A Multi-Stage Adaptive Method for Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Swarm Intelligence Optimization
Abstract
:1. Introduction
2. Methods
2.1. Variational Mode Decomposition Based on Swarm Intelligence Optimization
2.1.1. Variational Mode Decomposition
2.1.2. Whale Optimization Algorithm
2.2. Long Short-Term Memory Neural Network Based on Swarm Intelligence Optimization
2.2.1. Long Short-Term Memory Neural Network
2.2.2. Sparrow Search Algorithm
2.3. Algorithmic Flow of the Proposed Method
3. Experiment
3.1. Dataset Descriptions
3.2. WOAVMD Decomposition of Battery Capacity Curve
3.3. Long Short-Term Memory Neural Network Combined with Sparrow Search Algorithm for Battery Life Prediction
3.4. Fusion Results of Prediction
4. Analysis and Discussion of Prediction Results
4.1. Analysis of Results from Different Starting Points
4.2. Analysis of Results of Different Batteries
4.3. Comparison and Analysis of Different Methods
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shi, H.T.; Wang, L.P.; Wang, S.L.; Fernandez, C.; Xiong, X.; Dablu, B.E.; Xu, W. A novel lumped thermal characteristic modeling strategy for the online adaptive temperature and parameter co-estimation of vehicle lithium-ion batteries. J. Energy Storage 2022, 50, 16. [Google Scholar] [CrossRef]
- Xu, X.D.; Tang, S.J.; Yu, C.A.Q.; Xie, J.; Han, X.B.; Ouyang, M.G. Remaining Useful Life Prediction of Lithium-ion Batteries Based on Wiener Process Under Time-Varying Temperature Condition. Reliab. Eng. Syst. Saf. 2021, 214, 12. [Google Scholar] [CrossRef]
- Xiong, R.; Li, L.L.; Tian, J.P. Towards a smarter battery management system: A critical review on battery state of health monitoring methods. J. Power Source 2018, 405, 18–29. [Google Scholar] [CrossRef]
- Sharma, P.; Bora, B.J. A Review of Modern Machine Learning Techniques in the Prediction of Remaining Useful Life of Lithium-Ion Batteries. Batteries 2023, 9, 13. [Google Scholar] [CrossRef]
- Li, S.; Pischinger, S.; He, C.Y.; Liang, L.L.Y.; Stapelbroek, M. A comparative study of model-based capacity estimation algorithms in dual estimation frameworks for lithium-ion batteries under an accelerated aging test. Appl. Energy 2018, 212, 1522–1536. [Google Scholar] [CrossRef]
- Xiong, R.; Li, L.L.; Li, Z.R.; Yu, Q.Q.; Mu, H. An electrochemical model based degradation state identification method of Lithium-ion battery for all-climate electric vehicles application. Appl. Energy 2018, 219, 264–275. [Google Scholar] [CrossRef]
- Deng, L.M.; Shen, W.J.; Wang, H.F.; Wang, S.Q. A rest-time-based prognostic model for remaining useful life prediction of lithium-ion battery. Neural Comput. Appl. 2021, 33, 2035–2046. [Google Scholar] [CrossRef]
- Li, S.; Fang, H.J.; Shi, B. Remaining useful life estimation of Lithium-ion battery based on interacting multiple model particle filter and support vector regression. Reliab. Eng. Syst. Saf. 2021, 210, 10. [Google Scholar] [CrossRef]
