Effect of Exogenous Inoculation on Dark Fermentation of Food Waste Priorly Stored in Lactic Acid Fermentation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Exogenous Inoculation of Food Waste Stored in LAF Increases Hydrogen Maximum Production Rate in Dark Fermentation
2.2. Acetate Accumulation Increases with Exogenous Inoculation and Affects Butyrate Accumulation at Food Waste Stored at Lower Temperature of 4 °C
2.3. New Genera Emerge with Exogenous Inoculation, with Clostridium sp. Maintained as the Main HPB for Both Endogenous and Exogenous Inoculum
3. Materials and Methods
3.1. Substrate
3.2. Inoculum
3.3. Biohydrogen Potential (BHP) Test
3.4. Gas Composition Analysis
3.5. Metabolites Analysis
3.6. Microbial Analysis
3.7. Data Analysis
3.7.1. Gas Production
3.7.2. Model Fitting for Gas Production
3.7.3. Hydrogen Production Efficiency for Determination of Homoacetogenesis
3.7.4. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Steinbach, S.A.; Bunk, N. The Future European Hydrogen Market: Market Design and Policy Recommendations to Support Market Development and Commodity Trading. Int. J. Hydrogen Energy 2024, 70, 29–38. [Google Scholar] [CrossRef]
- International Energy Agency. Global Hydrogen Review 2023; International Energy Agency: Paris, France, 2023. [Google Scholar] [CrossRef]
- Aydin, M.I.; Dincer, I. A Life Cycle Impact Analysis of Various Hydrogen Production Methods for Public Transportation Sector. Int. J. Hydrogen Energy 2022, 47, 39666–39677. [Google Scholar] [CrossRef]
- Hosseinzadeh, A.; Zhou, J.L.; Li, X.; Afsari, M.; Altaee, A. Techno-Economic and Environmental Impact Assessment of Hydrogen Production Processes Using Bio-Waste as Renewable Energy Resource. Renew. Sustain. Energy Rev. 2022, 156, 111991. [Google Scholar] [CrossRef]
- Cheng, D.; Ngo, H.H.; Guo, W.; Chang, S.W.; Nguyen, D.D.; Deng, L.; Chen, Z.; Ye, Y.; Bui, X.T.; Hoang, N.B. Advanced Strategies for Enhancing Dark Fermentative Biohydrogen Production from Biowaste towards Sustainable Environment. Bioresour. Technol. 2022, 351, 127045. [Google Scholar] [CrossRef]
- Regueira-Marcos, L.; Muñoz, R.; García-Depraect, O. Continuous Lactate-Driven Dark Fermentation of Restaurant Food Waste: Process Characterization and New Insights on Transient Feast/Famine Perturbations. Bioresour. Technol. 2023, 385. [Google Scholar] [CrossRef] [PubMed]
- Stavropoulos, K.P.; Kopsahelis, A.; Zafiri, C.; Kornaros, M. Effect of PH on Continuous Biohydrogen Production from End-of-Life Dairy Products (EoL-DPs) via Dark Fermentation. Waste Biomass Valorization 2016, 7, 753–764. [Google Scholar] [CrossRef]
- García-Depraect, O.; Valdez-Vázquez, I.; Rene, E.R.; Gómez-Romero, J.; López-López, A.; León-Becerril, E. Lactate- and Acetate-Based Biohydrogen Production through Dark Co-Fermentation of Tequila Vinasse and Nixtamalization Wastewater: Metabolic and Microbial Community Dynamics. Bioresour. Technol. 2019, 282, 236–244. [Google Scholar] [CrossRef]
