An Integrated Na2S−Electrocatalyst Nanostructured Cathode for Sodium–Sulfur Batteries at Room Temperature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis Methods of Na2S−Na6CoS4/Co@C and Na2S@C
2.2. Electrode Preparations and Electrochemical Performance Measurements
2.3. Characterizations
2.4. Na2S6 Visualized Adsorption Experiments
3. Results and Discussion
3.1. Characterization of Na2S−Na6CoS4/Co@C and Na2S@C
3.2. Investigate of Na2S Ratio in the Composites
3.3. Electrochemical Performance of Na2S−Na6CoS4/Co@C and Na2S@C
3.4. Absorptivity Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, L.; Wang, H.; Zhang, S.; Ren, N.; Wu, Y.; Wu, L.; Zhou, X.; Yao, Y.; Wu, X.; Yu, Y. Manipulating the Electronic Structure of Nickel via Alloying with Iron: Toward High-Kinetics Sulfur Cathode for Na-S Batteries. ACS Nano 2021, 15, 15218–15228. [Google Scholar] [CrossRef]
- Hong, X.; Mei, J.; Wen, L.; Tong, Y.; Vasileff, A.; Wang, L.; Laing, J.; Sun, Z.; Dou, S. Nonlithium Metal–Sulfur Batteries: Steps Toward a Leap. Adv. Mater. 2019, 31, 1802822. [Google Scholar] [CrossRef]
- Lee, B.; Paek, E.; Mitlin, D.; Lee, S. Sodium Metal Anodes: Emerging Solutions to Dendrite Growth. Chem. Rev. 2019, 119, 5416–5460. [Google Scholar] [CrossRef]
- Wang, Y.; Lai, W.; Chou, S.; Liu, H.; Dou, S. Remedies for Polysulfide Dissolution in Room-Temperature Sodium–Sulfur Batteries. Adv. Mater. 2019, 32, 1903952. [Google Scholar] [CrossRef]
- Yu, X.; Manthiram, A. Capacity Enhancement and Discharge Mechanisms of Room-Temperature Sodium–Sulfur Batteries. ChemElectroChem 2015, 1, 1275–1280. [Google Scholar] [CrossRef]
- Wang, N.; Wang, Y.; Bai, Z.; Fang, Z.; Zhang, X.; Xu, Z.; Ding, Y.; Xu, X.; Du, Y.; Dou, S.; et al. High-performance room-temperature sodium–sulfur battery enabled by electrocatalytic sodium polysulfides full conversion. Energy Environ. Sci. 2020, 13, 562–570. [Google Scholar] [CrossRef]
- Castillo, J.; Qiao, L.; Santiago, A.; Judez, X.; Sáenz de Buruaga, A.; Jiménez-Martín, G.; Armand, M.; Zhang, H.; Li, C. Perspective of polymer-based solid-state Li-S batteries. Energy Mater. 2022, 2, 200003. [Google Scholar] [CrossRef]
- Long, B.; Ma, J.; Song, T.; Liu, L.; Wang, X.; Song, S.; Tong, Y. Bifunctional polyvinylpyrrolidone generates sulfur-rich copolymer and acts as “residence” of polysulfide for advanced lithium-sulfur battery. Chem. Eng. J. 2021, 414, 128799. [Google Scholar] [CrossRef]
- Lin, L.; Zhang, C.; Huang, Y.; Zhuang, Y.; Fan, M.; Lin, J.; Wang, L.; Xie, Q.; Peng, D. Challenges and Strategies for Room-Temperature Sodium-Sulfur Batteries: A Comparison with Lithium-Sulfur Batteries. Small 2022, 18, 2107368. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Wang, L.; Jia, D.; Yang, Y.; Liu, X.; Sun, M.; Zhao, Z.; Qiu, J. Ni@Ni3N embedded on three-dimensional carbon nanosheets for high-performance lithium/sodium-sulfur batteries. ACS Appl. Mater. Interfaces 2021, 13, 48536–48545. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Du, W.; Yang, T.; Deng, J.; Liu, D.; Qi, Y.; Jiang, J.; Bao, S.; Xu, M. Nickel Hollow Spheres Concatenated by Nitrogen-Doped Carbon Fibers for Enhancing Electrochemical Kinetics of Sodium-Sulfur Batteries. Adv. Sci. 2019, 7, 1902617. [Google Scholar] [CrossRef]
