Eco-Friendly and Complex Processing of Vanadium-Bearing Waste for Effective Extraction of Valuable Metals and Other By-Products: A Critical Review
Abstract
:1. Introduction
2. Chemical and Mineralogical Composition of Vanadium-Bearing Waste
3. Vanadium Processing Technologies
3.1. Direct Leaching Process
3.1.1. Acid Leaching
3.1.2. Alkaline Leaching
3.1.3. Bioleaching Process
3.1.4. Electro-Oxidation Leaching
3.2. Roasting-Leaching Processes
3.2.1. Non-Salt Roasting Assisted Leaching
3.2.2. Calcification Roasting Assisted Leaching
3.2.3. Sodium Salt Roasting Assisted Leaching Process
3.2.4. Promising Modification Methods
4. Utilizing By-Products for Industrial Applications
5. Future Recommendations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perles, T. Vanadium Market Analysis; TTP Squared Inc.: Upper St. Clair, PA, USA, 2021; pp. 23–38. [Google Scholar]
- Simandl, G.J.; Paradis, S. Vanadium as a Critical Material: Economic Geology with Emphasis on Market and the Main Deposit Types. Appl. Earth Sci. Trans. Inst. Min. Metall. 2022, 131, 218–236. [Google Scholar] [CrossRef]
- Hu, P.; Zhang, Y.; Huang, J.; Liu, T.; Yuan, Y.; Xue, N. Eco-Friendly Leaching and Separation of Vanadium over Iron Impurity from Vanadium-Bearing Shale Using Oxalic Acid as a Leachant. ACS Sustain. Chem. Eng. 2018, 6, 1900–1908. [Google Scholar] [CrossRef]
- Hu, P.; Zhang, Y.; Liu, T.; Yuan, Y.; Xue, N. Source Separation of Vanadium over Iron from Roasted Vanadium-Bearing Shale during Acid Leaching via Ferric Fluoride Surface Coating. J. Clean. Prod. 2018, 181, 399–407. [Google Scholar] [CrossRef]
- Yan, B.; Wang, D.; Wu, L.; Dong, Y. A Novel Approach for Pre-Concentrating Vanadium from Stone Coal Ore. Miner. Eng. 2018, 125, 231–238. [Google Scholar] [CrossRef]
- Wenk, H.; Bulakh, A. Minerals, Their Constitution and Origin; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Schindler, M.; Hawthorne, F.C.; Baur, W.H. A Crystal-Chemical Approach to the Composition and Occurrence of Vanadium Minerals. Can. Mineral. 2000, 38, 1443–1456. [Google Scholar] [CrossRef]
- Boni, M.; Bouabdellah, M.; Boukirou, W.; Putzolu, F.; Mondillo, N. Vanadium Ore Resources of the African Continent: State of the Art. Ore Geol. Rev. 2023, 157, 105423. [Google Scholar] [CrossRef]
- Judd, J.C.; Sandberg, R.G.; Huiatt, J.L. Recovery of Vanadium, Uranium and Phosphate From Idaho Phosphorite Ores; Bureau of Mines, Report of Investigations 9025; United States Department of the Interior: Washington, DC, USA, 1986. [Google Scholar]
- U.S. Geological Survey. Mineral Commodity Summaries 2023; U.S. Geological Survey: Reston, NA, USA, 2023; ISBN 9781411345041. [Google Scholar]
- Reznitsky, L.Z.; Sklyarov, E.V.; Suvorova, L.F.; Karmanov, N.S.; Ushchapovskaya, Z.F. The Chromite–Coulsonite–Magnetite Solid Solution: The First Find of a Rare Variety of Spinel in Terrestrial Rocks. Dokl. Earth Sci. 2005, 404, 1121–1125. [Google Scholar]
- Xu, C.; Zhang, Y.; Liu, T.; Huang, J. Characterization and Pre-Concentration of Low-Grade Vanadium-Titanium Magnetite Ore. Minerals 2017, 7, 137. [Google Scholar] [CrossRef]
- Lauf, R.J. Mineralogy of Uranium and Thorium; Schiffer Publishing: Atglen, PA, USA, 2016; ISBN 0764351133. [Google Scholar]
- Merritt, R.C. Extractive Metallurgy of Uranium; Colorado School of Mines Research Institute: Golden, CO, USA, 1971. [Google Scholar]
- Henning Stonehenge Metals Corporate Presentation. In Proceedings of the Australian-Uranium-Rare-Earths-Conference, Fremantle, Australia, 16–17 July 2013.
