Nickel Stabilized Si/Ni/Si/Ni Multi-Layer Thin-Film Anode for Long-Cycling-Life Lithium-Ion Battery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Electrode Preparation
2.2. Fabrication of Coin Cells
2.3. Electrochemical Testing
2.4. Electrode Characterization
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miao, Y.; Hynan, P.; Von Jouanne, A.; Yokochi, A. Current Li-ion battery technologies in electric vehicles and opportunities for advancements. Energies 2019, 12, 1074. [Google Scholar] [CrossRef]
- Gu, M.; He, Y.; Zheng, J.; Wang, C. Nanoscale silicon as anode for Li-ion batteries: The fundamentals, promises, and challenges. Nano Energy 2015, 17, 366–383. [Google Scholar] [CrossRef]
- Ko, M.; Chae, S.; Cho, J. Challenges in accommodating volume change of Si anodes for Li-ion batteries. ChemElectroChem 2015, 2, 1645–1651. [Google Scholar] [CrossRef] [PubMed]
- Hwang, T.H.; Lee, Y.M.; Kong, B.S.; Seo, J.S.; Choi, J.W. Electrospun core–shell fibers for robust silicon nanoparticle-based lithium ion battery anodes. Nano Lett. 2012, 12, 802–807. [Google Scholar] [CrossRef] [PubMed]
- Ko, M.; Chae, S.; Jeong, S.; Oh, P.; Cho, J. Elastic a-silicon nanoparticle backboned graphene hybrid as a self-compacting anode for high-rate lithium ion batteries. ACS Nano 2014, 8, 8591–8599. [Google Scholar] [CrossRef]
- Wen, Z.; Lu, G.; Mao, S.; Kim, H.; Cui, S.; Yu, K.; Huang, X.; Hurley, P.; Mao, O.; Chen, J. Silicon nanotube anode for lithium-ion batteries. Electrochem. Commun. 2013, 29, 67–70. [Google Scholar] [CrossRef]
- Park, M.H.; Kim, M.G.; Joo, J.; Kim, K.; Kim, J.; Ahn, S.; Cui, Y.; Cho, J. Silicon nanotube battery anodes. Nano Lett. 2009, 9, 3844–3847. [Google Scholar] [CrossRef]
- Ge, M.; Rong, J.; Fang, X.; Zhou, C. Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano Lett. 2012, 12, 2318–2323. [Google Scholar] [CrossRef]
- Chan, C.K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X.F.; Huggins, R.A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35. [Google Scholar] [CrossRef]
- Abel, P.R.; Lin, Y.M.; Celio, H.; Heller, A.; Mullins, C.B. Improving the stability of nanostructured silicon thin film lithium-ion battery anodes through their controlled oxidation. ACS Nano 2012, 6, 2506–2516. [Google Scholar] [CrossRef]
- Bates, J.B.; Dudney, N.J.; Neudecker, B.; Ueda, A.; Evans, C.D. Thin-film lithium and lithium-ion batteries. Solid State Ionics 2000, 135, 33–45. [Google Scholar] [CrossRef]
- Zhou, M.; Cai, T.; Pu, F.; Chen, H.; Wang, Z.; Zhang, H.; Guan, S. Graphene/carbon-coated Si nanoparticle hybrids as high-performance anode materials for Li-ion batteries. ACS Appl. Mater. Interfaces 2013, 5, 3449–3455. [Google Scholar] [CrossRef] [PubMed]
- Luo, F.; Liu, B.; Zheng, J.; Chu, G.; Zhong, K.; Li, H.; Huang, X.; Chen, L. Nano-silicon/carbon composite anode materials towards practical application for next generation Li-ion batteries. J. Electrochem. Soc. 2015, 162, A2509. [Google Scholar] [CrossRef]
- Tzeng, Y.; Jhan, C.Y.; Sung, S.H.; Chiou, Y.Y. Effects of Crystalline Diamond Nanoparticles on Silicon Thin Films as an Anode for a Lithium-Ion Battery. Batteries 2024, 10, 321. [Google Scholar] [CrossRef]
