An Experimental Study on the Cell Balancing Parameters for Faulty Cell Detection in a Battery Module
Abstract
:1. Introduction
2. Battery System Modeling for Development of Faulty Cell Detection Algorithm
2.1. Simulation of Battery Module with a Battery Management System
2.2. Key Parameters of a Proposed Faulty Cell Detection Algorithm
2.3. Battery Module Setup
2.4. Simulation of Cell Balancing Process
2.5. Simulation Results
3. Experiments
3.1. Experimental Setup
3.2. Experimental Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, Y.; Bremner, S.; Menictas, C.; Merlinde, K. Battery energy storage system size determination in renewable energy systems: A review. Renew. Sustain. Energy Rev. 2018, 91, 109–125. [Google Scholar] [CrossRef]
- Pelegov, D.; Pontas, J. Main drivers of battery industry changes: Electric vehicles—A market overview. Batteries 2018, 4, 65. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Liang, J.; Yang, Z.; Li, G. A review of lithium-ion battery for electric vehicle applications and beyond. Energy Procedia 2019, 158, 4363–4368. [Google Scholar] [CrossRef]
- Hansen, J.F.; Wendt, F. History and state of the art in commercial electric ship propulsion, integrated power systems, and future trends. Proc. IEEE 2015, 103, 2229–2242. [Google Scholar] [CrossRef]
- Zhang, C.; Wei, Y.L.; Cao, P.F.; Lin, M.C. Energy storage system: Current studies on batteries and power condition system. Renew. Sustain. Energy Rev. 2018, 82, 3091–3106. [Google Scholar] [CrossRef]
- Lawder, M.T.; Suthar, B.; Northrop, P.W.; De, S.; Hoff, C.M.; Leitermann, O.; Subramanian, V.R. Battery energy storage system (BESS) and battery management system (BMS) for grid-scale applications. Proc. IEEE 2014, 102, 1014–1030. [Google Scholar] [CrossRef]
- Rahimi-Eichi, H.; Ojha, U.; Baronti, F.; Chow, M.Y. Battery management system: An overview of its application in the smart grid and electric vehicles. IEEE Ind. Electr. Mag. 2013, 7, 4–16. [Google Scholar] [CrossRef]
- Hannan, A.M.; Hoque, M.M.; Hussiain, A.; Yusof, Y.; Ker, P.J. State-of-the-art and energy management system of lithium-ion batteries in electric vehicle applications: Issues and recommendations. IEEE Access 2018, 6, 19362–19378. [Google Scholar] [CrossRef]
- Kim, Y.; Samad, N.A.; Oh, K.Y.; Siegel, J.B.; Epureanu, B.I.; Stefanopoulou, A.G. Estimating state-of-charge imbalance of batteries using force measurements. In Proceedings of the 2016 American Control Conference (ACC), Boston, MA, USA, 6–8 July 2016; pp. 1500–1505. [Google Scholar]
- Lin, X.; Stefanopoulou, A.G.; Li, Y.; Anderson, R.D. State of charge imbalance estimation for battery strings under reduced voltage sensing. IEEE Trans. Control. Syst. Technol. 2014, 23, 1052–1062. [Google Scholar]
- Liu, K.; Li, K.; Peng, Q.; Zhang, C. A brief review on key technologies in the battery management system of electric vehicles. Front. Mech. Eng. 2019, 14, 47–64. [Google Scholar] [CrossRef] [Green Version]
- Yildirim, B.; Elgendy, M.; Smith, A.; Pickert, V. Evaluation and Comparison of Battery Cell Balancing Methods. In Proceedings of the 2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe), Bucharest, Romania, 29 September–2 October 2019; pp. 1–5. [Google Scholar]
- Aizpuru, I.; Iraola, U.; Canales, J.M.; Echeverria, M.; Gil, I. Passive balancing design for Li-ion battery packs based on single cell experimental tests for a CCCV charging mode. In Proceedings of the 2013 International Conference on Clean Electrical Power (ICCEP), Alghero, Italy, 11–13 June 2013; pp. 93–98. [Google Scholar]
- Amin; Ismail, K.; Nugroho, A.; Kaleg, S. Passive balancing battery management system using MOSFET internal resistance as balancing resistor. In Proceedings of the 2017 International Conference on Sustainable Energy Engineering and Application (ICSEEA), Jakarta, Indonesia, 23–26 October 2017; pp. 151–155. [Google Scholar]
- Docimo, D.J.; Fathy, H.K. Analysis and control of charge and temperature imbalance within a lithium-ion battery pack. IEEE Trans. Control. Syst. Technol. 2018, 27, 1622–1635. [Google Scholar] [CrossRef]