- Liu, S.; Jaireth, S. Exploring for Calcrete–Hosted Uranium Deposits in the Paterson Region, Western Australia. Ausgeo News, 2011; pp. 1–5. [Google Scholar]
- Wang, M.; Xian, P.; Wang, X.; Li, B. Extraction of Vanadium from Stone Coal by Microwave Assisted Sulfation Roasting. JOM 2015, 67, 369–374. [Google Scholar] [CrossRef]
- Lewis, S.E.; Henderson, R.A.; Dickens, G.R.; Shields, G.A.; Coxhell, S. The Geochemistry of Primary and Weathered Oil Shale and Coquina across the Julia Creek Vanadium Deposit (Queensland, Australia). Miner. Depos. 2010, 45, 599–620. [Google Scholar] [CrossRef]
- Dechaine, G.P.; Gray, M.R. Chemistry and Association of Vanadium Compounds in Heavy Oil and Bitumen, and Implications for Their Selective Removal. Energy Fuels 2010, 24, 2795–2808. [Google Scholar] [CrossRef]
- Martínez-Palou, R.; Cerón-Camacho, R.; Chávez, B.; Vallejo, A.A.; Villanueva-Negrete, D.; Castellanos, J.; Karamath, J.; Reyes, J.; Aburto, J. Demulsification of Heavy Crude Oil-in-Water Emulsions: A Comparative Study between Microwave and Thermal Heating. Fuel 2013, 113, 407–414. [Google Scholar] [CrossRef]
- Mofarrah, A.; Husain, T. Evaluation of Environmental Pollution and Possible Management Options of Heavy Oil Fly Ash. J. Mater. Cycles Waste Manag. 2013, 15, 73–81. [Google Scholar] [CrossRef]
- Mohammed, H.; Sadeek, S.; Mahmoud, A.R.; Zaky, D. Comparison of AAS, EDXRF, ICP-MS and INAA Performance for Determination of Selected Heavy Metals in HFO Ashes. Microchem. J. 2016, 128, 1–6. [Google Scholar] [CrossRef]
- Gupta, C.K.; Krishnamurthy, N. Extractive Metallurgy of Vanadium; Elsevier Science Publishing: Amsterdam, The Netherlands, 1992. [Google Scholar]
- Brough, C.; Bowell, R.J.; Larkin, J. The Geology of Vanadium Deposits. In An Introduction to Vanadium; Nova Science Publishers, Inc.: New York, NY, USA, 2019; pp. 87–117. [Google Scholar]
- Abd El-Hamid, A.A.M.; Abu Khoziem, H.A. Physical and Chemical Characterization of El Kriymat Boiler Ash to Optimize the Leachability of Some Valuable Elements. J. Environ. Chem. Eng. 2019, 7, 103362. [Google Scholar] [CrossRef]
- Vitolo, S.; Seggiani, M.; Filippi, S.; Brocchini, C. Recovery of Vanadium from Heavy Oil and Orimulsion Fly Ashes. Hydrometallurgy 2000, 57, 141–149. [Google Scholar] [CrossRef]
- Holloway, P.C.; Etsell, T.H. Salt Roasting of Suncor Oil Sands Fly Ash. Can. Metall. Q. 2004, 43, 535–544. [Google Scholar] [CrossRef]
- White, D.; Levy, L. Vanadium: Environmental Hazard or Environmental Opportunity? A Perspective on Some Key Research Needs. Environ. Sci. Process. Impacts 2021, 23, 527–534. [Google Scholar] [CrossRef]
- International Energy Agency. Electricity Market Report; IEA: Paris, France, 2020. [Google Scholar]
- Egypt Electricity Holding Company (EEHC). Egypt Electricity Holding Company Annual Report; EEHC: Cairo, Egypt, 2021. [Google Scholar]
- Mowafa taib. The Mineral Industry of Egypt. In U.S. Geological Survey Minerals Yearbook; United States Geological Survey: Reston, VA, USA, 2018; pp. 1–17. [Google Scholar]
- Survey of Energy Resources. World Energy Resources; World Energy Council Registered in England and Wales: London, UK, 2013; pp. 1–56. [Google Scholar]
- Statistical Review of World Energy. Country Analysis Executive Summary: China; U.S. Energy Information Administration (EIA): Washington, DC, USA, 2022. [Google Scholar]
- Statistical Review of World Energy. Country Analysis Executive Summary: Egypt; U.S. Energy Information Administration (EIA): Washington, DC, USA, 2022. [Google Scholar]
- Bakkar, A.; Seleman, M.M.E.; Ahmed, M.M.Z.; Harb, S.; Goren, S.; Howsawi, E. Recovery of Vanadium and Nickel from Heavy Oil Fly Ash (HOFA): A Critical Review. RSC Adv. 2023, 13, 6327–6345. [Google Scholar] [CrossRef]
- Li, X.; Xie, B. Extraction of Vanadium from High Calcium Vanadium Slag Using Direct Roasting and Soda Leaching. Int. J. Miner. Metall. Mater. 2012, 19, 595–601. [Google Scholar] [CrossRef]
- Song, W.C.; Li, K.; Zheng, Q.; Li, H. A Novel Process of Vanadium Extraction from Molten Vanadium Bearing Slag. Waste Biomass Valorization 2014, 5, 327–332. [Google Scholar] [CrossRef]
- Xiao, Q.; Chen, Y.; Gao, Y.; Xu, H.; Zhang, Y. Leaching of Silica from Vanadium-Bearing Steel Slag in Sodium Hydroxide Solution. Hydrometallurgy 2010, 104, 216–221. [Google Scholar] [CrossRef]