- Hao, H.; Wang, Y.; Katyal, N.; Yang, G.; Dong, H.; Liu, P.; Hwang, S.; Mantha, J.; Henkelman, G.; Xu, Y.; et al. Molybdenum Carbide Electrocatalyst In Situ Embedded in Porous Nitrogen-Rich Carbon Nanotubes Promotes Rapid Kinetics in Sodium-Metal-Sulfur Batteries. Adv. Mater. 2022, 34, 2106572. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Li, Y.; Yang, J.; Mi, H.; Luo, S.; Deng, L.; Yan, C.; Rauf, M.; Zhang, P.; Sun, X.; et al. New Strategy for Polysulfide Protection Based on Atomic Layer Deposition of TiO2 onto Ferroelectric-Encapsulated Cathode: Toward Ultrastable Free-Standing Room Temperature Sodium–Sulfur Batteries. Adv. Funct. Mater. 2018, 28, 1705537. [Google Scholar] [CrossRef]
- Ye, C.; Jin, H.; Shan, J.; Jiao, Y.; Li, H.; Gu, Q.; Davey, K.; Wang, H.; Qiao, S. A Mo5N6 electrocatalyst for efficient Na2S electrodeposition in room-temperature sodium-sulfur batteries. Nat. Commun. 2021, 12, 7195. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Sheng, T.; Liu, Y.; Wang, Y.; Zhang, L.; Lai, W.; Wang, L.; Yang, J.; Gu, Q.; Chou, S.; et al. Atomic cobalt as an efficient electrocatalyst in sulfur cathodes for superior room-temperature sodium-sulfur batteries. Nat. Commun. 2018, 9, 4082. [Google Scholar] [CrossRef]
- Qin, G.; Liu, Y.; Han, P.; Cao, S.; Guo, X.; Guo, Z. High performance room temperature Na-S batteries based on FCNT modified Co3C-Co nanocube. Chem. Eng. J. 2020, 396, 125295. [Google Scholar] [CrossRef]
- Yang, H.; Zhou, S.; Zhang, B.; Chu, S.; Guo, H.; Gu, Q.; Liu, H.; Lei, Y.; Konstantinov, K.; Wang, Y.; et al. Architecting Freestanding Sulfur Cathodes for Superior Room-Temperature Na-S Batteries. Adv. Funct. Mater. 2021, 31, 2102280. [Google Scholar] [CrossRef]
- Du, W.; Shen, K.; Qi, Y.; Gao, W.; Tao, M.; Du, G.; Bao, S.; Chen, M.; Chen, Y.; Xu, M. Efficient Catalytic Conversion of Polysulfides by Biomimetic Design of “Branch-Leaf” Electrode for High-Energy Sodium–Sulfur Batteries. Nano-Micro Lett. 2021, 13, 50. [Google Scholar] [CrossRef] [PubMed]
- Mou, J.; Li, Y.; Liu, T.; Zhang, W.; Li, M.; Xu, Y.; Zhong, L.; Pan, W.; Yang, C.; Huang, J.; et al. Metal-Organic Frameworks-Derived Nitrogen-Doped Porous Carbon Nanocubes with Embedded Cobalt Nanoparticles as High-Efficiency Sulfur Stabilizers for Room-Temperature Sodium-Sulfur Batteries. Small Methods 2021, 5, 2100455. [Google Scholar] [CrossRef]
- Chen, P.; Wang, C.; Wang, T. Review and prospects for room-temperature sodium-sulfur batteries. Mater. Res. Lett. 2022, 10, 691–719. [Google Scholar] [CrossRef]
- Aslam, M.; Niu, Y.; Hussain, T.; Tabassum, H.; Tang, W.; Xu, M.; Ahuja, R. How to avoid dendrite formation in metal batteries: Innovative strategies for dendrite suppression. Nano Energy 2021, 86, 106142. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, D.; Palomares, V.; Shanmukaraj, D.; Sun, B.; Tang, X.; Wang, C.; Armand, M.; Rojo, T.; Wang, G. Revitalizing Sodium-Sulfur Batteries for Non-High-Temperature Operation: A Crucial Review. Energy Environ. Sci. 2020, 13, 3848–3879. [Google Scholar] [CrossRef]
- Wang, C.; Wang, H.; Hu, X.; Matios, E.; Luo, J.; Zhang, Y.; Lu, X.; Li, W. Frogspawn-Coral-Like Hollow Sodium Sulfide Nanostructured Cathode for High-Rate Performance Sodium-Sulfur Batteries. Adv. Energy Mater. 2019, 9, 1803251. [Google Scholar] [CrossRef]