- Hong, G.X.; Song, W.Q.; Gao, Y.; Zio, E.; Kudreyko, A. An iterative model of the generalized Cauchy process for predicting the remaining useful life of lithium-ion batteries. Measurement 2022, 187, 8. [Google Scholar] [CrossRef]
- Liu, C.C.; Wu, T.; He, C. State of health prediction of medical lithium batteries based on multi-scale decomposition and deep learning. Adv. Mech. Eng. 2020, 12, 1–11. [Google Scholar] [CrossRef]
- Ge, Y.; Zhang, F.S.; Ren, Y. Lithium Ion Battery Health Prediction via Variable Mode Decomposition and Deep Learning Network With Self-Attention Mechanism. Front. Energy Res. 2022, 10, 10. [Google Scholar] [CrossRef]
- Li, H.; Fu, L.J.; Zhang, Y. A novel hybrid data-driven method based on uncertainty quantification to predict the remaining useful life of lithium battery. J. Energy Storage 2022, 52, 13. [Google Scholar] [CrossRef]
- Yun, Z.H.; Qin, W.H.; Shi, W.P.; Ping, P. State-of-Health Prediction for Lithium-Ion Batteries Based on a Novel Hybrid Approach. Energies 2020, 13, 4858. [Google Scholar] [CrossRef]
- Wang, J.G.; Zhang, S.D.; Li, C.Y.; Wu, L.F.; Wang, Y.Z. A Data-Driven Method with Mode Decomposition Mechanism for Remaining Useful Life Prediction of Lithium-Ion Batteries. IEEE Trans. Power Electron. 2022, 37, 13684–13695. [Google Scholar] [CrossRef]
- Pan, H.P.; Chen, C.T.; Gu, M.M. A Method for Predicting the Remaining Useful Life of Lithium Batteries Considering Capacity Regeneration and Random Fluctuations. Energies 2022, 15, 2498. [Google Scholar] [CrossRef]
- Yun, Z.H.; Qin, W.H. Remaining Useful Life Estimation of Lithium-Ion Batteries Based on Optimal Time Series Health Indicator. IEEE Access 2020, 8, 55447–55461. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Ni, Y.L.; Lu, S.; Wang, J.G.; Zhang, X.Y. Remaining Useful Life Prediction of Lithium-Ion Batteries Using Support Vector Regression Optimized by Artificial Bee Colony. IEEE Trans. Veh. Technol. 2019, 68, 9543–9553. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Ni, Y.L.; Li, N.; Lu, S.; Zhang, S.D.; Feng, Z.B.; Wang, J. A method based on improved ant lion optimization and support vector regression for remaining useful life estimation of lithium-ion batteries. Energy Sci. Eng. 2019, 7, 2797–2813. [Google Scholar] [CrossRef]
- Yang, Z.S.; Wang, Y.H.; Kong, C.Z. Remaining Useful Life Prediction of Lithium-Ion Batteries Based on a Mixture of Ensemble Empirical Mode Decomposition and GWO-SVR Model. IEEE Trans. Instrum. Meas. 2021, 70, 3125108. [Google Scholar] [CrossRef]
- Fan, J.M.; Fan, J.P.; Liu, F.; Qu, J.T.; Li, R.F. A Novel Machine Learning Method Based Approach for Li-Ion Battery Prognostic and Health Management. IEEE Access 2019, 7, 160043–160061. [Google Scholar] [CrossRef]
- Dragomiretskiy, K.; Zosso, D. Variational Mode Decomposition. IEEE Trans. Signal Process. 2014, 62, 531–544. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.K.; Shen, B. A novel swarm intelligence optimization approach: Sparrow search algorithm. Syst. Sci. Control Eng. 2020, 8, 22–34. [Google Scholar] [CrossRef]
