; Guo, L.; Zhang, J.; Shi, Y.; Chen, T.P.; Ang, L.K.; et al. In-situ formation of nanostructured lithium manganese oxide cathode with enhanced electrochemical performance for lithium-ion batteries. Energy Storage Mater. 2018, 15, 98–107. [Google Scholar] [CrossRef]
- Wang, Q.H.; Guo, C.; Zhu, Y.X.; He, J.P.; Wang, H.Q. Reduced Graphene Oxide-Wrapped FeS2 Composite as Anode for High-Performance Sodium-Ion Batteries. Nano-Micro Lett. 2018, 10, 30. [Google Scholar] [CrossRef]
- Chen, B.; Wang, T.; Zhao, S.; Tan, J.; Zhao, N.; Jiang, S.P.; Zhang, Q.; Zhou, G.; Cheng, H.M. Efficient Reversible Conversion between MoS2 and Mo/Na2S Enabled by Graphene-Supported Single Atom Catalysts. Adv. Mater. 2021, 33, 2007090. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yue, X.; Xie, Z.; Abudula, A.; Guan, G. MOFs-derived transition metal sulfide composites for advanced sodium-ion batteries. Energy Storage Mater. 2021, 41, 404–426. [Google Scholar] [CrossRef]
- Yin, X.; Ren, Y.; Guo, S.; Sun, B.; Wu, L.; Du, C.; Wang, J.; Yin, G.; Huo, H. Investigating the Origin of the Enhanced Sodium Storage Capacity of Transition Metal Sulfide Anodes in Ether-Based Electrolytes. Adv. Funct. Mater. 2022, 32, 2110017. [Google Scholar] [CrossRef]
- Li, Z.; Feng, W.; Lin, Y.; Liu, X.; Fei, H. Nanostructured ZnCo2O4 cathode materials for high-performance lithium-ion batteries. RSC Adv. 2016, 6, 70632–70637. [Google Scholar] [CrossRef]
- Liang, Y.; Lai, W.-H.; Miao, Z.; Chou, S.-L. Nanocomposite Materials for the Sodium–Ion Battery: A Review. Small 2018, 14, 1702514. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Yu, H.J. Composite-structure materials for Na-ion batteries. Small Methods 2018, 3, 1800205. [Google Scholar] [CrossRef]
- Long, Y.; Yang, J.; Gao, X.; Xu, X.; Fan, W.; Yang, J.; Hou, S.; Qian, Y. Solid-Solution Anion-Enhanced Electrochemical Performances of Metal Sulfides/Selenides for Sodium-Ion Capacitors: The Case of FeS2-xSex. ACS Appl. Mater. Interfaces 2018, 10, 10945–10954. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, M.; Liu, B.; Zhang, Y.; Liang, X.; Xia, X. Heteroatom Doping: An Effective Way to Boost Sodium Ion Storage. Adv. Energy Mater. 2020, 10, 2000927. [Google Scholar] [CrossRef]
- Zhao, W.; Gao, L.; Ma, X.; Yue, L.; Zhao, D.; Li, Z.; Sun, S.; Luo, Y.; Liu, Q.; Asiri, A.M.; et al. An exquisite branch leaf shaped metal sulfoselenide composite endowing an ultrastable sodium-storage lifespan over 10,000 cycles. J. Mater. Chem. A 2022, 10, 16962–16975. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, Z.; Guan, M.; Wu, F.; Chen, R. Toward Rapid-Charging Sodium-Ion Batteries using Hybrid-Phase Molybdenum Sulfide Selenide-Based Anodes. Adv. Mater. 2020, 32, 2003534. [Google Scholar] [CrossRef] [PubMed]
- He, T.; Zhao, W.; Hu, J.; Deng, C.; Yan, D.; Huang, S. Unveiling the Double-Edged Behavior of Controlled Selenium Substitution in Cobalt Sulfide for Balanced Na-Storage Capacity and Rate Capability. Adv. Funct. Mater. 2024, 34, 2310256. [Google Scholar] [CrossRef]