- Sethuraman, V.A.; Kowolik, K.; Srinivasan, V. Increased cycling efficiency and rate capability of copper-coated silicon anodes in lithium-ion batteries. J. Power Sources 2011, 196, 393–398. [Google Scholar] [CrossRef]
- Luo, W.; Chen, X.; Xia, Y.; Chen, M.; Wang, L.; Wang, Q.; Li, W.; Yang, J. Surface and interface engineering of silicon-based anode materials for lithium-ion batteries. Adv. Energy Mater. 2017, 7, 1701083. [Google Scholar] [CrossRef]
- Chen, Z.; Soltani, A.; Chen, Y.; Zhang, Q.; Davoodi, A.; Hosseinpour, S.; Peukert, W.; Liu, W. Emerging organic surface chemistry for Si anodes in lithium-ion batteries: Advances, prospects, and beyond. Adv. Energy Mater. 2022, 12, 2200924. [Google Scholar] [CrossRef]
- Li, H.; Bai, H.; Tao, Z.; Chen, J. Si–Y multi-layer thin films as anode materials of high-capacity lithium-ion batteries. J. Power Sources 2012, 217, 102–107. [Google Scholar] [CrossRef]
- Kim, J.B.; Lee, H.Y.; Lee, K.S.; Lim, S.H.; Lee, S.M. Fe/Si multi-layer thin film anodes for lithium rechargeable thin film batteries. Electrochem. Commun. 2003, 5, 544–548. [Google Scholar] [CrossRef]
- Tong, L.; Wang, P.; Chen, A.; Qiu, F.; Fang, W.; Yang, J.; Wang, C.; Yang, Y. Improved electrochemical performance of binder-free multi-layered silicon/carbon thin film electrode for lithium-ion batteries. Carbon 2019, 153, 592–601. [Google Scholar] [CrossRef]
- Salah, M.; Hall, C.; Yap, P.L.; Fabretto, M. Silicon-tin thin-film anodes for low and high power-density lithium-ion batteries. Thin Solid Films 2024, 796, 140332. [Google Scholar] [CrossRef]
- Fu, H.; Gu, F.; Niu, Y.; Liao, S.; Bu, Z.; Wang, H.; Yang, D.; Wang, X.; Li, Q. Spatially confined transition metals boost high initial coulombic efficiency in alloy anodes. Chem. Sci. 2024, 16, 418–424. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.-X.; Li, X.-H.; Chen, J.-S. Surface and interface engineering of electrode materials for lithium-ion batteries. Adv. Mater. 2015, 27, 527–545. [Google Scholar] [CrossRef] [PubMed]
- Song, R.; Song, H.; Zhou, J.; Chen, X.; Wu, B.; Yang, H.Y. Hierarchical porous carbon nanosheets and their favorable high-rate performance in lithium-ion batteries. J. Mater. Chem. 2012, 22, 12369–12374. [Google Scholar] [CrossRef]
- Deng, L.; Cui, Y.; Chen, J.; Wu, J.; Baker, A.P.; Li, Z.; Zhang, X. A core-shell Si@ NiSi2/Ni/C nanocomposite as an anode material for lithium-ion batteries. Electrochim. Acta 2016, 192, 303–309. [Google Scholar] [CrossRef]
- Zhang, W.; Cai, T.H.; Sheldon, B.W. The impact of initial SEI formation conditions on strain-induced capacity losses in silicon electrodes. Adv. Energy Mater. 2019, 9, 1803066. [Google Scholar] [CrossRef]
- Joshi, T.; Eom, K.; Yushin, G.; Fuller, T.F. Effects of dissolved transition metals on the electrochemical performance and SEI growth in lithium-ion batteries. J. Electrochem. Soc. 2014, 161, A1915. [Google Scholar] [CrossRef]