- García-Depraect, O.; Rene, E.R.; Diaz-Cruces, V.F.; León-Becerril, E. Effect of Process Parameters on Enhanced Biohydrogen Production from Tequila Vinasse via the Lactate-Acetate Pathway. Bioresour. Technol. 2019, 273, 618–626. [Google Scholar] [CrossRef] [PubMed]
- Leroy-Freitas, D.; Muñoz, R.; Martínez-Mendoza, L.J.; Martínez-Fraile, C.; García-Depraect, O. Enhancing Biohydrogen Production: The Role of Iron-Based Nanoparticles in Continuous Lactate-Driven Dark Fermentation of Powdered Cheese Whey. Fermentation 2024, 10, 296. [Google Scholar] [CrossRef]
- Pakarinen, O.; Lehtomäki, A.; Rintala, J. Batch Dark Fermentative Hydrogen Production from Grass Silage: The Effect of Inoculum, PH, Temperature and VS Ratio. Int. J. Hydrogen Energy 2008, 33, 594–601. [Google Scholar] [CrossRef]
- Parthiba Karthikeyan, O.; Trably, E.; Mehariya, S.; Bernet, N.; Wong, J.W.C.; Carrere, H. Pretreatment of Food Waste for Methane and Hydrogen Recovery: A Review. Bioresour. Technol. 2018, 249, 1025–1039. [Google Scholar] [CrossRef] [PubMed]
- Villanueva-Galindo, E.; Vital-Jácome, M.; Moreno-Andrade, I. Dark Fermentation for H2 Production from Food Waste and Novel Strategies for Its Enhancement. Int. J. Hydrogen Energy 2023, 48, 9957–9970. [Google Scholar] [CrossRef]
- Degueurce, A.; Picard, S.; Peu, P.; Trémier, A. Storage of Food Waste: Variations of Physical–Chemical Characteristics and Consequences on Biomethane Potential. Waste Biomass Valorization 2020, 11, 2441–2454. [Google Scholar] [CrossRef]
- García-Depraect, O.; León-Becerril, E. Fermentative Biohydrogen Production from Tequila Vinasse via the Lactate-Acetate Pathway: Operational Performance, Kinetic Analysis and Microbial Ecology. Fuel 2018, 234, 151–160. [Google Scholar] [CrossRef]
- García-Depraect, O.; Muñoz, R.; Rodríguez, E.; Rene, E.R.; León-Becerril, E. Microbial Ecology of a Lactate-Driven Dark Fermentation Process Producing Hydrogen under Carbohydrate-Limiting Conditions. Int. J. Hydrogen Energy 2021, 46, 11284–11296. [Google Scholar] [CrossRef]
- Ohnishi, A.; Hasegawa, Y.; Fujimoto, N.; Suzuki, M. Biohydrogen Production by Mixed Culture of Megasphaera Elsdenii with Lactic Acid Bacteria as Lactate-Driven Dark Fermentation. Bioresour. Technol. 2022, 343, 126076. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Mendoza, L.J.; Lebrero, R.; Muñoz, R.; García-Depraect, O. Influence of Key Operational Parameters on Biohydrogen Production from Fruit and Vegetable Waste via Lactate-Driven Dark Fermentation. Bioresour. Technol. 2022, 364. [Google Scholar] [CrossRef] [PubMed]
- García-Depraect, O.; Muñoz, R.; van Lier, J.B.; Rene, E.R.; Diaz-Cruces, V.F.; León-Becerril, E. Three-Stage Process for Tequila Vinasse Valorization through Sequential Lactate, Biohydrogen and Methane Production. Bioresour. Technol. 2020, 307, 123160. [Google Scholar] [CrossRef]
- García-Depraect, O.; Castro-Muñoz, R.; Muñoz, R.; Rene, E.R.; León-Becerril, E.; Valdez-Vazquez, I.; Kumar, G.; Reyes-Alvarado, L.C.; Martínez-Mendoza, L.J.; Carrillo-Reyes, J.; et al. A Review on the Factors Influencing Biohydrogen Production from Lactate: The Key to Unlocking Enhanced Dark Fermentative Processes. Bioresour. Technol. 2021, 324. [Google Scholar] [CrossRef] [PubMed]