- Wu, K.; Wang, Y.; Wang, X.; Wang, S.; Liu, B.; Zhang, Y.; Du, H. Co-Extraction of Vanadium and Chromium from High Chromium Containing Vanadium Slag by Low-Pressure Liquid Phase Oxidation Method. J. Clean. Prod. 2018, 203, 873–884. [Google Scholar] [CrossRef]
- Li, X.; Yu, H.; Xue, X. Extraction of Iron from Vanadium Slag Using Pressure Acid Leaching. Procedia Environ. Sci. 2016, 31, 582–588. [Google Scholar] [CrossRef]
- Aarabi-Karasgani, M.; Rashchi, F.; Mostoufi, N.; Vahidi, E. Leaching of Vanadium from LD Converter Slag Using Sulfuric Acid. Hydrometallurgy 2010, 102, 14–21. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, W.; Zhang, L.; Gu, S. Mechanism of Vanadium Slag Roasting with Calcium Oxide. Int. J. Miner. Process. 2015, 138, 20–29. [Google Scholar] [CrossRef]
- Li, H.Y.; Fang, H.X.; Wang, K.; Zhou, W.; Yang, Z.; Yan, X.M.; Ge, W.S.; Li, Q.W.; Xie, B. Asynchronous Extraction of Vanadium and Chromium from Vanadium Slag by Stepwise Sodium Roasting-Water Leaching. Hydrometallurgy 2015, 156, 124–135. [Google Scholar] [CrossRef]
- Zhang, X.; Fang, D.; Song, S.; Cheng, G.; Xue, X. Selective Leaching of Vanadium over Iron from Vanadium Slag. J. Hazard. Mater. 2019, 368, 300–307. [Google Scholar] [CrossRef]
- Hobson, A.J.; Stewart, D.I.; Mortimer, R.J.G.; Mayes, W.M.; Rogerson, M.; Burke, I.T. Leaching Behaviour of Co-Disposed Steel Making Wastes: Effects of Aeration on Leachate Chemistry and Vanadium Mobilisation. Waste Manag. 2018, 81, 1–10. [Google Scholar] [CrossRef]
- Speight, J.G. The Chemistry and Technology of Coal, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2013; ISBN 9781439836484. [Google Scholar]
- Hsieh, Y.-M.; Tsai, M.-S. An Investigation of the Characteristics of Unburned Carbon in Oil Fly Ash. In Environmental Challenges and Greenhouse Gas Control for Fossil Fuel Utilization in the 21st Century; Springer: Boston, MA, USA, 2002; Volume 21, pp. 387–401. ISBN 9789896540821. [Google Scholar]
- Tsygankova, M.V.; Bukin, V.I.; Lysakova, E.I.; Smirnova, A.G.; Reznik, A.M. The Recovery of Vanadium from Ash Obtained during the Combustion of Fuel Oil at Thermal Power Stations. Russ. J. Non-Ferrous Met. 2011, 52, 19–23. [Google Scholar] [CrossRef]
- Kim, J.Y.; Mukherjee, S.; Ngo, L.; Christiani, D.C. Urinary 8-Hydroxy-2′-Deoxyguanosine as a Biomarker of Oxidative DNA Damage in Workers Exposed to Fine Particulates. Environ. Health Perspect. 2004, 112, 666–671. [Google Scholar] [CrossRef] [PubMed]
- Di Pietro, A.; Visalli, G.; Munaò, F.; Baluce, B.; La Maestra, S.; Primerano, P.; Corigliano, F.; De Flora, S. Oxidative Damage in Human Epithelial Alveolar Cells Exposed in Vitro to Oil Fly Ash Transition Metals. Int. J. Hyg. Environ. Health 2009, 212, 196–208. [Google Scholar] [CrossRef] [PubMed]
- Pattanaik, S.; Huggins, F.E.; Huffman, G.P.; Linak, W.P.; Miller, C.A. XAFS Studies of Nickel and Sulfur Speciation in Residual Oil Fly-Ash Particulate Matters. Environ. Sci. Technol. 2007, 41, 1104–1110. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Bueno, C.O.; Spink, D.R.; Rempel, G.L. Extraction of Vanadium and Nickel From Athabasca Oil Sands Fly Ash. Metall. Trans. 1984, 12, 341–352. [Google Scholar] [CrossRef]
- Al-Malack, M.H.; Bukhari, A.A.; Al-Amoudi, O.S.; Al-Muhanna, H.H.; Zaidi, T.H. Characteristics of Fly Ash Produced at Power and Water Desalination Plants Firing Fuel Oil. Int. J. Environ. Res. 2013, 7, 455–466. [Google Scholar]
- Mofarrah, A.; Husain, T. Use of Heavy Oil Fly Ash as a Color Ingredient in Cement Mortar. Int. J. Concr. Struct. Mater. 2013, 7, 111–117. [Google Scholar] [CrossRef]
- Stas, J.; Dahdouh, A.; Al-chayah, O. Recovery of Vanadium, Nickel and Molybdenum from Fly Ash of Heavy Oil-Fired Electrical Power Station. Period. Polytech. Chem. Eng. 2007, 51, 67–70. [Google Scholar] [CrossRef]
- Vitolo, S.; Seggiani, M.; Falaschi, F. Recovery of Vanadium from a Previously Burned Heavy Oil Fly Ash. Hydrometallurgy 2001, 62, 145–150. [Google Scholar] [CrossRef]
- Aslam, Z.; Hussein, I.A.; Shawabkeh, R.A.; Parvez, M.A.; Ahmad, W. Ihsanullah Adsorption Kinetics and Modeling of H2S by Treated Waste Oil Fly Ash. J. Air Waste Manag. Assoc. 2019, 69, 246–257. [Google Scholar] [CrossRef]
- Tokuyama, H.; Nii, S.; Kawaizumi, F.; Takahashi, K. Process Development for Recovery of Vanadium and Nickel from Heavy Oil Fly Ash by Leaching and Ion Exchange. Sep. Sci. Technol. 2003, 38, 1329–1344. [Google Scholar] [CrossRef]
