Pom-Pom Flower-like Morphology of δ-MnO2 with Superior Electrochemical Performances for Rechargeable Aqueous Zinc Ion Batteries
Abstract
:1. Introduction
2. Experimental
2.1. Material Synthesis
2.2. Material Characterisation
2.3. Electrochemical Measurements
3. Results and Discussion
3.1. Structural Identification and Morphological Studies
3.2. Electrochemical Performances
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Islam, S.; Alfaruqi, M.H.; Mathew, V.; Song, J.; Kim, S.; Kim, S.; Jo, J.; Baboo, J.P.; Pham, D.T.; Putro, D.Y.; et al. Facile synthesis and the exploration of the zinc storage mechanism of β-MnO2 nanorods with exposed (101) planes as a novel cathode material for high performance eco-friendly zinc-ion batteries. J. Mater. Chem. A 2017, 5, 23299. [Google Scholar] [CrossRef]
- Li, W.; Dahn, J.R.; Wainwright, D.S. Rechargeable Lithium Batteries with Aqueous Electrolytes. Science 1994, 264, 1115–1118. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.Y.; Wessells, C.D.; Huggins, R.A.; Cui, Y. Highly Reversible Open Framework Nanoscale Electrodes for Divalent Ion Batteries. Nano Lett. 2013, 13, 5748–5752. [Google Scholar] [CrossRef]
- Alfaruqi, M.H.; Gim, J.; Kim, S.; Song, J.; Jo, J.; Kim, S.; Mathew, V.; Kim, J. Enhanced reversible divalent zinc storage in a structurally stable α-MnO2 nanorod electrode. J. Power Sources 2015, 288, 320–327. [Google Scholar] [CrossRef]
- Leisegang, T.; Meutzner, F.; Zschornak, M.; Münchgesang, W.; Schmid, R.; Nestler, T.; Eremin, R.A.; Kabanov, A.A.; Blatov, V.A.; Meyer, D.C. The aluminum-ion battery: A sustainable and seminal concept? Front. Chem. 2019, 7, 268. [Google Scholar] [CrossRef]
- Mokhtar, M.; Talib, M.Z.M.; Majlan, E.H.; Tasirin, S.M.; Ramli, W.M.F.W.; Daud, W.R.W.; Sahari, J. Recent developments in materials for aluminum-air batteries: A review. J. Ind. Eng. Chem. 2015, 32, 1–20. [Google Scholar] [CrossRef]
- Lao-atiman, W.; Julaphatachote, T.; Boonmongkolras, P.; Kheawhom, S. Printed transparent thin film Zn-Mn2 battery. J. Electrochem. Soc. 2017, 164, A859–A863. [Google Scholar] [CrossRef]
- De Juan-Corpuz, L.M.; Corpuz, R.D.; Somwangthanaroj, A.; Nguyen, M.T.; Yonezawa, T.; Ma, J.; Kheawhom, S. Binder-free centimeter-long V2O5 nanofibers on carbon cloth as cathode material for Zinc-Ion batteries. Energies 2019, 13, 31. [Google Scholar] [CrossRef]
- Hosseini, S.; Abbasi, A.; Uginet, L.O.; Haustraete, N.; Praserthdam, S.; Yonezawa, T.; Kheawhom, S. The influence of dimethyl sulfoxide as electrolyte additive on anodic dissolution of alkaline Zinc-Air Flow Battery. Sci. Rep. 2019, 9, 14958. [Google Scholar] [CrossRef]
- Ling, C.; Zhang, R. Manganese dioxide as rechargeable magnesium battery cathode. Front. Energy Res. 2017, 5, 30. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, N.; Raja, K.S.; Utgikar, V. Mg-RE alloy anode materials for Mg-Air battery application. J. Electrochem. Soc. 2019, 166, A3139–A3153. [Google Scholar] [CrossRef]
- Tian, H.; Gao, T.; Li, X.; Wang, X.; Luo, C.; Fan, X.; Yang, C.; Suo, L.; Ma, Z.; Han, W.; et al. High power rechargeable magnesium/iodine battery chemistry. Nat. Commun. 2017, 8, 14083. [Google Scholar] [CrossRef]
- Han, S.D.; Kim, S.; Li, D.; Petkov, V.; Yoo, H.D.; Phillips, P.J.; Wang, H.; Kim, J.J.; More, K.L.; Key, B.; et al. Mechanism of Zn Insertion into Nanostructured δ-MnO2: A Nonaqueous Rechargeable Zn Metal Battery. Chem. Mater. 2017, 29, 4874–4884. [Google Scholar] [CrossRef]