- Ma, L.; Hu, J.; Deng, C.; Mei, P.; Han, X.; Ba, H.; Li, Z.; Zhang, D.; Huang, S. Promoting the Potassium Storage of 2D Layered Indium Sulfide Through Zinc Incorporation and MXene Coupling. Adv. Funct. Mater. 2024, 34, 2418733. [Google Scholar] [CrossRef]
- Deng, C.J.; Ma, L.Y.; Liu, J.Y.; Han, X.Y.; Zhang, Q.; Jin, J.; Li, Y.; Huang, S.Z. Metal alkoxides: A new type of reversible anode materials for stable and high-rate lithium-ion batteries. J. Colloid Interf. Sci. 2024, 675, 806–814. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.-Z.; Cai, Y.; Jin, J.; Liu, J.; Li, Y.; Yu, Y.; Wang, H.-E.; Chen, L.-H.; Su, B.-L. A new approach to improve the electrochemical performance of ZnMn2O4 through a charge compensation method. Nano Energy 2015, 12, 833–844. [Google Scholar] [CrossRef]
- Elliott, N. Interatomic distances in FeS2, CoS2, and NiS2. J. Chem. Phys. 1960, 33, 903–905. [Google Scholar] [CrossRef]
- Zhang, Y.; Qiu, Y.; Ji, X.; Ma, T.; Ma, Z.; Hu, P.A. Direct Growth of CNTs@CoSxSe2(1−x) on Carbon Cloth for Overall Water Splitting. ChemSusChem 2019, 12, 3792–3800. [Google Scholar] [CrossRef]
- Li, Z.; Bommier, C.; Chong, Z.S.; Jian, Z.; Surta, T.W.; Wang, X.; Xing, Z.; Neuefeind, J.C.; Stickle, W.F.; Dolgos, M. Mechanism of Na-Ion Storage in Hard Carbon Anodes Revealed by Heteroatom Doping. Adv. Energy Mater. 2017, 7, 1602894. [Google Scholar] [CrossRef]
- Li, Q.; Jiao, Q.; Yan, Y.; Li, H.; Zhou, W.; Gu, T.; Shen, X.; Lu, C.; Zhao, Y.; Zhang, Y.; et al. Optimized Co-S bonds energy and confinement effect of hollow MXene@CoS2/NC for enhanced sodium storage kinetics and stability. Chem. Eng. J. 2022, 450, 137922. [Google Scholar] [CrossRef]
- Ma, D.; Hu, B.; Wu, W.; Liu, X.; Zai, J.; Shu, C.; Tsega, T.T.; Chen, L.; Qian, X.; Liu, T.L. Highly active nanostructured CoS2/CoS heterojunction electrocatalysts for aqueous polysulfide/iodide redox flow batteries. Nat. Commun. 2019, 10, 3367. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Li, T.; He, T.; Wang, Z.; Fang, D.; Wang, Y.; Li, X.L.; Zhang, D.; Hu, J.; Huang, S. Core-Shell Tandem Catalysis Coupled with Interface Engineering for High-Performance Room-Temperature Na-S Batteries. Chem. Eng. J. 2022, 450, 138115. [Google Scholar] [CrossRef]
- Yang, J.; Gao, H.; Men, S.; Shi, Z.; Lin, Z.; Kang, X.; Chen, S. CoSe2 Nanoparticles Encapsulated by N-Doped Carbon Framework Intertwined with Carbon Nanotubes: High-Performance Dual-Role Anode Materials for Both Li- and Na-Ion Batteries. Adv. Sci. 2018, 5, 1800763. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.; Yang, J.; Zhang, Q.; Wang, N.; Niu, F.; Xu, X.; Yang, J.; Fan, W.; Qian, Y. Biphase-Interface Enhanced Sodium Storage and Accelerated Charge Transfer: Flower-Like Anatase/Bronze TiO2/C as an Advanced Anode Material for Na-Ion Batteries. ACS Appl. Materi. Inter. 2017, 9, 43648–43656. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Xue, X.; Lu, W.; Liu, H.; Lai, C.; Xi, K.; Che, Y.; Liu, J.; Guo, S.; Yang, D. Tuning and understanding the phase interface of TiO2 nanoparticles for more efficient lithium ion storage. Nanoscale 2015, 7, 12833–12838. [Google Scholar] [CrossRef]
