Modeling of a Non-Aqueous Redox Flow Battery for Performance and Capacity Fade Analysis
Abstract
:1. Introduction
2. Materials and Methods
3. Physicochemical and Numerical Modeling
3.1. The Numerical Model
3.2. Chemical Species Transport in the Electrodes and Separator
3.3. Electrochemical Reactions
3.4. Coupling with the External Reservoirs
3.5. Model Parameters
4. Results and Discussions
4.1. Simulated Voltage and Tank Concentrations
4.2. Active Species Concentrations Distribution Across the Cell
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sanchez-Diez, E.; Ventosa, E.; Guarnieri, M.; Trovò, A.; Flox, C.; Marcilla, R.; Soavi, F.; Mazúr, P.; Aranzabe, E.; Ferret, R. Redox flow batteries: Status and perspective towards sustainable stationary energy storage. J. Power Sources 2021, 481, 228804. [Google Scholar] [CrossRef]
- Kortekaas, L.; Fricke, S.; Korshunov, A.; Cekic-Laskovic, I.; Winter, M.; Grünebaum, M. Building Bridges: Unifying Design and Development Aspects for Advancing Non-Aqueous Redox-Flow Batteries. Batteries 2023, 9, 4. [Google Scholar] [CrossRef]
- Shah, A.A.; Watt-Smith, M.J.; Walsh, F.C. A dynamic performance model for redox-flow batteries involving soluble species Electrochim. Acta 2008, 53, 8087. [Google Scholar]
- Al-Fetlawi, H.; Shah, A.A.; Walsh, F.C. Non-isothermal modelling of the all-vanadium redox flow battery Electrochim. Acta 2009, 55, 78–89. [Google Scholar]
- Al-Fetlawi, H.; Shah, A.A.; Walsh, F.C. Dynamic modelling of hydrogen evolution effects in the all-vanadium redox flow battery Electrochim. Acta 2010, 55, 1125–1139. [Google Scholar]
- Knehr, K.W.; Kumbur, E.C. Open circuit voltage of vanadium redox flow batteries: Discrepancy between models and experiments. Electrochem. Commun. 2011, 13, 342. [Google Scholar] [CrossRef]
- Modak, S.V.; Shen, W.; Singh, S.; Herrera, D.; Oudeif, F.; Goldsmith, B.R.; Huan, X.; Kwabi, D.G. Understanding capacity fade in organic redox-flow batteries by combining spectroscopy with statistical inference techniques. Nat. Commun. 2023, 14, 3602. [Google Scholar] [CrossRef]
- Briot, L.; Petit, M.; Cacciuttolo, Q.; Péra, M.-C. Aging phenomena and their modelling in aqueous organic redox flow batteries: A review. Power Sources 2022, 536, 231427. [Google Scholar] [CrossRef]
- Leung, P.; Li, X.; de León, C.P.; Berlouis, L.; Lowa, T.J.; Walsha, F.C. Progress in redox flow batteries, remaining challenges and their applications in energy storage. RSC Adv. 2012, 2, 10125–10156. [Google Scholar] [CrossRef]
- Milshtein, J.D.; Barton, J.L.; Darling, R.M.; Brushett, F.R. 4-acetamido-2,2,6,6-tetramethylpiperidine-1-oxyl as a model organic redox active compound for nonaqueous flow batteries J. Power Sources 2016, 327, 151. [Google Scholar] [CrossRef]
- Vagin, M.; Che, C.; Gueskine, V.; Berggren, M.; Crispin, X. Ion-Selective Electrocatalysis on Conducting Polymer Electrodes: Improving the Performance of Redox Flow Batteries Adv. Funct. Mater. 2020, 30, 2007009. [Google Scholar] [CrossRef]
- Kocyigit, N.; Gencten, M.; Sahin, M.; Sahin, Y. A novel vanadium/cobalt redox couple in aqueous acidic solution for redox flow batteries. Int. J. Energy Res. 2020, 44, 411. [Google Scholar] [CrossRef]
- Qian, X.; Chang, D.R.; Jung, S. Experimental and computational study on alloxazine derivative based organic redox flow battery Chem. Eng. J. 2022, 429, 2007009. [Google Scholar]