- Cesaro, A.; Belgiorno, V. Anaerobic Digestion of Mechanically Sorted Organic Waste: The Influence of Storage Time on the Energetic Potential. Sustain. Chem. Pharm. 2021, 20, 100373. [Google Scholar] [CrossRef]
- Tamaki, S.; Hidaka, T.; Nishimura, F. Effects of Using Lactic Acid Bacteria in the Storage and Subsequent Anaerobic Co-Digestion of Crushed Kitchen Garbage. Bioresour. Technol. Rep. 2021, 13, 100640. [Google Scholar] [CrossRef]
- Feng, L.; Ward, A.J.; Moset, V.; Møller, H.B. Methane Emission during On-Site Pre-Storage of Animal Manure Prior to Anaerobic Digestion at Biogas Plant: Effect of Storage Temperature and Addition of Food Waste. J. Environ. Manag. 2018, 225, 272–279. [Google Scholar] [CrossRef]
- Ólafsdóttir, S.S.; Jensen, C.D.; Lymperatou, A.; Henriksen, U.B.; Gavala, H.N. Effects of Different Treatments of Manure on Mitigating Methane Emissions during Storage and Preserving the Methane Potential for Anaerobic Digestion. J. Environ. Manag. 2023, 325, 116456. [Google Scholar] [CrossRef]
- Castelló, E.; Nunes Ferraz-Junior, A.D.; Andreani, C.; del P. Anzola-Rojas, M.; Borzacconi, L.; Buitrón, G.; Carrillo-Reyes, J.; Gomes, S.D.; Maintinguer, S.I.; Moreno-Andrade, I.; et al. Stability Problems in the Hydrogen Production by Dark Fermentation: Possible Causes and Solutions. Renew. Sustain. Energy Rev. 2020, 119, 109602. [Google Scholar] [CrossRef]
- Roslan, E.; Magdalena, J.A.; Mohamed, H.; Akhiar, A.; Shamsuddin, A.H.; Carrere, H.; Trably, E. Lactic Acid Fermentation of Food Waste as Storage Method Prior to Biohydrogen Production: Effect of Storage Temperature on Biohydrogen Potential and Microbial Communities. Bioresour. Technol. 2023, 378, 128985. [Google Scholar] [CrossRef] [PubMed]
- Noguer, M.C.; Escudié, R.; Bernet, N.; Eric, T. Populational and Metabolic Shifts Induced by Acetate, Butyrate and Lactate in Dark Fermentation. Int. J. Hydrogen Energy 2022, 47, 28385–28398. [Google Scholar] [CrossRef]
- Dauptain, K.; Trably, E.; Santa-Catalina, G.; Bernet, N.; Carrere, H. Role of Indigenous Bacteria in Dark Fermentation of Organic Substrates. Bioresour. Technol. 2020, 313, 123665. [Google Scholar] [CrossRef]
- Villanueva-Galindo, E.; Pérez-Rangel, M.; Moreno-Andrade, I. Biohydrogen Production from Lactic Acid: Use of Food Waste as Substrate and Evaluation of Pretreated Sludge and Native Microbial Community as Inoculum. Int. J. Hydrogen Energy 2023. [Google Scholar] [CrossRef]
- Gonde, L.; Wickham, T.; Brink, H.G.; Nicol, W. PH-Based Control of Anaerobic Digestion to Maximise Ammonium Production in Liquid Digestate. Water 2023, 15, 417. [Google Scholar] [CrossRef]
- Wang, J.; Yin, Y. Clostridium Species for Fermentative Hydrogen Production: An Overview. Int. J. Hydrogen Energy 2021, 46, 34599–34625. [Google Scholar] [CrossRef]
- Flint, H.J.; Duncan, S.H. Bacteroides and Prevotella, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 1, ISBN 9780123847331. [Google Scholar]