- Jin, J.; Zhang, X.; He, T. Self-Assembled CoS2 Nanocrystal Film as an Efficient Counter Electrode for Dye-Sensitized Solar Cells. J. Phys. Chem. C 2014, 118, 24877–24883. [Google Scholar] [CrossRef]
- Peng, S.; Han, X.; Li, L.; Zhu, Z.; Cheng, F.; Srinivansan, M.; Adams, S.; Ramakrishna, S. Unique Cobalt Sulfide/Reduced Graphene Oxide Composite as an Anode for Sodium-Ion Batteries with Superior Rate Capability and Long Cycling Stability. Small 2016, 12, 1359–1368. [Google Scholar] [CrossRef]
- Huang, P.; Ying, H.; Zhang, S.; Zhang, Z.; Han, W.-Q. Multidimensional synergistic architecture of Ti3C2MXene/CoS2@N-doped carbon for sodium-ion batteries with ultralong cycle lifespan. Chem. Eng. J. 2022, 429, 132396. [Google Scholar] [CrossRef]
- Ma, Q.; Zhang, L.; Ding, Y.; Shi, X.; Ding, Y.L.; Mujtaba, J.; Li, Z.; Fang, Z. Rational nanostructured FeSe2 wrapped in nitrogen-doped carbon shell for high-rate capability and long cycling sodium-ion storage. J. Colloid Interf. Sci. 2022, 622, 840–848. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Zhai, Y.; Wang, N.; Zhang, Y.; Xue, P.; Guo, M.; Tang, B.; Huang, D.; Wang, W.; Bai, Z.; et al. FeS2 nanoparticles embedded in N/S co-doped porous carbon fibers as an anode for sodium-ion batteries. Chem. Eng. J. 2020, 380, 122455. [Google Scholar] [CrossRef]
- Chen, D.; Wu, Y.; Huang, Z.; Wang, K.; Zhu, X.; Wang, Z.; Chen, J. Phase transformation controlled Co1-xS-CoS2 heterostructures embedded in S-doped carbon nanofibers for superior Sodium-Ion storage. Chem. Eng. J. 2023, 457, 141181. [Google Scholar] [CrossRef]
- Dong, C.; Guo, L.; Li, H.; Zhang, B.; Gao, X.; Tian, F.; Qian, Y.; Wang, D.; Xu, L. Rational Fabrication of CoS2/Co4S3@N-Doped Carbon Microspheres as Excellent Cycling Performance Anode for Half/Full Sodium Ion Batteries. Energy Storage Mater. 2020, 25, 679–686. [Google Scholar] [CrossRef]
- Han, F.; Lv, T.; Sun, B.; Tang, W.; Zhang, C.; Li, X. In situ formation of ultrafine CoS2 nanoparticles uniformly encapsulated in N/S-doped carbon polyhedron for advanced sodium-ion batterie. RSC Adv. 2017, 7, 30699–30706. [Google Scholar] [CrossRef]
- Lin, Y.; Qiu, Z.; Li, D.; Ullah, S.; Hai, Y.; Xin, H.; Liao, W.; Yang, B.; Fan, H.; Xu, J.; et al. NiS2@CoS2 nanocrystals encapsulated in N-doped carbon nanocubes for high-performance lithium/sodium-ion batteries. Energy Storage Mater. 2018, 11, 67–74. [Google Scholar] [CrossRef]
- Xie, K.; Li, L.; Deng, X.; Zhou, W.; Shao, Z. A strongly coupled CoS2/reduced graphene oxide nanostructure as an anode material for efficient sodium-ion batteries. J. Alloys Compd. 2017, 726, 394–402. [Google Scholar] [CrossRef]
- Liu, J.; Xu, Y.G.; Kong, L.B. Cleverly embedded CoS2/NiS2 on two-dimensional graphene nanosheets as high-performance anode material for improved sodium ion batteries and sodium ion capacitors. J. Mater. Sci.-Mater. E.L. 2020, 31, 9946–9959. [Google Scholar] [CrossRef]