- Yu, X.; Manthiram, A. Na2S–Carbon Nanotube Fabric Electrodes for Room-Temperature Sodium–Sulfur Batteries. Chem. Eur. J. 2015, 21, 4233–4237. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Yue, J.; Han, F.; Chen, J.; Deng, T.; Zhou, X.; Hou, S.; Wang, C. High-Performance All-Solid-State Na–S Battery Enabled by Casting–Annealing Technology. ACS Nano 2018, 12, 3360–3368. [Google Scholar] [CrossRef]
- Bloi, L.; Pampel, J.; Dörfler, S.; Althues, H.; Kaskel, S. Sodium Sulfide Cathodes Superseding Hard Carbon Pre-sodiation for the Production and Operation of Sodium–Sulfur Batteries at Room Temperature. Adv. Energy Mater. 2020, 10, 1903245. [Google Scholar] [CrossRef]
- Geng, M.; Han, D.; Huang, Z.; Wang, S.; Xiao, M.; Zhang, S.; Sun, L.; Huang, S.; Meng, Y. A stable anode-free Na-S full cell at room temperature. Energy Storage Mater. 2022, 52, 230–237. [Google Scholar] [CrossRef]
- Gao, W.; Su, L.; Yu, Y.; Lu, Y.; Liu, X.; Peng, Y.; Xiong, X.; He, J.; Chen, Y.; Wu, Y. Stable Dendrite-Free Room Temperature Sodium-Sulfur Batteries Enabled by a Novel Sodium Thiotellurate Interface. Angew. Chem. Int. Ed. 2024, 63, e202412287. [Google Scholar] [CrossRef]
- He, J.; Bhargav, A.; Manthiram, A. High-Performance Anode-Free Li–S Batteries with an Integrated Li2S–Electrocatalyst Cathode. ACS Energy Lett. 2022, 7, 583–590. [Google Scholar] [CrossRef]
- Yuan, K.; Yuan, L.; Chen, J.; Xiang, J.; Liao, Y.; Li, Z.; Huang, Y. Methods and Cost Estimation for the Synthesis of Nanosized Lithium Sulfide. Small Struct. 2020, 2, 2000059. [Google Scholar] [CrossRef]
- Ye, F.; Noh, H.; Lee, J.; Lee, H.; Kim, H. Li2S/carbon nanocomposite strips from a low-temperature conversion of Li2SO4 as high-performance lithium–sulfur cathodes. J. Mater. Chem. A 2018, 6, 6617–6624. [Google Scholar] [CrossRef]
- Liu, J.; Nara, H.; Yokoshima, T.; Momma, T.; Osaka, T. Micro-scale Li2S–C composite preparation from Li2SO4 for cathode of lithium ion battery. Electrochim. Acta 2015, 183, 70–77. [Google Scholar] [CrossRef]
- Yang, Z.; Guo, J.; Das, S.; Yu, Y.; Zhou, Z.; Abruñab, H.; Archer, L. In situ synthesis of lithium sulfide–carbon composites as cathode materials for rechargeable lithium batteries. J. Mater. Chem. A 2013, 1, 1433–1440. [Google Scholar] [CrossRef]
- Yu, M.; Wang, Z.; Wang, Y.; Dong, Y.; Qiu, J. Freestanding Flexible Li2S Paper Electrode with High Mass and Capacity Loading for High-Energy Li–S Batteries. Adv. Energy Mater. 2017, 7, 1700018. [Google Scholar] [CrossRef]
- He, J.; Bhargav, A.; Okasinski, J.; Manthiram, A. A Class of Sodium Transition-Metal Sulfide Cathodes with Anion Redox. Adv. Mater. 2024, 36, 2403521. [Google Scholar] [CrossRef]
- Qi, Y.; Li, Q.; Wu, Y.; Bao, S.; Li, C.; Chen, Y.; Wang, G.; Xu, M. A Fe3N/carbon composite electrocatalyst for effective polysulfides regulation in room-temperature Na-S batteries. Nat. Commun. 2021, 12, 6347. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Wu, Y.; Zhao, B.; Meng, W.; Zhang, D.; Li, M.; Pang, R.; Zhang, Y.; Cao, A.; Shang, Y. Carbon Nanotube-Coupled Seaweed-like Cobalt Sulfide as a Dual-Functional Catalyst for Overall Water Splitting. ACS Appl. Mater. Interfaces 2022, 14, 30847–30856. [Google Scholar] [CrossRef]