- Zhao, B.; Wang, S.; Dong, Z.; Cao, S.; Yuan, A.; Sha, H.; Chen, N. Enhancing Dark Fermentative Hydrogen Production from Wheat Straw through Synergistic Effects of Active Electric Fields and Enzymatic Hydrolysis Pretreatment. Bioresour. Technol. 2024, 406, 130993. [Google Scholar] [CrossRef]
- Perat, L.; Escudié, R.; Bernet, N.; Richard, C.; Jégoux, M.; Juge, M.; Trably, E. New Insights on Waste Mixing for Enhanced Fermentative Hydrogen Production. Process Saf. Environ. Prot. 2024, 188, 1326–1337. [Google Scholar] [CrossRef]
- Fuess, L.T.; Rogeri, R.C.; Eng, F.; do V. Borges, A.; Bovio-Winkler, P.; Etchebehere, C.; Zaiat, M. Thermophilic Fermentation of Sugarcane Vinasse: Process Flexibility Explained through Characterizing Microbial Community and Predicting Metabolic Functions. Int. J. Hydrogen Energy 2024, 77, 1339–1351. [Google Scholar] [CrossRef]
- Noguer, M.C.; Magdalena, J.A.; Bernet, N.; Escudi, R. Enhanced Fermentative Hydrogen Production from Food Waste in Continuous Reactor after Butyric Acid Treatment. Energies 2022, 15, 4048. [Google Scholar] [CrossRef]
- Daly, S.E.; Usack, J.G.; Harroff, L.A.; Booth, J.G.; Keleman, M.P.; Angenent, L.T. Systematic Analysis of Factors That Affect Food-Waste Storage: Toward Maximizing Lactate Accumulation for Resource Recovery. ACS Sustain. Chem. Eng. 2020, 8, 13934–13944. [Google Scholar] [CrossRef]
- American Public Health Association. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2012; ISBN 0898673119. [Google Scholar]
- Kreuger, E.; Nges, I.; Björnsson, L. Ensiling of Crops for Biogas Production: Effects on Methane Yield and Total Solids Determination. Biotechnol. Biofuels 2011, 4, 44. [Google Scholar] [CrossRef] [PubMed]
- Dauptain, K.; Schneider, A.; Noguer, M.; Fontanille, P.; Escudie, R.; Carrere, H.; Trably, E. Impact of Microbial Inoculum Storage on Dark Fermentative H2 Production. Bioresour. Technol. 2021, 319, 124234. [Google Scholar] [CrossRef] [PubMed]
- Ohnishi, A.; Hasegawa, Y.; Abe, S.; Bando, Y.; Fujimoto, N.; Suzuki, M. Hydrogen Fermentation Using Lactate as the Sole Carbon Source: Solution for “blind Spots” in Biofuel Production. RSC Adv. 2012, 2, 8332–8340. [Google Scholar] [CrossRef]
- Carrillo-Reyes, J.; Buitrón, G.; Moreno-Andrade, I.; Tapia-Rodríguez, A.C.; Palomo-Briones, R.; Razo-Flores, E.; Aguilar-Juárez, O.; Arreola-Vargas, J.; Bernet, N.; Braga, A.F.M.; et al. Standardized Protocol for Determination of Biohydrogen Potential. MethodsX 2020, 7, 100754. [Google Scholar] [CrossRef]
- Lay, J.-J.; Li, Y.-Y.; Noike, T. Effect Of Moisture Content And Of Chemical Fermentation Nature On Methane Characteristics Solid Wastes. J. Environ. Syst. Eng. 1996, 1, 101–108. [Google Scholar] [CrossRef] [PubMed]
Storage Temperature (°C) | Pm, Maximum Production (mL/gVS) | Rm, Maximum Production Rate (mL/gVS·d) | λ, Lag Phase (d) | |||
---|---|---|---|---|---|---|
Endogenous | Exogenous | Endogenous | Exogenous | Endogenous | Exogenous | |
4 | 80 ± 6 a | 57 ± 3 a | 46 ± 6 a | 135 ± 15 abc | 0.4 ± 0.1 a | 0.4 ± 0.0 a |
10 | 89 ± 0 a | 85 ± 3 a | 53 ± 10 ab | 183 ± 14 c | 0.7 ± 0.0 ab | 0.4 ± 0.0 a |