- Han, X.B.; Lu, L.G.; Zheng, Y.J.; Feng, X.N.; Li, Z.; Li, J.Q.; Ouyang, M. A review on the key issues of the lithium ion battery degradation among the whole life cycle. Etransportation 2019, 1, 100005. [Google Scholar] [CrossRef]
- Goebel, K.; Saha, B.; Saxena, A.; Celaya, J.R.; Christophersen, J.P. Prognostics in battery health management. IEEE Instrum. Meas. Mag. 2008, 11, 33–40. [Google Scholar] [CrossRef]
- He, W.; Williard, N.; Osterman, M.; Pecht, M. Prognostics of lithium-ion batteries based on Dempster-Shafer theory and the Bayesian Monte Carlo method. J. Power Source 2011, 196, 10314–10321. [Google Scholar] [CrossRef]
- Xiong, R.; Pan, Y.; Shen, W.X.; Li, H.L.; Sun, F.C. Lithium-ion battery aging mechanisms and diagnosis method for automotive applications: Recent advances and perspectives. Renew. Sustain. Energy Rev. 2020, 131, 110048. [Google Scholar] [CrossRef]
- Su, X.H.; Wang, S.; Pecht, M.; Zhao, L.L.; Ye, Z. Interacting multiple model particle filter for prognostics of lithium-ion batteries. Microelectron. Reliab. 2017, 70, 59–69. [Google Scholar] [CrossRef]
No. | Charging Current (A) | Charging Cut-Off Voltage (V) | Discharging Current (A) | Discharging Cut-Off Voltage (V) |
---|---|---|---|---|
B5 | 1.5 | 4.2 | 2.0 | 2.7 |
B6 | 1.5 | 4.2 | 2.0 | 2.5 |
B7 | 1.5 | 4.2 | 2.0 | 2.2 |
B18 | 1.5 | 4.2 | 2.0 | 2.5 |
CS2_33 | 0.55 | 4.2 | 0.55 | 2.7 |
CS2_34 | 0.55 | 4.2 | 0.55 | 2.7 |
CS2_36 | 0.55 | 4.2 | 1.1 | 2.7 |
CS2_37 | 0.55 | 4.2 | 1.1 | 2.7 |
B5 | CS2_33 | |||||
---|---|---|---|---|---|---|
MAE | RMSE | STD | MAE | RMSE | STD | |
1st prediction | 0.0125 | 0.0272 | 0.0243 | 0.0678 | 0.1133 | 0.0909 |
2nd prediction | 0.0106 | 0.0261 | 0.0240 | 0.0634 | 0.0851 | 0.0576 |
3rd prediction | 0.0096 | 0.0256 | 0.0238 | 0.0944 | 0.1200 | 0.0741 |
4th prediction | 0.0113 | 0.0264 | 0.0239 | 0.0890 | 0.1140 | 0.0714 |
5th prediction | 0.0100 | 0.0258 | 0.0240 | 0.0637 | 0.0861 | 0.0587 |
Average | 0.0108 | 0.0262 | 0.0240 | 0.0757 | 0.1037 | 0.0705 |
Start | B5 | B6 | B7 | B18 | Start | CS2_33 | CS2_34 | CS2_36 | CS2_37 | |
---|---|---|---|---|---|---|---|---|---|---|
MAE | 30 | 0.0683 | 0.1199 | 0.0334 | 0.1184 | 200 | 0.0605 | 0.1277 | 0.0621 | 0.1448 |
0.0682 | 0.1087 | 0.0451 | 0.1126 | 0.0769 | 0.1269 | 0.0691 | 0.1475 | |||
0.0675 | 0.1103 | 0.0315 | 0.0993 | 0.0746 | 0.1186 | 0.0617 | 0.1376 | |||
AVE | 0.0680 | 0.1130 | 0.0367 | 0.1101 | 0.0707 | 0.1244 | 0.0643 | 0.1433 | ||
MAE | 70 | 0.0103 | 0.0177 | 0.0119 | 0.0189 | 370 | 0.0232 | 0.0324 | 0.0291 | 0.0256 |
0.0089 | 0.0159 | 0.0132 | 0.0188 | 0.0244 | 0.0356 | 0.0275 | 0.0244 | |||
0.0092 | 0.0166 | 0.0124 | 0.0201 | 0.0240 | 0.0342 | 0.0300 | 0.0210 | |||
AVE | 0.0095 | 0.0167 | 0.0125 | 0.0193 | 0.0238 | 0.0341 | 0.0289 | 0.0237 | ||
MAE | 90 | 0.0025 | 0.0050 | 0.0049 | 0.0024 | 440 | 0.0035 | 0.0049 | 0.0033 | 0.0043 |
0.0021 | 0.0045 | 0.0043 | 0.0020 | 0.0059 | 0.0043 | 0.0047 | 0.0042 | |||
0.0022 | 0.0052 | 0.0048 | 0.0027 | 0.0053 | 0.0055 | 0.0036 | 0.0039 | |||
AVE | 0.0023 | 0.0049 | 0.0047 | 0.0024 | 0.0049 | 0.0049 | 0.0039 | 0.0041 | ||