- Xiong, R.; Pan, Y.; Shen, W.; Li, H.; Sun, F. Lithium-ion battery aging mechanisms and diagnosis method for automotive applications: Recent advances and perspectives. Renew. Sustain. Energy Rev. 2020, 131, 110048. [Google Scholar] [CrossRef]
- Barré, A.; Deguilhem, B.; Grolleau, S.; Gérard, M.; Suard, F.; Riu, D. A review on lithium-ion battery ageing mechanisms and estimations for automotive applications. J. Power Sources 2013, 241, 680–689. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, Y.; Kobayashi, T.; Shono, K.; Ohno, Y.; Mita, Y.; Miyashiro, H. Decrease in capacity in Mn-based/graphite commercial lithium-ion batteries: I. Imbalance proof of electrode operation capacities by cell disassembly. J. Electrochem. Soc. 2013, 160, A1181. [Google Scholar] [CrossRef]
- Anseán, D.; García, V.M.; González, M.; Blanco-Viejo, C.; Viera, J.C.; Pulido, Y.F.; Sánchez, L. Lithium-ion battery degradation indicators via incremental capacity analysis. IEEE Trans. Ind. Appl. 2019, 55, 2992–3002. [Google Scholar] [CrossRef]
- Zhang, D.; Haran, B.S.; Durairajan, A.; White, R.E.; Podrazhansky, Y.; Popov, B.N. Studies on capacity fade of lithium-ion batteries. J. Power Sources 2000, 91, 122–129. [Google Scholar] [CrossRef]
- Tröltzsch, U.; Kanoun, O.; Tränkler, H.R. Characterizing aging effects of lithium ion batteries by impedance spectroscopy. Electrochim. Acta 2006, 51, 1664–1672. [Google Scholar] [CrossRef]
- Osaka, T.; Nakade, S.; Rajamäki, M.; Momma, T. Influence of capacity fading on commercial lithium-ion battery impedance. J. Power Sources 2003, 119, 929–933. [Google Scholar] [CrossRef]
- Gantenbein, S.; Schönleber, M.; Weiss, M.; Ivers-Tiffée, E. Capacity fade in lithium-ion batteries and cyclic aging over various state-of-charge ranges. Sustainability 2019, 11, 6697. [Google Scholar] [CrossRef]
Parameters | Unit |
---|---|
Balancing time | Second |
Balancing count | Count |
Module 1 | Impedance [mΩ] |
---|---|
Cell #1 | 0.0695 |
Cell #2 | 0.0716 |
Cell #3 | 0.0799 |
Specification | Value | Unit |
---|---|---|
Nominal voltage | 11.1 | V |
Fully charged voltage | 12.60 | V |
Fully discharged voltage | 8.75 | V |
Rated capacity | 2600 | mAh |
Charge cut-off voltage | 12.75 | V |
Discharge cut-off voltage | 9.00 | V |
Charging method | CC-CV | - |
Parameter | Cell #1 | Cell #2 | Cell #3 |
---|---|---|---|
Balancing time | 0 | 2534 | 4063 |
Balancing count | 0 | 198 | 257 |
Module | Cell #1 | Cell #2 | Cell #3 |
---|---|---|---|
Module #1 | Aged | Normal | Normal |
Module #2 | Normal | Aged | Aged |
Module #3 | Normal | Normal | Normal |
Module | Cell #1 | Cell #2 | Cell #3 |
---|---|---|---|
Balancing time [s] | 1757 | 0 | 0 |
Balancing count | 28 | 0 | 0 |
Module | Cell #1 | Cell #2 | Cell #3 |
---|---|---|---|
Balancing time [s] | 0 | 1567 | 1951 |
Balancing count | 0 | 17 | 32 |
Module | Cell #1 | Cell #2 | Cell #3 |
---|---|---|---|
Balancing time [s] | 3315 | 5650 | 6603 |
Balancing count | 209 | 283 | 320 |
Module | Correlation Coefficient | Cell #1 | Cell #2 | Cell #3 |
---|---|---|---|---|
Balancing Time | ||||
Module #1 | Balancing counts | 0.9932 | - | - |
Module #2 | - | 0.9755 | 0.9495 | |
Module #3 | 0.9900 | 0.9613 | 0.9694 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, W.; Hong, S. An Experimental Study on the Cell Balancing Parameters for Faulty Cell Detection in a Battery Module. Batteries 2022, 8, 218. https://doi.org/10.3390/batteries8110218
Choi W, Hong S. An Experimental Study on the Cell Balancing Parameters for Faulty Cell Detection in a Battery Module. Batteries. 2022; 8(11):218. https://doi.org/10.3390/batteries8110218
Chicago/Turabian StyleChoi, Woongchul, and Sungsoo Hong. 2022. "An Experimental Study on the Cell Balancing Parameters for Faulty Cell Detection in a Battery Module" Batteries 8, no. 11: 218. https://doi.org/10.3390/batteries8110218
APA StyleChoi, W., & Hong, S. (2022). An Experimental Study on the Cell Balancing Parameters for Faulty Cell Detection in a Battery Module. Batteries, 8(11), 218. https://doi.org/10.3390/batteries8110218