- Ibrahim, A.H.; Lyu, X.; Atia, B.M.; Gado, M.A.; ElDeeb, A.B. Phase Transformation Mechanism of Boiler Ash Roasted with Sodium Salt for Vanadium Extraction. J. Mater. Cycles Waste Manag. 2022, 25, 86–102. [Google Scholar] [CrossRef]
- Yildirim, I.Z.; Prezzi, M. Chemical, Mineralogical, and Morphological Properties of Steel Slag. Adv. Civ. Eng. 2011, 2011, 463638. [Google Scholar] [CrossRef]
- Li, W.; Zhang, Y.; Liu, T.; Huang, J.; Wang, Y. Comparison of Ion Exchange and Solvent Extraction in Recovering Vanadium from Sulfuric Acid Leach Solutions of Stone Coal. Hydrometallurgy 2013, 131–132, 1–7. [Google Scholar] [CrossRef]
- Zhang, X.; Xie, B.; Diao, J.; Li, X.J. Nucleation and Growth Kinetics of Spinel Crystals in Vanadium Slag. Ironmak. Steelmak. 2012, 39, 147–154. [Google Scholar] [CrossRef]
- Dabbagh, A.; Heidary Moghadam, A.; Naderi, S.; Hamdi, M. Erratum: A Study on the Effect of Coke Particle Size on the Thermal Profile of the Sinters Produced in Esfahan Steel Company (ESCO) (SAIMM Journal 113:12 (941–945)). J. South. Afr. Inst. Min. Metall. 2014, 114, 418. [Google Scholar]
- Dondi, M.; Ercolani, G.; Guarini, G.; Raimondo, M. Orimulsion Fly Ash in Clay Bricks—Part 1: Composition and Thermal Behaviour of Ash. J. Eur. Ceram. Soc. 2002, 22, 1729–1735. [Google Scholar] [CrossRef]
- Miller, C.A.; Srivastava, R.K. Combustion of Orimulsion and Its Generation of Air Pollutants. Prog. Energy Combust. Sci. 2000, 26, 131–160. [Google Scholar] [CrossRef]
- Xiao, Y.; Mambote, C.R.; Jalkanen, H.; Yang, Y.; Boom, R. Vanadium Recovery as FeV from Petroleum Fly Ash. In Proceedings of the 12th International Ferroalloys Congress Sustainable Future, Helsinki, Finland, 6–9 June 2010; pp. 179–188. [Google Scholar]
- Li, J.; Chen, Z.; Shen, B.; Xu, Z.; Zhang, Y. The Extraction of Valuable Metals and Phase Transformation and Formation Mechanism in Roasting-Water Leaching Process of Laterite with Ammonium Sulfate. J. Clean. Prod. 2017, 140, 1148–1155. [Google Scholar] [CrossRef]
- Mu, W.; Huang, Z.; Xin, H.; Luo, S.; Zhai, Y.; Xu, Q. Extraction of Copper and Nickel from Low-Grade Nickel Sulfide Ore by Low-Temperature Roasting, Selective Decomposition and Water-Leaching Process. JOM 2019, 71, 4647–4658. [Google Scholar] [CrossRef]
- Li, J.; Li, D.; Xu, Z.; Liao, C.; Liu, Y.; Zhong, B. Selective Leaching of Valuable Metals from Laterite Nickel Ore with Ammonium Chloride-Hydrochloric Acid Solution. J. Clean. Prod. 2018, 179, 24–30. [Google Scholar] [CrossRef]
- Huaiwei, Z.; Xin, H. An Overview for the Utilization of Wastes from Stainless Steel Industries. Resour. Conserv. Recycl. 2011, 55, 745–754. [Google Scholar] [CrossRef]
- Alex, P.; Mishra, P.; Suri, A.K. Studies on Processing of an Alnico Scrap. Miner. Process. Extr. Metall. Rev. 2001, 22, 547–565. [Google Scholar] [CrossRef]
- Shen, Y.; Xue, W.; Niu, W. Recovery of Co(II) and Ni(II) from Hydrochloric Acid Solution of Alloy Scrap. Trans. Nonferrous Met. Soc. China 2008, 18, 1262–1268. [Google Scholar] [CrossRef]
- Goel, S.; Pant, K.K.; Nigam, K.D.P. Extraction of Nickel from Spent Catalyst Using Fresh and Recovered EDTA. J. Hazard. Mater. 2009, 171, 253–261. [Google Scholar] [CrossRef]
- Vuyyuru, K.R.; Pant, K.K.; Krishnan, V.V.; Nigam, K.D.P. Recovery of Nickel from Spent Industrial Catalysts Using Chelating Agents. Ind. Eng. Chem. Res. 2010, 49, 2014–2024. [Google Scholar] [CrossRef]
- Sahu, K.K.; Agarwal, A.; Pandey, B.D. Nickel Recovery from Spent Nickel Catalyst. Waste Manag. Res. J. A Sustain. Circ. Econ. 2005, 23, 148–154. [Google Scholar] [CrossRef]
- Idris, J.; Musa, M.; Yin, C.-Y.; Hamid, K.H.K. Recovery of Nickel from Spent Catalyst from Palm Oil Hydrogenation Process Using Acidic Solutions. J. Ind. Eng. Chem. 2010, 16, 251–255. [Google Scholar] [CrossRef]
- Marafi, M.; Stanislaus, A. Waste Catalyst Utilization: Extraction of Valuable Metals from Spent Hydroprocessing Catalysts by Ultrasonic-Assisted Leaching with Acids. Ind. Eng. Chem. Res. 2011, 50, 9495–9501. [Google Scholar] [CrossRef]
- Oza, R.; Shah, N.; Patel, S. Recovery of Nickel from Spent Catalysts Using Ultrasonication-Assisted Leaching. J. Chem. Technol. Biotechnol. 2011, 86, 1276–1281. [Google Scholar] [CrossRef]