- Tokranov, A.; Kumar, R.; Li, C.; Minne, S.; Xiao, X.; Sheldon, B.W. Control and optimization of the electrochemical and mechanical properties of the solid electrolyte interphase on silicon electrodes in lithium ion batteries. Adv. Energy Mater. 2016, 6, 1502302. [Google Scholar] [CrossRef]
- Huang, X.; Pu, H.; Chang, J.; Cui, S.; Hallac, P.B.; Jiang, J.; Hurley, P.; Chen, J. Improved cyclic performance of Si anodes for lithium-ion batteries by forming intermetallic interphases between Si nanoparticles and metal microparticles. ACS Appl. Mater. Interfaces 2013, 5, 11965–11970. [Google Scholar] [CrossRef]
- Jaumann, T.; Balach, J.; Klose, M.; Oswald, S.; Langklotz, U.; Michaelis, A.; Eckert, J.; Giebeler, L. SEI-component formation on sub 5 nm sized silicon nanoparticles in Li-ion batteries: The role of electrode preparation, FEC addition and binders. Phys. Chem. Chem. Phys. 2015, 17, 24956–24967. [Google Scholar] [CrossRef]
- Etacheri, V.; Haik, O.; Goffer, Y.; Roberts, G.A.; Stefan, I.C.; Fasching, R.; Aurbach, D. Effect of fluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ion battery anodes. Langmuir 2012, 28, 965–976. [Google Scholar] [CrossRef] [PubMed]
- Philippe, B.; Dedryvère, R.; Allouche, J.; Lindgren, F.; Gorgoi, M.; Rensmo, H.; Gonbeau, D.; Edström, K. Nanosilicon electrodes for lithium-ion batteries: Interfacial mechanisms studied by hard and soft X-ray photoelectron spectroscopy. Chem. Mater. 2012, 24, 1107–1115. [Google Scholar] [CrossRef]
- Tan, J.; Matz, J.; Dong, P.; Shen, J.; Ye, M. A growing appreciation for the role of LiF in the solid electrolyte interphase. Adv. Energy Mater. 2021, 11, 2100046. [Google Scholar] [CrossRef]
- Kim, K.H.; Cho, J.H.; Hwang, J.U.; Im, J.S.; Lee, Y.S. A key strategy to form a LiF-based SEI layer for a lithium-ion battery anode with enhanced cycling stability by introducing a semi-ionic CF bond. J. Ind. Eng. Chem. 2021, 99, 48–54. [Google Scholar] [CrossRef]
- Li, W.; Sun, X.; Yu, Y. Si-, Ge-, Sn-based anode materials for lithium-ion batteries: From structure design to electrochemical performance. Small Methods. 2017, 1, 1600037. [Google Scholar] [CrossRef]
Sample/Resistance | R1(Ω) | R2(Ω) | WR(Ω) |
---|---|---|---|
Si/Ni/Si/Ni thin-film anode | 7.5 | 21.3 | 32.2 |
Si thin-film anode | 13 | 32.9 | 59.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tzeng, Y.; Chiou, Y.-Y.; Wilendra, A.A. Nickel Stabilized Si/Ni/Si/Ni Multi-Layer Thin-Film Anode for Long-Cycling-Life Lithium-Ion Battery. Batteries 2025, 11, 46. https://doi.org/10.3390/batteries11020046
Tzeng Y, Chiou Y-Y, Wilendra AA. Nickel Stabilized Si/Ni/Si/Ni Multi-Layer Thin-Film Anode for Long-Cycling-Life Lithium-Ion Battery. Batteries. 2025; 11(2):46. https://doi.org/10.3390/batteries11020046
Chicago/Turabian StyleTzeng, Yonhua, Yu-Yang Chiou, and Aurelius Ansel Wilendra. 2025. "Nickel Stabilized Si/Ni/Si/Ni Multi-Layer Thin-Film Anode for Long-Cycling-Life Lithium-Ion Battery" Batteries 11, no. 2: 46. https://doi.org/10.3390/batteries11020046
APA StyleTzeng, Y., Chiou, Y.-Y., & Wilendra, A. A. (2025). Nickel Stabilized Si/Ni/Si/Ni Multi-Layer Thin-Film Anode for Long-Cycling-Life Lithium-Ion Battery. Batteries, 11(2), 46. https://doi.org/10.3390/batteries11020046