- Guo, C.; Zhou, Q.; Liu, H.; Tian, S.; Chen, B.; Zhao, J.; Li, J. A case study of β- and δ-MnO2 with different crystallographic forms on ion-storage in rechargeable aqueous zinc ion battery. Electrochim. Acta 2019, 324, 134867. [Google Scholar] [CrossRef]
- Wang, L.; Zheng, J. Recent advances in cathode materials of rechargeable aqueous zinc ion batteries. Mater. Today Adv. 2020, 7, 100078. [Google Scholar] [CrossRef]
- Corpuz, R.D.; Juan-Corpuz, L.M.D.; Nguyen, M.T.; Yonezawa, T.; Wu, H.L.; Somwangthanaroj, A.; Kheawhom, S. Binder-Free α-MnO2 Nanowires on Carbon Cloth as Cathode Material for Zinc-Ion Batteries. Int. J. Mol. Sci. 2020, 21, 3113. [Google Scholar] [CrossRef]
- Kundu, D.; Adams, B.D.; Duffort, V.; Vajargah, S.H.; Nazar, L.F. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 2016, 1, 16119. [Google Scholar] [CrossRef]
- Liu, Z.; Pulletikurthi, G.; Endres, F. A Prussian Blue/Zinc Secondary Battery with a Bio-Ionic Liquid-Water Mixture as Electrolyte. ACS Appl. Mater. Interfaces 2016, 8, 12158–12164. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, L.; Zhou, X.; Liu, Z. Towards High-Voltage Aqueous Metal-Ion Batteries Beyond 1.5 V: The Zinc/Zinc Hexacyanoferrate System. Adv. Energy Mater. 2015, 5, 1400930. [Google Scholar] [CrossRef]
- Li, W.; Wang, K.; Cheng, S.; Jiang, K. A long-life aqueous Zn-ion battery based on Na3V2(PO4)2F3 cathode. Energy Storage Mater. 2018, 15, 14–21. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, X.; Huang, Y.; Jiang, B.; Chang, Z.; Xu, C.; Kang, F. β-MnO2 with proton conversion mechanism in rechargeable zinc ion battery. J. Energy Chem. 2021, 56, 365–373. [Google Scholar] [CrossRef]
- Yadav, P.; Kumari, N.; Rai, A.K. A review on solutions to overcome the structural transformation of manganese dioxide-based cathodes for aqueous rechargeable zinc ion batteries. J. Power Sources 2023, 555, 232385. [Google Scholar] [CrossRef]
- Trcoli, R.; Mantia, L. An Aqueous Zinc-Ion Battery Based on Copper Hexacyanoferrate. ChemSusChem 2015, 8, 481–485. [Google Scholar] [CrossRef] [PubMed]
- Ming, F.; Liang, H.; Lei, Y.; Kandambeth, S.; Eddaoudi, M.; Alshareef, H.N. Layered MgxV2O5·nH2O as Cathode Material for High-Performance Aqueous Zinc Ion Batteries. ACS Energy Lett. 2018, 3, 2602–2609. [Google Scholar] [CrossRef]
- Liu, P.; Wang, M.; Li, J.; Cui, H.; Zeng, T.; Yang, S.; Wang, H.; Liu, Y. Microwave-induced structural tunability of 3D δ-MnO2 microflowers for high-performance aqueous Zn-ion batteries. Ceram. Int. 2021, 47, 25558–25566. [Google Scholar] [CrossRef]
- Huang, A.; Zhou, W.; Wang, A.; Chen, M.; Tian, Q.; Chen, J. Molten salt synthesis of α-MnO2/Mn2O3 nanocomposite as a high-performance cathode material for aqueous zinc-ion batteries. J. Energy Chem. 2021, 54, 475–481. [Google Scholar] [CrossRef]
- Guo, C.; Liu, H.; Li, J.; Hou, Z.; Liang, J.; Zhou, J.; Zhu, Y.; Qian, Y. Ultrathin δ-MnO2 nanosheets as cathode for aqueous rechargeable zinc ion battery. Electrochim. Acta 2019, 304, 370–377. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Liu, Z.; Wu, X.; Wen, Y.; Chen, H.; Ni, X.; Li, G.; Huang, J.; Peng, S. MnO2 cathode materials with the improved stability via nitrogen doping for aqueous zinc-ion batteries. J. Energy Chem. 2022, 64, 23–32. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, D.; Zhang, X.; Wang, S.; Han, J.; Zhao, Y.; Huang, Y.; Qin, J. Mechanochemical reactions of MnO2 and graphite nanosheets as a durable zinc ion battery cathode. Appl. Surf. Sci. 2020, 534, 1476. [Google Scholar] [CrossRef]