- Ognyanova, A.; Ozturk, A.T.; De Michelis, I.; Ferella, F.; Taglieri, G.; Akcil, A.; Vegliò, F. Metal Extraction from Spent Sulfuric Acid Catalyst through Alkaline and Acidic Leaching. Hydrometallurgy 2009, 100, 20–28. [Google Scholar] [CrossRef]
- Ferella, F.; Ognyanova, A.; De Michelis, I.; Taglieri, G.; Vegliò, F. Extraction of Metals from Spent Hydrotreating Catalysts: Physico-Mechanical Pre-Treatments and Leaching Stage. J. Hazard. Mater. 2011, 192, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.Z.; Ng, R.S.; Qi, G.J.; Low, H.C.; Zhang, Y.P. Economic Viability of Nickel Recovery from Waste Catalyst. Key Eng. Mater. 2010, 447–448, 765–769. [Google Scholar] [CrossRef]
- Yang, Q.Z.; Qi, G.J.; Low, H.C.; Song, B. Sustainable Recovery of Nickel from Spent Hydrogenation Catalyst: Economics, Emissions and Wastes Assessment. J. Clean. Prod. 2011, 19, 365–375. [Google Scholar] [CrossRef]
- Abd El-Hamid, A.M.; Zahran, M.A.; Khalid, F.M.; Mahmoud, A.H. Leaching of Hafnium, Zirconium, Uranium and Other Nuclear Economic Elements from Petroleum Ash. RSC Adv. 2014, 4, 12506. [Google Scholar] [CrossRef]
- Deng, Z.G.; Wei, C.; Fan, G.; Li, M.T.; Li, C.X.; Li, X. Bin Extracting Vanadium from Stone-Coal by Oxygen Pressure Acid Leaching and Solvent Extraction. Trans. Nonferrous Met. Soc. China (Engl. Ed.) 2010, 20, s118–s122. [Google Scholar] [CrossRef]
- Barik, S.P.; Park, K.H.; Nam, C.W. Process Development for Recovery of Vanadium and Nickel from an Industrial Solid Waste by a Leaching-Solvent Extraction Technique. J. Environ. Manag. 2014, 146, 22–28. [Google Scholar] [CrossRef]
- Akcil, A.; Vegliò, F.; Ferella, F.; Okudan, M.D.; Tuncuk, A. A Review of Metal Recovery from Spent Petroleum Catalysts and Ash. Waste Manag. 2015, 45, 420–433. [Google Scholar] [CrossRef]
- Nazari, E.; Rashchi, F.; Saba, M.; Mirazimi, S.M.J. Simultaneous Recovery of Vanadium and Nickel from Power Plant Fly-Ash: Optimization of Parameters Using Response Surface Methodology. Waste Manag. 2014, 34, 2687–2696. [Google Scholar] [CrossRef]
- Navarro, R.; Guzman, J.; Saucedo, I.; Revilla, J.; Guibal, E. Vanadium Recovery from Oil Fly Ash by Leaching, Precipitation and Solvent Extraction Processes. Waste Manag. 2007, 27, 425–438. [Google Scholar] [CrossRef]
- Aburizaiza, A. Sequential Leaching of Vanadium from Heavy Fuel Oil Fly Ash Generated from Saudi Arabia Thermal Power Plants. Curr. J. Appl. Sci. Technol. 2019, 32, 1–17. [Google Scholar] [CrossRef]
- Khalafalla, M.S.; Abdellah, W.M.; Khoziem, H.A.A.; Abd El-Hamid, A.A.M. Ecological Treatment of El Kriymat Boiler Ash for Recovering Vanadium, Nickel and Zinc from Sulfate Leach Liquor. J. Mater. Cycles Waste Manag. 2023, 25, 441–455. [Google Scholar] [CrossRef]
- Weshahy, A.R.; Gouda, A.A.; Atia, B.M.; Sakr, A.K.; Al-Otaibi, J.S.; Almuqrin, A.; Hanfi, M.Y.; Sayyed, M.I.; El Sheikh, R.; Radwan, H.A.; et al. Efficient Recovery of Rare Earth Elements and Zinc from Spent Ni–Metal Hydride Batteries: Statistical Studies. Nanomaterials 2022, 12, 2305. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, G.; Rastegar, S.O.; Rahmani Chianeh, F.; Gu, T. Ultrasound-Assisted Leaching of Vanadium from Fly Ash Using Lemon Juice Organic Acids. RSC Adv. 2020, 10, 1685–1696. [Google Scholar] [CrossRef] [PubMed]
- Mu, W.; Zhang, T.; Dou, Z.; Lü, G.; Hu, L.; Yu, B.; Liu, Y. Oxygen Pressure Acid Leaching of Vanadium Slag. Appl. Mech. Mater. 2011, 79, 242–247. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, T.; Lü, G.; Zhang, Y.; Liu, Y.; Liu, Z. Extraction of Vanadium from Vanadium Slag by High Pressure Oxidative Acid Leaching. Int. J. Miner. Metall. Mater. 2015, 22, 21–26. [Google Scholar] [CrossRef]
- Guoquan, Z.; Ting’an, Z.; Guozhi, L.; Ying, Z.; Yan, L.; Gang, X. Extraction of Vanadium from LD Converter Slag by Pressure Leaching Process with Titanium White Waste Acid. Rare Met. Mater. Eng. 2015, 44, 1894–1898. [Google Scholar] [CrossRef]
- Zhang, G.-Q.; Zhang, T.-A.; Zhang, Y.; Lv, G.-Z.; Liu, Y.; Liu, Z.-L. Pressure Leaching of Converter Vanadium Slag with Waste Titanium Dioxide. Rare Met. 2016, 35, 576–580. [Google Scholar] [CrossRef]
- Zhou, X.; Wei, C.; Xia, W.; Li, M.; Li, C.; Deng, Z.; Xu, H. Dissolution Kinetics and Thermodynamic Analysis of Vanadium Trioxide during Pressure Oxidation. Rare Met. 2012, 31, 296–302. [Google Scholar] [CrossRef]