- Sun, J.; Zheng, Y.; Zhang, Z.; Meng, X.; Li, Z. Modulation of d-orbital to realize enriched electronic cobalt sites in cobalt sulfide for enhanced hydrogen evolution in electrocatalytic water/seawater splitting. Rare Met. 2024, 43, 511–521. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, T.; Wang, Q.; Ai, Y.; Hou, R.; Habib, A.; Shao, G.; Wang, F.; Zhang, P. A parallel array structured cobalt sulfide/nitrogen doped carbon nanocage/carbon fiber composite based on microfluidic spinning technology: A novel design to boost overall water splitting. J. Mater. Chem. A 2024, 12, 23872–23879. [Google Scholar] [CrossRef]
- Gao, S.; He, Y.; Li, H.; Yue, G.; Gui, Z.; Li, Y.; Bai, J.; Wang, N.; Zhang, Q.; Yu, Y.; et al. MoS2@CoS2 heterostructured tube-in-tube hollow nanofibers with enhanced reaction reversibility and kinetics for sodium-ion storage. Energy Storage Mater. 2024, 65, 103170. [Google Scholar] [CrossRef]
- Manthiram, A.; Yu, X. Ambient Temperature Sodium–Sulfur Batteries. Small 2015, 11, 2108–2114. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Liu, H.; Yang, Z.; Zhao, L.; Lai, W.; Chen, M.; Liu, H.; Dou, S.; Wang, Y. A Review on the Status and Challenges of Cathodes in Room-Temperature Na-S Batteries. Adv. Funct. Mater. 2022, 33, 2212600. [Google Scholar] [CrossRef]
- Yan, Z.; Liang, Y.; Xiao, J.; Lai, W.; Wang, W.; Xia, Q.; Wang, Y.; Gu, Q.; Lu, H.; Chou, S.; et al. A High-Kinetics Sulfur Cathode with a Highly Efficient Mechanism for Superior Room-Temperature Na–S Batteries. Adv. Mater. 2020, 32, 1906700. [Google Scholar] [CrossRef]
- Kohl, M.; Brückner, J.; Bauer, I.; Althuesa, H.; Kaskel, S. Synthesis of highly electrochemically active Li2S nanoparticles for lithium–sulfur-batteries. J. Mater. Chem. A 2015, 3, 16307–16312. [Google Scholar] [CrossRef]
Na2S@C | C | O | Na | S | Content of Na2S | Na–S Ratio |
---|---|---|---|---|---|---|
Spot 1 | 21.73 | 28.78 | 26.57 | 22.92 | 69.49 | 1.62 |
Spot 2 | 19.53 | 26.14 | 29.76 | 24.57 | 73.55 | 1.69 |
Spot 3 | 24.98 | 29.53 | 26.29 | 19.20 | 64.55 | 1.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, S.; Zhu, Y.; Yang, Y.; Li, D.; Tan, W.; Gao, L.; Zhao, W.; Liu, W.; Liang, W.; Xu, R. An Integrated Na2S−Electrocatalyst Nanostructured Cathode for Sodium–Sulfur Batteries at Room Temperature. Batteries 2025, 11, 9. https://doi.org/10.3390/batteries11010009
Ma S, Zhu Y, Yang Y, Li D, Tan W, Gao L, Zhao W, Liu W, Liang W, Xu R. An Integrated Na2S−Electrocatalyst Nanostructured Cathode for Sodium–Sulfur Batteries at Room Temperature. Batteries. 2025; 11(1):9. https://doi.org/10.3390/batteries11010009
Chicago/Turabian StyleMa, Sichang, Yueming Zhu, Yadong Yang, Dongyang Li, Wendong Tan, Ling Gao, Wanwei Zhao, Wenbo Liu, Wenyu Liang, and Rui Xu. 2025. "An Integrated Na2S−Electrocatalyst Nanostructured Cathode for Sodium–Sulfur Batteries at Room Temperature" Batteries 11, no. 1: 9. https://doi.org/10.3390/batteries11010009
APA StyleMa, S., Zhu, Y., Yang, Y., Li, D., Tan, W., Gao, L., Zhao, W., Liu, W., Liang, W., & Xu, R. (2025). An Integrated Na2S−Electrocatalyst Nanostructured Cathode for Sodium–Sulfur Batteries at Room Temperature. Batteries, 11(1), 9. https://doi.org/10.3390/batteries11010009