- Milshtein, J.D.; Barton, J.L.; Carney, T.J.; Kowalski, J.A.; Darling, R.M.; Brushett, F.R. Towards Low Resistance Nonaqueous Redox Flow Batteries J. Electrochem. Soc. 2017, 164, A2487. [Google Scholar] [CrossRef]
- Liang, Z.; Attanayake, N.H.; Greco, K.V.; Neyhouse, B.J.; Barton, J.L.; Kaur, A.P.; Eubanks, W.L.; Brushett, F.R.; Susan, A.; Odom, S.A. Comparison of Separators vs Membranes in Nonaqueous Redox Flow Battery Electrolytes Containing Small Molecule Active Materials. ACS Appl. Energy Mater. 2021, 4, 5443–5451. [Google Scholar] [CrossRef]
- Huang, H.; Howl, R.; Agar, E.; Nourani, M.; Golden, J.A.; Cappillino, P. Bioinspired, high-stability, nonaqueous redox flow battery electrolytes J. Mater. Chem. 2017, 5, 11586. [Google Scholar] [CrossRef]
- Zhang, W.; Walser-Kuntz, R.; Tracy, J.S.; Schramm, T.K.; Shee, J.; Head-Gordon, M.; Chen, G.; Helms, B.A.; Sanford, M.S.; Toste, F.D. Indolo[2,3-b]quinoxaline as a Low Reduction Potential and High Stability Anolyte Scaffold for Nonaqueous Redox Flow Batteries. J. Am. Chem. Soc. 2023, 145, 18877–18887. [Google Scholar] [CrossRef]
- Gokoglan, T.C.; Pahari, S.K.; Hamel, A.; Howl, R.; Cappilino, P.J.; Agar, E. Operando spectroelectrochemical characterization of a highly stable bioinspired redox flow battery active material. J. Electrochem. Soc. 2019, 166, A1745–A1751. [Google Scholar] [CrossRef]
- Pahari, S.K.; Gokoglan, T.C.; Visayas, B.R.B.; Woehl, J.; Golen, J.A.; Howland, R.; Mayes, M.L.; Agar, E.; Cappillino, P.J. Designing high energy density flow batteries by tuning active-material thermodynamics. RSC Adv. 2021, 11, 5432–5443. [Google Scholar] [CrossRef]
- Visayas, B.R.B.; Pahari, S.K.; Gokoglan, T.C.; Golen, J.A.; Agar, E.; Cappillino, P.J.; Mayes, M.L. Computational and experimental investigation of the effect of cation structure on the solubility of anionic flow battery active-materials. Chem. Sci. 2021, 12, 15892. [Google Scholar] [CrossRef]
- Hendriks, K.H.; Sevov, C.S.; Cook, M.E.; Sanford, M.S. Multielectron Cycling of a Low-Potential Anolyte in Alkali Metal Electrolytes for Non-aqueous Redox Flow Batteries. Acs Energy Lett. 2017, 2, 2430–2435. [Google Scholar] [CrossRef]
- Daub, N.; Janssen, R.A.J.; Hendriks, K.H. Imide-Based Multielectron Anolytes as High-Performance Materials in Nonaqueous Redox Flow Batteries. ACS Appl. Energy Mater. 2021, 4, 9248–9257. [Google Scholar] [CrossRef]
- Mansha, M.; Anam, A.; Khan, S.A.; Alzahrani, A.S.; Khan, M.; Ahmad, A.; Arshad, M.; Ali, S. Recent Developments on Electroactive Organic Electrolytes for Non-Aqueous Redox Flow Batteries: Current Status, Challenges, and Prospects. Chem. Rec. 2024, 24, e202300233. [Google Scholar] [CrossRef]
- Milshtein, J.D.; Kaur, A.P.; Casselman, M.D.; Kowalski, J.A.; Modekrutti, S.; Zhang, P.L.; Harsha, A.N.; Elliott, C.F.; Parkin, S.R.; Risko, C.; et al. High current density, long duration cycling of soluble organic active species for non-aqueous redox flow batteries. Energy Environ. Sci. 2016, 9, 3531–3543. [Google Scholar] [CrossRef]
- Quinn, A.H.; Ripley, K.P.; Matteucci, N.J.; Neyhouse, B.J.; Brown, C.A.O.; Woltmann, W.P.; Brushett, F.R. Elucidating the Effects of Temperature on Nonaqueous Redox Flow Cell Cycling Performance. J. Electrochem. Soc. 2023, 17, 120520. [Google Scholar] [CrossRef]