- Amer, A.M. Processing of Egyptian Boiler-Ash for Extraction of Vanadium and Nickel. Waste Manag. 2002, 22, 515–520. [Google Scholar] [CrossRef]
- Tsai, S.-L.; Tsai, M.-S. A Study of the Extraction of Vanadium and Nickel in Oil-Fired Fly Ash. Resour. Conserv. Recycl. 1998, 22, 163–176. [Google Scholar] [CrossRef]
- Al-Zuhairi, M.A.H. Vanadium Extraction from Residual of Fired Crude Oil in Power Plants. Iraqi J. Mech. Mater. Eng. 2014, 14, 423–431. [Google Scholar]
- Hakimi, M.; Kiani, P.; Alikhani, M.; Feizi, N.; Bajestani, A.M.; Alimard, P. Reducing Environmental Pollution of Fuel Fly Ash by Extraction and Removal Vanadium Pentoxide. Solid Fuel Chem. 2020, 54, 337–342. [Google Scholar] [CrossRef]
- Akita, S.; Maeda, T.; Takeuchi, H. Recovery of Vanadium and Nickel in Fly Ash from Heavy Oil. J. Chem. Technol. Biotechnol. 1995, 62, 345–350. [Google Scholar] [CrossRef]
- Al-Ghouti, M.A.; Al-Degs, Y.S.; Ghrair, A.; Khoury, H.; Ziedan, M. Extraction and Separation of Vanadium and Nickel from Fly Ash Produced in Heavy Fuel Power Plants. Chem. Eng. J. 2011, 173, 191–197. [Google Scholar] [CrossRef]
- Shahnazi, A.; Rashchi, F.; Vahidi, E. A Kinetics Study on the Hydrometallurgical Recovery of Vanadium from LD Converter Slag in Alkaline Media. In Proceedings of the TMS 2012 Annual Meeting, Orlando, FL, USA, 11–15 March 2012; pp. 425–433. [Google Scholar] [CrossRef]
- Qiu, S.; Wei, C.; Li, M.; Zhou, X.; Li, C.; Deng, Z. Dissolution Kinetics of Vanadium Trioxide at High Pressure in Sodium Hydroxide-Oxygen Systems. Hydrometallurgy 2011, 105, 350–354. [Google Scholar] [CrossRef]
- Liu, B.; Du, H.; Wang, S.N.; Zhang, Y.; Zheng, S.L.; Li, L.J.; Chen, D.H. A Novel Method to Extract Vanadium and Chromium from Vanadium Slag Using Molten NaOH-NaNO3 Binary System. AIChE J. 2013, 59, 541–552. [Google Scholar] [CrossRef]
- Mirazimi, S.M.J.; Rashchi, F.; Saba, M. A New Approach for Direct Leaching of Vanadium from LD Converter Slag. Chem. Eng. Res. Des. 2015, 94, 131–140. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, D.; Zhao, W.; Zhao, H.; Wang, L.; Li, D.; Qi, T. A Novel Synergistic Extraction Method for Recovering Vanadium (V) from High-Acidity Chloride Leaching Liquor. Sep. Purif. Technol. 2016, 165, 166–172. [Google Scholar] [CrossRef]
- Li, M.; Zheng, S.; Liu, B.; Wang, S.; Dreisinger, D.B.; Zhang, Y.; Du, H.; Zhang, Y. A Clean and Efficient Method for Recovery of Vanadium from Vanadium Slag: Nonsalt Roasting and Ammonium Carbonate Leaching Processes. Miner. Process. Extr. Metall. Rev. 2017, 38, 228–237. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, L.; Aldahrib, T.; Li, C.; Liu, W.; Zhang, G.; Yang, Y.; Luo, D. Direct Recovery of Low Valence Vanadium from Vanadium Slag- Effect of Roasting on Vanadium Leaching. Hydrometallurgy 2020, 191, 105156. [Google Scholar] [CrossRef]
- Li, D.-Q.; Yang, Y.; Li, H.-Y.; Xie, B. Study on Vanadium Phase Evolution Law in Vanadium Slag During the Interface Reaction Process of Sodium Roasting. In Rare Metal Technology 2020; Minerals, Metals and Materials Series; Springer International Publishing: New York, NY, USA, 2020; pp. 253–264. ISBN 9783030367572. [Google Scholar]
- Zhang, G.; Zhang, Y.; Bao, S.; Yuan, Y.; Jian, X.; Li, R. Selective Vanadium Extraction from Vanadium Bearing Ferro-Phosphorus via Roasting and Pressure Hydrogen Reduction. Sep. Purif. Technol. 2019, 220, 293–299. [Google Scholar] [CrossRef]
- Ettler, V.; Kvapil, J.; Šebek, O.; Johan, Z.; Mihaljevič, M.; Ratié, G.; Garnier, J.; Quantin, C. Leaching Behaviour of Slag and Fly Ash from Laterite Nickel Ore Smelting (Niquelândia, Brazil). Appl. Geochem. 2016, 64, 118–127. [Google Scholar] [CrossRef]
- Hu, P.; Zhang, Y.; Liu, T.; Huang, J.; Yuan, Y.; Zheng, Q. Highly Selective Separation of Vanadium over Iron from Stone Coal by Oxalic Acid Leaching. J. Ind. Eng. Chem. 2017, 45, 241–247. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, J.; Zhang, Y.; Liu, T.; Hu, P.; Liu, H.; Zheng, Q. Separation and Recovery of Iron Impurities from a Complex Oxalic Acid Solution Containing Vanadium by K3Fe(C2O4)3·3H2O Crystallization. Sep. Purif. Technol. 2020, 232, 115970. [Google Scholar] [CrossRef]
- Mirazimi, S.M.J.; Rashchi, F. Optimization of Bioleaching of a Vanadium Containing Slag Using RSM. In Proceedings of the 7th International Chemical Engineering Congress & Exihibition, Kish, Iran, 21–24 November 2011. [Google Scholar]