- Zhang, N.; Cheng, F.; Liu, J.; Wang, L.; Long, X.; Liu, X.; Li, F.; Chen, J. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat. Commun. 2017, 8, 405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, B.; Lee, H.R.; Kim, H.; Chung, K.Y.; Cho, B.W.; Oh, S.H. Elucidating the intercalation mechanism of zinc ions into alpha-MnO2 for rechargeable zinc batteries. Chem. Commun. 2015, 51, 9265–9268. [Google Scholar] [CrossRef]
- Xia, A.; Yu, W.R.; Yi, J.; Tan, G.; Ren, H.; Liu, C. Synthesis of porous δ-MnO2 nanosheets and their supercapacitor performance. J. Electroanal. Chem. 2019, 839, 25–31. [Google Scholar] [CrossRef]
- Toby, B.H.; Von Dreele, R.B. GSAS-II: The genesis of a modern open-source all-purpose crystallography software package. J. Appl. Cryst. 2013, 46, 544–549. [Google Scholar] [CrossRef]
- Huang, M.; Zhang, Y.; Li, F.; Zhang, L.; Ruoff, R.S.; Wen, Z.; Liu, Q. Self-Assembly of Mesoporous Nanotubes Assembled from Interwoven Ultrathin Birnessite-type MnO2 Nanosheets for Asymmetric Supercapacitors. Sci. Rep. 2014, 4, 3878. [Google Scholar] [CrossRef]
- Kang, L.; Zhang, M.; Liu, Z.H.; Ooi, K. IR spectra of manganese oxides with either layered or tunnel structures. Spectrochim. Acta Mol. Biomol. Spectrosc. 2007, 67, 864–869. [Google Scholar] [CrossRef]
- Julien, C.; Massot, M.; Baddour-Hadjean, R.; Franger, S.; Bach, S.; Pereira- Ramos, J.P. Raman spectra of birnessite manganese dioxides. Solid State Ion. 2003, 159, 345–356. [Google Scholar] [CrossRef]
- Wang, H.; Liang, M.; Gao, J.; Ma, C.; He, Z.; Zhao, Y.; Miao, Z. Robust structural stability of flower-like δ-MnO2 as cathode for aqueous zinc ion battery. Colloids Surf. A Physicochem. Eng. 2022, 643, 128804. [Google Scholar] [CrossRef]
- Wang, D.; Wang, L.; Liang, G.; Li, H.; Liu, Z.; Tang, Z.; Liang, J.; Zhi, C. A Superior δ-MnO2 Cathode and a Self-Healing Zn-δ-MnO2 Battery. ACS Nano 2019, 13, 10643–10652. [Google Scholar] [CrossRef]
- Khamsanga, S.; Pornprasertsuk, R.; Yonezawa, T.; Mohamad, A.A.; Kheawhom, S. δ-MnO2 nanoflower/graphite cathode for rechargeable aqueous zinc ion batteries. Sci. Rep. 2019, 9, 8441. [Google Scholar] [CrossRef]
- Wang, J.; Wang, J.G.; Liu, H.; Wei, C.; Kang, F. Zinc ion stabilized MnO2 nanospheres for high capacity and long lifespan aqueous zinc-ion batteries. J. Mater. Chem. A 2019, 7, 13727–13735. [Google Scholar] [CrossRef]
- Huang, J.; Wang, Z.; Hou, M.; Dong, X.; Liu, Y.; Wang, Y.; Xia, Y. Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. Nat. Commun. 2018, 9, 2906. [Google Scholar] [CrossRef]
- Gao, D.; Zhu, T.; Yu, L.; Chen, P.; Li, C.; Liu, Y. Ni-doped δ-MnO2 as a cathode for Zn-ion batteries. IOP Conf. Ser. Earth Environ. Sci. 2021, 844, 012007. [Google Scholar] [CrossRef]
- Corpuz, R.D.; Juan, L.M.Z.D.; Praserthdam, S.; Pornprasertsuk, R.; Yonezawa, T.; Thanhnguyen, M.; Khawhom, S. Annealing induced a well-ordered single crystal δ-MnO2 and its electrochemical performance in zinc-ion battery. Sci. Rep. 2019, 9, 15107. [Google Scholar] [CrossRef] [PubMed]