23 | 79 ± 5 a | 74 ± 10 a | 72 ± 18 abc | 151 ± 92 abc | 1.1 ± 0.0 c | 0.8 ± 0.4 bc |
35 | 94 ± 20 a | 62 ± 29 a | 69 ± 14 abc | 167 ± 97 bc | 0.5 ± 0.1 ab | 0.4 ± 0.0 a |
45 | 84 ± 2 a | 64 ± 8 a | 58 ± 12 ab | 66 ± 7 abc | 0.6 ± 0.0 ab | 0.4 ± 0.0 a |
55 | 141 ± 35 b | 94 ± 10 a | 76 ± 21 abc | 82 ± 17 abc | 0.9 ± 0.1 bc | 0.4 ± 0.0 a |
Storage Temperature (°C) | Final Metabolite Concentration After BHP Test (gCOD/L) | Hydrogen Production Efficiency (HPE) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Lactate | Acetate | Butyrate | Caproate | |||||||
Endogenous | Exogenous | Endogenous | Exogenous | Endogenous | Exogenous | Endogenous | Exogenous | Endogenous | Exogenous | |
4 | - | - | 1.2 ± 0.2 cde | 1.8 ± 0.1 ef | 2.8 ± 0.4 a | 4.3 ± 0.4 b | - | - | 0.5 ± 0.1 ab | 0.2 ± 0.0 a |
10 | - | - | 0.9 ± 0.1 bc | 2.2 ± 0.0 f | 3.9 ± 0.1 ab | 3.8 ± 0.1 ab | - | - | 0.5 ± 0.0 ab | 0.3 ± 0.0 ab |
23 | - | - | 0.5 ± 0.5 ab | 1.9 ± 0.2 f | 3.2 ± 0.1 ab | 3.9 ± 0.2 ab | - | - | 0.6 ± 0.2 b | 0.3 ± 0.1 a |
35 | - | - | 0.7 ± 0.0 bc | 1.8 ± 0.3 def | 3.2 ± 0.8 ab | 4.0 ± 0.3 ab | 0.7 ± 1.2 a | - | 0.6 ± 0.0 b | 0.2 ± 0.1 a |
45 | 0.1 ± 0.2 a | - | 0.0 ± 0.0 a | 1.1 ± 0.2 bcd | 3.4 ± 0.8 ab | 3.0 ± 1.0 ab | - | - | 0.9 ± 0.2 c | 0.4 ± 0.1 ab |
55 | - | - | 0.0 ± 0.0 a | 1.3 ± 0.3 cde | 3.6 ± 0.1 ab | 3.2 ± 0.5 ab | - | 0.4 ± 0.8 a | 1.2 ± 0.1 d | 0.5 ± 0.1 ab |
Storage Temperature (°C) | %TS and %VS | Metabolite Concentrations in Stored Food Waste (gCOD/L) | |||
---|---|---|---|---|---|
Lactate | Acetate | Ethanol | Propionate | ||
4 | 9.6 ± 0.1, 9.3 ± 0.1 | 3.8 ± 0.2 | 0.9 ± 0.1 | 1.1 ± 0.2 | - |
10 | 10.1 ± 0.1, 9.7 ± 0.1 | 5.5 ± 0.1 | 0.9 ± 0.0 | 8.5 ± 3.4 | - |
23 | 9.5 ± 0.2, 9.1 ± 0.2 | 13.1 ± 0.2 | 1.3 ± 0.0 | 22.5 ± 3.7 | 0.6 ± 0.5 |
35 | 9.1 ± 0.4, 8.7 ± 0.4 | 15.3 ± 2.0 | 1.1 ± 0.1 | 6.3 ± 0.6 | - |
45 | 9.5 ± 0.1, 9.2 ± 0.1 | 6.4 ± 1.0 | 0.6 ± 0.1 | 3.2 ± 0.4 | - |
55 | 9.5 ± 0.2, 9.2 ± 0.2 | 2.2 ± 0.7 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roslan, E.; Mohamed, H.; Abu Hassan, S.H.; Carrere, H.; Trably, E. Effect of Exogenous Inoculation on Dark Fermentation of Food Waste Priorly Stored in Lactic Acid Fermentation. Recycling 2025, 10, 11. https://doi.org/10.3390/recycling10010011
Roslan E, Mohamed H, Abu Hassan SH, Carrere H, Trably E. Effect of Exogenous Inoculation on Dark Fermentation of Food Waste Priorly Stored in Lactic Acid Fermentation. Recycling. 2025; 10(1):11. https://doi.org/10.3390/recycling10010011
Chicago/Turabian StyleRoslan, Eqwan, Hassan Mohamed, Saiful Hasmady Abu Hassan, Hélène Carrere, and Eric Trably. 2025. "Effect of Exogenous Inoculation on Dark Fermentation of Food Waste Priorly Stored in Lactic Acid Fermentation" Recycling 10, no. 1: 11. https://doi.org/10.3390/recycling10010011
APA StyleRoslan, E., Mohamed, H., Abu Hassan, S. H., Carrere, H., & Trably, E. (2025). Effect of Exogenous Inoculation on Dark Fermentation of Food Waste Priorly Stored in Lactic Acid Fermentation. Recycling, 10(1), 11. https://doi.org/10.3390/recycling10010011