- Mirazimi, S.M.J.; Abbasalipour, Z.; Rashchi, F. Vanadium Removal from LD Converter Slag Using Bacteria and Fungi. J. Environ. Manag. 2015, 153, 144–151. [Google Scholar] [CrossRef]
- Ntita, J.; Nheta, W. Investigation on the Mechanisms of Bio-Processing Vanadium Slags. In Proceedings of the 5th International Slag Volarisation Symposium, Leuven, Belgia, 3–5 April 2017; pp. 173–176. [Google Scholar]
- Ntita, J.; Nheta, W.; Staden, P.V. Selective Leaching of Vanadium from Vanadium Slag Using Organic Acids. In Proceedings of the 9th International Conference on Advances in Science, Engineering, Technology & Waste Management (ASETWM-17), Parys, South Africa, 27–28 November 2017. [Google Scholar]
- Thallner, S.; Hemmelmair, C.; Martinek, S.; Schnitzhofer, W. Bioleaching for Removal of Chromium and Associated Metals from LD Slag. Solid State Phenom. 2017, 262, 79–83. [Google Scholar] [CrossRef]
- Lee, J.C.; Pandey, B.D. Bio-Processing of Solid Wastes and Secondary Resources for Metal Extraction—A Review. Waste Manag. 2012, 32, 3–18. [Google Scholar] [CrossRef]
- Zeng, L.; Cheng, C.Y. A Literature Review of the Recovery of Molybdenum and Vanadium from Spent Hydrodesulphurisation Catalysts. Part I: Metallurgical Processes. Hydrometallurgy 2009, 98, 1–9. [Google Scholar] [CrossRef]
- Gomes, H.I.; Funari, V.; Mayes, W.M.; Rogerson, M.; Prior, T.J. Recovery of Al, Cr and V from Steel Slag by Bioleaching: Batch and Column Experiments. J. Environ. Manag. 2018, 222, 30–36. [Google Scholar] [CrossRef]
- Liu, Z.; Nueraihemaiti, A.; Chen, M.; Du, J.; Fan, X.; Tao, C. Hydrometallurgical Leaching Process Intensified by an Electric Field for Converter Vanadium Slag. Hydrometallurgy 2015, 155, 56–60. [Google Scholar] [CrossRef]
- Peng, H.; Liu, Z.; Tao, C. Selective Leaching of Vanadium from Chromium Residue Intensified by Electric Field. J. Environ. Chem. Eng. 2015, 3, 1252–1257. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Y.; Chen, M.; Nueraihemaiti, A.; Du, J.; Fan, X.; Tao, C.Y. Enhanced Leaching of Vanadium Slag in Acidic Solution by Electro-Oxidation. Hydrometallurgy 2016, 159, 1–5. [Google Scholar] [CrossRef]
- Lee, J.; Kurniawan; Kim, E.; Chung, K.W.; Kim, R.; Jeon, H.-S. A Review on the Metallurgical Recycling of Vanadium from Slags: Towards a Sustainable Vanadium Production. J. Mater. Res. Technol. 2021, 12, 343–364. [Google Scholar] [CrossRef]
- Peng, H. A Literature Review on Leaching and Recovery of Vanadium. J. Environ. Chem. Eng. 2019, 7, 103313. [Google Scholar] [CrossRef]
- Ye, P.; Wang, X.; Wang, M.; Fan, Y.; Xiang, X. Recovery of Vanadium from Stone Coal Acid Leaching Solution by Coprecipitation, Alkaline Roasting and Water Leaching. Hydrometallurgy 2012, 117–118, 108–115. [Google Scholar] [CrossRef]
- Gao, H.; Jiang, T.; Zhou, M.; Wen, J.; Li, X.; Wang, Y.; Xue, X. Effect of Microwave Irradiation and Conventional Calcification Roasting with Calcium Hydroxide on the Extraction of Vanadium and Chromium from High-Chromium Vanadium Slag. Miner. Eng. 2020, 145, 106056. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Z.; Qin, Z.; Zhang, G.; Yue, H.; Liang, B.; Luo, D. Investigation of the Selective Oxidation Roasting of Vanadium-iron Spinel. Powder Technol. 2021, 387, 434–443. [Google Scholar] [CrossRef]
- Zeng, L.; Yong Cheng, C. A Literature Review of the Recovery of Molybdenum and Vanadium from Spent Hydrodesulphurisation Catalysts. Part II: Separation and Purification. Hydrometallurgy 2009, 98, 10–20. [Google Scholar] [CrossRef]
- Li, M.; Du, H.; Zheng, S.; Wang, S.; Zhang, Y.; Liu, B.; Dreisinger, D.B.; Zhang, Y. Extraction of Vanadium from Vanadium Slag Via Non-Salt Roasting and Ammonium Oxalate Leaching. JOM 2017, 69, 1970–1975. [Google Scholar] [CrossRef]
- Li, M.; Liu, B.; Zheng, S.; Wang, S.; Du, H.; Dreisinger, D.B.; Zhang, Y. A Cleaner Vanadium Extraction Method Featuring Non-Salt Roasting and Ammonium Bicarbonate Leaching. J. Clean. Prod. 2017, 149, 206–217. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, F.; Xue, X.; Jiang, T. Effects of Microwave and Conventional Blank Roasting on Oxidation Behavior, Microstructure and Surface Morphology of Vanadium Slag with High Chromium Content. J. Alloys Compd. 2016, 686, 356–365. [Google Scholar] [CrossRef]