RMSE | 30 | 0.0793 | 0.1420 | 0.0384 | 0.1336 | 200 | 0.1209 | 0.1529 | 0.1099 | 0.1924 |
0.0791 | 0.1389 | 0.0511 | 0.1325 | 0.1548 | 0.1535 | 0.1126 | 0.1950 | |||
0.0785 | 0.1432 | 0.0395 | 0.1294 | 0.1570 | 0.1544 | 0.1205 | 0.1936 | |||
AVE | 0.0789 | 0.1413 | 0.043 | 0.1318 | 0.1442 | 0.1536 | 0.1143 | 0.1937 | ||
RMSE | 70 | 0.0180 | 0.0215 | 0.0196 | 0.0276 | 370 | 0.0340 | 0.0432 | 0.0357 | 0.0328 |
0.0163 | 0.0228 | 0.0210 | 0.0284 | 0.0357 | 0.0429 | 0.0350 | 0.0356 | |||
0.0165 | 0.0230 | 0.0206 | 0.0279 | 0.0353 | 0.0422 | 0.0351 | 0.0311 | |||
AVE | 0.0169 | 0.0224 | 0.0204 | 0.0280 | 0.0350 | 0.0428 | 0.0352 | 0.0331 | ||
RMSE | 90 | 0.0068 | 0.0084 | 0.0082 | 0.0068 | 440 | 0.0070 | 0.0071 | 0.0082 | 0.0117 |
0.0062 | 0.0075 | 0.0085 | 0.0066 | 0.0089 | 0.0072 | 0.0079 | 0.0107 | |||
0.0060 | 0.0079 | 0.0076 | 0.0071 | 0.0081 | 0.0068 | 0.0087 | 0.0132 | |||
AVE | 0.0063 | 0.0079 | 0.0081 | 0.0068 | 0.0080 | 0.0070 | 0.0083 | 0.0119 |
Start | B5 | B6 | B7 | B18 | Start | CS2_33 | CS2_34 | CS2_36 | CS2_37 | |
---|---|---|---|---|---|---|---|---|---|---|
STD | 30 | 0.0406 | 0.1009 | 0.0192 | 0.0618 | 200 | 0.1048 | 0.1351 | 0.1183 | 0.1420 |
0.0401 | 0.1007 | 0.0191 | 0.0624 | 0.1383 | 0.1355 | 0.1181 | 0.1415 | |||
0.0401 | 0.1009 | 0.0193 | 0.0613 | 0.1345 | 0.1324 | 0.1179 | 0.1421 | |||
AVE | 0.0403 | 0.1008 | 0.0192 | 0.0618 | 0.1259 | 0.1353 | 0.1181 | 0.1416 | ||
STD | 70 | 0.0149 | 0.0224 | 0.0180 | 0.0165 | 370 | 0.0249 | 0.0288 | 0.0263 | 0.0248 |
0.0137 | 0.0221 | 0.0181 | 0.0165 | 0.0259 | 0.0287 | 0.0265 | 0.0247 | |||
0.0137 | 0.0223 | 0.0180 | 0.0164 | 0.0260 | 0.0287 | 0.0263 | 0.0240 | |||
AVE | 0.0141 | 0.0223 | 0.0180 | 0.0165 | 0.0256 | 0.0287 | 0.0264 | 0.0245 | ||
STD | 90 | 0.0064 | 0.0067 | 0.0038 | 0.0069 | 440 | 0.0061 | 0.0064 | 0.0059 | 0.0051 |
0.0058 | 0.0068 | 0.0041 | 0.0073 | 0.0068 | 0.0064 | 0.0062 | 0.0059 | |||
0.0056 | 0.0061 | 0.0043 | 0.0068 | 0.0067 | 0.0064 | 0.0063 | 0.0056 | |||
AVE | 0.0059 | 0.0065 | 0.0041 | 0.0070 | 0.0065 | 0.0064 | 0.0061 | 0.0055 |
No | SSA-LSTM | VMD-LSTM | Proposed Method | |||
---|---|---|---|---|---|---|
AMAE | ARMSE | AMAE | ARMSE | AMAE | ARMSE | |
B5 | 0.0848 | 0.0939 | 0.0523 | 0.0637 | 0.0224 | 0.0320 |
B6 | 0.1509 | 0.1719 | 0.0771 | 0.0896 | 0.0337 | 0.0471 |
B7 | 0.0730 | 0.0845 | 0.0515 | 0.0684 | 0.0177 | 0.0238 |
B18 | 0.1582 | 0.1652 | 0.0697 | 0.0844 | 0.0371 | 0.0465 |
CS2-33 | 0.2422 | 0.3296 | 0.0713 | 0.0897 | 0.0407 | 0.0683 |
CS2-34 | 0.1066 | 0.1345 | 0.0615 | 0.0935 | 0.0525 | 0.0654 |
CS2-36 | 0.2366 | 0.3056 | 0.0696 | 0.1055 | 0.0465 | 0.0763 |
CS2-37 | 0.1405 | 0.1911 | 0.0637 | 0.1164 | 0.0487 | 0.0780 |
No | Methods | SSALSTM | VMDLSTM | Proposed Method | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Start | 30 | 58 | 70 | 90 | 30 | 58 | 70 | 90 | 30 | 58 | 70 | 90 | |
B5 | TRUL | 95 | 67 | 55 | 35 | 95 | 67 | 55 | 35 | 95 | 67 | 55 | 35 |
PRUL | 135 | 88 | 64 | 50 | 132 | 90 | 74 | 46 | 126 | 63 | 55 | 35 | |
ERR | 40 | 21 | 9 | 15 | 37 | 23 | 19 | 11 | 31 | 4 | 0 | 0 | |