- Huang, S.; Lu, Y. Numerical Parametric Investigation of Nonaqueous Vanadium Redox Flow Batteries. Batteries 2022, 8, 75. [Google Scholar] [CrossRef]
- Masi, M.; Paz-Garcia, J.M.; Gomez-Lahoz, C.; Villen-Guzman, M.; Ceccarini, A.; Iannelli, R. Modeling of electrokinetic remediation combining local chemical equilibrium and chemical reaction kinetics J. Hazard. Mater. 2019, 371, 728–733. [Google Scholar] [CrossRef]
- Paz-Garcia, J.M.; Villen-Guzman, M.; Garcia-Rubio, A.; Hall, S.; Ristinmaa, M.; Gomez-Lahoz, C. A coupled reactive-transport model for electrokinetic remediation. In Electrokinetics Across Disciplines and Continents: New Strategies for Sustainable Development; Ribeiro, A.B., Mateus, E.P., Couto, N., Eds.; Springer: Cham, Switzerland, 2015; pp. 251–278. [Google Scholar]
- Zhou, H.; Zhang, R.; Ma, Q.; Li, Z.; Su, H.; Lu, P.; Yang, W.; Xu, Q. Modeling and Simulation of Non-Aqueous Redox Flow Batteries: A Mini-Review. Batteries 2023, 9, 215. [Google Scholar] [CrossRef]
Parameter | Value | Units | Description |
---|---|---|---|
a | [m2/m3] | Specific surface area | |
0.57 | [dimensionless] | Porosity of the separator | |
0.88 | [dimensionless] | Porosity of the porous electrodes | |
H | 1.7 | [cm] | Height of the cell |
1.5 | [cm] | Length of the cell | |
190 | [m] | Thickness of the electrodes | |
175 | [m] | Thickness of the separator | |
Q | 20 | [mL/min] | Flow rate circulated through each electrode |
V | 5 | [mL] | Volume of circulated solution in each electrode |
30 | [mA/cm2] | Applied current density |
Parameter | Value | Units | Parameter | Value | Units |
---|---|---|---|---|---|
0.519 | [m²/s] | 200 | [mM] | ||
1.515 | [m²/s] | 200 | [mM] | ||
2.81 | [m²/s] | 50 | [mM] | ||
[m²/s] | 0 | [mM] | |||
1.95 | [m²/s] | 50 | [mM] | ||
3.4 | [m²/s] | 0 | [mM] |
Parameter | Value | Units | Description |
---|---|---|---|
1.31 | [unitless] | Bruggemann factor of the electrodes | |
1.55 | [unitless] | Bruggemann factor of the separator | |
0.509 | [unitless] | Anodic charge transfer coefficient negative electrode | |
0.548 | [unitless] | Anodic charge transfer coefficient positive electrode | |
3.19 | [A/m2] | Reference exchange current density negative electrode | |
3.61 | [A/m2] | Reference exchange current density positive electrode |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Adamo, M.; Daub, N.; Trilla, L.; Saez-Zamora, J.A.; Paz-Garcia, J.M. Modeling of a Non-Aqueous Redox Flow Battery for Performance and Capacity Fade Analysis. Batteries 2025, 11, 8. https://doi.org/10.3390/batteries11010008
D’Adamo M, Daub N, Trilla L, Saez-Zamora JA, Paz-Garcia JM. Modeling of a Non-Aqueous Redox Flow Battery for Performance and Capacity Fade Analysis. Batteries. 2025; 11(1):8. https://doi.org/10.3390/batteries11010008
Chicago/Turabian StyleD’Adamo, Mirko, Nicolas Daub, Lluis Trilla, Jose A. Saez-Zamora, and Juan Manuel Paz-Garcia. 2025. "Modeling of a Non-Aqueous Redox Flow Battery for Performance and Capacity Fade Analysis" Batteries 11, no. 1: 8. https://doi.org/10.3390/batteries11010008
APA StyleD’Adamo, M., Daub, N., Trilla, L., Saez-Zamora, J. A., & Paz-Garcia, J. M. (2025). Modeling of a Non-Aqueous Redox Flow Battery for Performance and Capacity Fade Analysis. Batteries, 11(1), 8. https://doi.org/10.3390/batteries11010008