- He, X.; Bi, L.; Li, Y.; Xu, C.; Lin, D. CoS2 embedded graphitic structured N-doped carbon spheres interlinked by rGO as anode materials for high-performance sodium-ion batteries. Electrochim. Acta 2020, 332, 135453. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, N.; Sun, C.; Lu, Z.; Xue, P.; Tang, B.; Bai, Z.C.; Dou, S. 3D spongy CoS2 nanoparticles/carbon composite as high-performance anode material for lithium/sodium ion batteries. Chem. Eng. J. 2018, 332, 370–376. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, S.; Li, C.; Liu, Z.; Li, D. Hollow CoS2@C nanocubes for high-performance sodium storage. Appl. Surf. Sci. 2020, 519, 146268. [Google Scholar] [CrossRef]
- Pu, X.; Zhao, D.; Fu, C.; Chen, Z.; Cao, S.; Wang, C.; Cao, Y. Asymmetric Total Synthesis of (-)-Lepadiformine B. Angew. Chem. Int. Ed. 2021, 60, 21310–21318. [Google Scholar] [CrossRef]
- Je, J.; Lim, H.; Jung, H.W.; Kim, S.-O. Ultrafast and Ultrastable Heteroarchitectured Porous Nanocube Anode Composed of CuS/FeS2 Embedded in Nitrogen-Doped Carbon for Use in Sodium-Ion Batteries. Small 2022, 18, 2105310. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Ma, Y.; Bresser, D.; Ji, Y.; Geiger, D.; Kaiser, U.; Streb, C.; Varzi, A.; Passerini, S. A Review on the Recent Advances in Lithium-Sulfur Batteries. ACS Nano 2018, 12, 7220–7231. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Ma, X.; Gao, L.; Wang, X.; Luo, Y.; Wang, Y.; Li, T.; Ying, B.; Zheng, D.; Sun, S.; et al. Hierarchical architecture engineering of branch-leaf-shaped cobalt phosphosulfide quantum dots: Enabling multi-dimensional ion-transport channels for high-efficiency sodium storage. Adv. Mater. 2024, 36, 2305190. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, K.; Kang, Y.; Deng, C.; Wang, Y.; Ba, H.; An, Q.; Han, X.; Huang, S. S, Se-Codoped Dual Carbon Coating and Se Substitution in Co-Alkoxide-Derived CoS2 Through SeS2 Triggered Selenization for High-Performance Sodium-Ion Batteries. Batteries 2025, 11, 28. https://doi.org/10.3390/batteries11010028
Li K, Kang Y, Deng C, Wang Y, Ba H, An Q, Han X, Huang S. S, Se-Codoped Dual Carbon Coating and Se Substitution in Co-Alkoxide-Derived CoS2 Through SeS2 Triggered Selenization for High-Performance Sodium-Ion Batteries. Batteries. 2025; 11(1):28. https://doi.org/10.3390/batteries11010028
Chicago/Turabian StyleLi, Kaiqin, Yuqi Kang, Chengjiang Deng, Yanfeng Wang, Haocun Ba, Qi An, Xiaoyan Han, and Shaozhuan Huang. 2025. "S, Se-Codoped Dual Carbon Coating and Se Substitution in Co-Alkoxide-Derived CoS2 Through SeS2 Triggered Selenization for High-Performance Sodium-Ion Batteries" Batteries 11, no. 1: 28. https://doi.org/10.3390/batteries11010028
APA StyleLi, K., Kang, Y., Deng, C., Wang, Y., Ba, H., An, Q., Han, X., & Huang, S. (2025). S, Se-Codoped Dual Carbon Coating and Se Substitution in Co-Alkoxide-Derived CoS2 Through SeS2 Triggered Selenization for High-Performance Sodium-Ion Batteries. Batteries, 11(1), 28. https://doi.org/10.3390/batteries11010028