- Alfaruqi, M.H.; Islam, S.; Putro, D.Y.; Mathew, V.; Kim, S.; Jo, J.; Kim, S.; Sun, Y.K.; Kim, K.; Kim, J. Structural transformation and electrochemical study of layered MnO2 in rechargeable aqueous zinc-ion battery. Electrochim. Acta 2018, 276, 1–11. [Google Scholar] [CrossRef]
- Liu, D.S.; Mai, Y.; Chen, S.; Liu, S.; Ang, E.H.; Ye, M.; Yang, Y.; Zhang, Y.; Geng, H.; Li, C.C. A 1D-3D interconnected δ-MnO2 nanowires network as high-performance and high energy efficiency cathode material for aqueous zinc-ion batteries. Electrochim. Acta 2021, 370, 137740. [Google Scholar] [CrossRef]
- Khamsanga, S.; Nguyen, M.T.; Yonezawa, T.; Thamyongkit, P.; Pornprasertsuk, R.; Pattananuwat, P.; Tuantranont, A.; Siwamogsatham, S.; Kheawhom, S. MnO2 Heterostructure on Carbon Nanotubes as Cathode Material for Aqueous Zinc-Ion Batteries. Int. J. Mol. Sci. 2020, 21, 4689. [Google Scholar] [CrossRef]
- Alfaruqi, M.H.; Gim, J.; Kim, S.; Song, J.; Pham, D.T.; Jo, J.; Xiu, Z.; Mathew, V.; Kim, J. A layered δ-MnO2 nanoflake cathode with high zinc-storage capacities for eco-friendly battery applications. Electrochem. Commun. 2015, 60, 121–125. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, P.; Liang, J.; Xia, X.; Ren, L.; Song, L.; Liu, W.; Sun, X. Uncovering sulfur doping effect in MnO2 nanosheets as an efficient cathode for aqueous zinc ion battery. Energy Storage Mater. 2022, 47, 424–433. [Google Scholar] [CrossRef]
Material | Morphology | Specific Capacity/Cycle Number/Current Densities | Ref. |
---|---|---|---|
δ-MnO2 | Nanosheets | 133 mAh g−1 after 100 cycles at 100 mAg−1 | [27] |
δ-MnO2/graphite | Nanoflower | 114 mAh g−1 after 100 cycles at 400 mAg−1 | [39] |
δ-MnO2 | Submicrospheres | 96 mAh g−1 after 100 cycles at 100 mAg−1 | [14] |
Ni doped δ-MnO2 | Random particles | 16t mAh g−1 after 110 cycles at 100 mAg−1 | [42] |
δ-MnO2 | Floret-like particles | 60 mAh g−1 after 125 cycles at C/25 C-rate | [13] |
δ-MnO2 | Flower-like | 70 mAh g−1 after 100 cycles at 100 mAg−1 | [43] |
δ-MnO2 | Flake-like particles | 97 mAh g−1 after 50 cycles at 100 mAg−1 | [44] |
δ-MnO2/CNT | Flower-like | 96 mAh g−1 after 100 cycles at 400 mAg−1 | [45] |
KMO-NNT * | Nanowire | 148 mAh g−1 after 400 cycles at 1.623C | [46] |
δ-MnO2 | Nanoflake | 112 mAh g−1 after 100 cycles at 83 mAg−1 | [47] |
δ-MnO2 | Flower-like | 80 mAh g−1 after 70 cycles at 200 mAg−1 | [48] |
δ-MnO2 | Pom-pom shaped flower | 166 mAh g−1 after 250 cycles at 1000 mAg−1 | Our work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yadav, P.; Putro, D.; Kim, J.; Rai, A.K. Pom-Pom Flower-like Morphology of δ-MnO2 with Superior Electrochemical Performances for Rechargeable Aqueous Zinc Ion Batteries. Batteries 2023, 9, 133. https://doi.org/10.3390/batteries9020133
Yadav P, Putro D, Kim J, Rai AK. Pom-Pom Flower-like Morphology of δ-MnO2 with Superior Electrochemical Performances for Rechargeable Aqueous Zinc Ion Batteries. Batteries. 2023; 9(2):133. https://doi.org/10.3390/batteries9020133
Chicago/Turabian StyleYadav, Priya, Dimas Putro, Jaekook Kim, and Alok Kumar Rai. 2023. "Pom-Pom Flower-like Morphology of δ-MnO2 with Superior Electrochemical Performances for Rechargeable Aqueous Zinc Ion Batteries" Batteries 9, no. 2: 133. https://doi.org/10.3390/batteries9020133
APA StyleYadav, P., Putro, D., Kim, J., & Rai, A. K. (2023). Pom-Pom Flower-like Morphology of δ-MnO2 with Superior Electrochemical Performances for Rechargeable Aqueous Zinc Ion Batteries. Batteries, 9(2), 133. https://doi.org/10.3390/batteries9020133