PERROR(%) | 42.1 | 31.4 | 16.3 | 42.8 | 38.9 | 34.3 | 34.5 | 31.4 | 32.6 | 5.9 | 0.00 | 0.00 | |
B6 | TRUL | 79 | 51 | 39 | 19 | 79 | 51 | 39 | 19 | 79 | 51 | 39 | 19 |
PRUL | 124 | 71 | 32 | 16 | 101 | 71 | 32 | 16 | 96 | 44 | 38 | 18 | |
ERR | 45 | 20 | 7 | 3 | 22 | 20 | 7 | 3 | 17 | 7 | 1 | 1 | |
PERROR(%) | 56.9 | 39.2 | 17.9 | 15.7 | 27.9 | 39.2 | 17.9 | 15.7 | 21.5 | 13.7 | 2.56 | 5.26 | |
B18 | TRUL | 82 | 54 | 42 | 22 | 82 | 54 | 42 | 22 | 82 | 54 | 42 | 22 |
PRUL | 107 | 71 | 49 | 28 | 106 | 64 | 50 | 24 | 100 | 46 | 37 | 22 | |
ERR | 25 | 17 | 7 | 6 | 24 | 10 | 8 | 5 | 18 | 8 | 5 | 0 | |
PERROR(%) | 30.4 | 31.4 | 16.7 | 27.2 | 29.2 | 18.5 | 19.1 | 9.09 | 21.9 | 14.8 | 11.9 | 0.00 | |
Start | 200 | 320 | 370 | 440 | 200 | 320 | 370 | 440 | 200 | 320 | 370 | 440 | |
CS2 33 | TRUL | 402 | 282 | 232 | 162 | 402 | 282 | 232 | 162 | 402 | 282 | 232 | 162 |
PRUL | 510 | 375 | 293 | 195 | 465 | 333 | 277 | 184 | 467 | 323 | 244 | 164 | |
ERR | 108 | 93 | 61 | 33 | 63 | 51 | 45 | 22 | 65 | 41 | 12 | 2 | |
PERROR(%) | 26.8 | 32.9 | 26.3 | 20.4 | 15.7 | 18.1 | 19.4 | 13.1 | 16.1 | 14.5 | 5.17 | 1.23 | |
CS2 34 | TRUL | 415 | 295 | 245 | 175 | 415 | 295 | 245 | 175 | 415 | 295 | 245 | 175 |
PRUL | 511 | 372 | 296 | 222 | 477 | 339 | 288 | 195 | 470 | 327 | 254 | 175 | |
ERR | 96 | 77 | 51 | 47 | 61 | 44 | 43 | 20 | 55 | 32 | 9 | 0 | |
PERROR(%) | 23.1 | 26.1 | 13.8 | 26.9 | 14.7 | 14.9 | 17.6 | 11.4 | 13.3 | 10.9 | 3.67 | 0 | |
CS2 36 | TRUL | 454 | 334 | 284 | 214 | 454 | 334 | 284 | 214 | 454 | 334 | 284 | 214 |
PRUL | 547 | 408 | 344 | 267 | 541 | 398 | 307 | 239 | 532 | 384 | 267 | 215 | |
ERR | 93 | 74 | 60 | 53 | 87 | 64 | 23 | 25 | 78 | 50 | 17 | 1 | |
PERROR(%) | 20.5 | 22.2 | 21.1 | 24.8 | 19.2 | 19.2 | 8.10 | 11.7 | 17.2 | 15.0 | 5.98 | 0.46 | |
CS2 37 | TRUL | 517 | 397 | 347 | 277 | 517 | 397 | 347 | 277 | 517 | 397 | 347 | 277 |
PRUL | 582 | 437 | 400 | 310 | 579 | 434 | 364 | 284 | 574 | 420 | 356 | 278 | |
ERR | 65 | 40 | 53 | 33 | 62 | 37 | 17 | 7 | 57 | 23 | 9 | 1 | |
PERROR(%) | 12.6 | 10.1 | 15.3 | 11.9 | 12.0 | 9.32 | 4.92 | 2.53 | 11.0 | 5.79 | 5.59 | 0.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, Q.; Qin, W.; Yun, Z. A Multi-Stage Adaptive Method for Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Swarm Intelligence Optimization. Batteries 2023, 9, 224. https://doi.org/10.3390/batteries9040224
Bao Q, Qin W, Yun Z. A Multi-Stage Adaptive Method for Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Swarm Intelligence Optimization. Batteries. 2023; 9(4):224. https://doi.org/10.3390/batteries9040224
Chicago/Turabian StyleBao, Qihao, Wenhu Qin, and Zhonghua Yun. 2023. "A Multi-Stage Adaptive Method for Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Swarm Intelligence Optimization" Batteries 9, no. 4: 224. https://doi.org/10.3390/batteries9040224
APA StyleBao, Q., Qin, W., & Yun, Z. (2023). A Multi-Stage Adaptive Method for Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Swarm Intelligence Optimization. Batteries, 9(4), 224. https://doi.org/10.3390/batteries9040224