- Wang, M.; Xiang, X.; Zhang, L.; Xiao, L. Effect of Vanadium Occurrence State on the Choice of Extracting Vanadium Technology from Stone Coal. Rare Met. 2008, 27, 112–115. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, T.A.; Dreisinger, D.; Lv, C.; Lv, G.; Zhang, W. Recovery of Vanadium from Calcification Roasted-Acid Leaching Tailing by Enhanced Acid Leaching. J. Hazard. Mater. 2019, 369, 632–641. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, W.; Xue, Z. Oxidation Kinetics of Vanadium Slag Roasting in the Presence of Calcium Oxide. Miner. Process. Extr. Metall. Rev. 2017, 38, 265–273. [Google Scholar] [CrossRef]
- Wen, J.; Jiang, T.; Zheng, X.; Wang, J.; Cao, J.; Zhou, M. Efficient Separation of Chromium and Vanadium by Calcification Roasting–Sodium Carbonate Leaching from High Chromium Vanadium Slag and V2O5 Preparation. Sep. Purif. Technol. 2020, 230, 115881. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, W.; Xue, Z. An Environment-Friendly Process Featuring Calcified Roasting and Precipitation Purification to Prepare Vanadium Pentoxide from the Converter Vanadium Slag. Metals 2019, 9, 21. [Google Scholar] [CrossRef]
- Peng, H.; Guo, J.; Zheng, X.; Liu, Z.; Tao, C. Leaching Kinetics of Vanadium from Calcification Roasting Converter Vanadium Slag in Acidic Medium. J. Environ. Chem. Eng. 2018, 6, 5119–5124. [Google Scholar] [CrossRef]
- Xiang, J.; Huang, Q.; Lv, X.; Bai, C. Extraction of Vanadium from Converter Slag by Two-Step Sulfuric Acid Leaching Process. J. Clean. Prod. 2018, 170, 1089–1101. [Google Scholar] [CrossRef]
- Li, H.-Y.; Wang, K.; Hua, W.-H.; Yang, Z.; Zhou, W.; Xie, B. Selective Leaching of Vanadium in Calcification-Roasted Vanadium Slag by Ammonium Carbonate. Hydrometallurgy 2016, 160, 18–25. [Google Scholar] [CrossRef]
- Xu, Y.; Cai, Y.; Lu, X.; Ma, P. Study on Recovery of Vanadium from Low-Vanadium Slag by Calcified Roasting Methods. Adv. Mater. Res. 2011, 284–286, 2127–2130. [Google Scholar] [CrossRef]
- Wen, J.; Jiang, T.; Zhou, M.; Gao, H.Y.; Liu, J.Y.; Xue, X.X. Roasting and Leaching Behaviors of Vanadium and Chromium in Calcification Roasting–Acid Leaching of High-Chromium Vanadium Slag. Int. J. Miner. Metall. Mater. 2018, 25, 515–526. [Google Scholar] [CrossRef]
- Xiang, J.; Huang, Q.; Lv, X.; Bai, C. Effect of Mechanical Activation Treatment on the Recovery of Vanadium from Converter Slag. Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 2017, 48, 2759–2767. [Google Scholar] [CrossRef]
- Yang, Z.; Li, H.-Y.; Yin, X.-C.; Yan, Z.-M.; Yan, X.-M.; Xie, B. Leaching Kinetics of Calcification Roasted Vanadium Slag with High CaO Content by Sulfuric Acid. Int. J. Miner. Process. 2014, 133, 105–111. [Google Scholar] [CrossRef]
- Wang, G.; Lin, M.M.; Diao, J.; Li, H.Y.; Xie, B.; Li, G. A Novel Strategy for Green Comprehensive Utilization of Vanadium Slag with High-Content Chromium. ACS Sustain. Chem. Eng. 2019, 7, 18133–18141. [Google Scholar] [CrossRef]
- Wen, J.; Jiang, T.; Zhou, W.; Gao, H.; Xue, X. A Cleaner and Efficient Process for Extraction of Vanadium from High Chromium Vanadium Slag: Leaching in (NH4)2SO4-H2SO4 Synergistic System and NH4+ Recycle. Sep. Purif. Technol. 2019, 216, 126–135. [Google Scholar] [CrossRef]
- Xiang, J.; Pei, G.; Huang, Q.; Lv, W.; Yang, M.; Hu, K.; Lv, X. A Multi-Step Process for the Cleaner Utilization of Vanadium-Bearing Converter Slag; Springer International Publishing: New York, NY, USA, 2019; ISBN 9783030057398. [Google Scholar]
- Wen, J.; Jiang, T.; Xu, Y.; Liu, J.; Xue, X. Efficient Separation and Extraction of Vanadium and Chromium in High Chromium Vanadium Slag by Selective Two-Stage Roasting–Leaching. Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 2018, 49, 1471–1481. [Google Scholar] [CrossRef]
- Cai, Z.; Zhang, Y. Phase Transformations of Vanadium Recovery from Refractory Stone Coal by Novel NaOH Molten Roasting and Water Leaching Technology. RSC Adv. 2017, 7, 36917–36922. [Google Scholar] [CrossRef]
- Ji, Y.; Shen, S.; Liu, J.; Xue, Y. Cleaner and Effective Process for Extracting Vanadium from Vanadium Slag by Using an Innovative Three-Phase Roasting Reaction. J. Clean. Prod. 2017, 149, 1068–1078. [Google Scholar] [CrossRef]
- Nkosi, S.; Dire, P.; Nyambeni, N.; Goso, X.C. A Comparative Study of Vanadium Recovery from Titaniferous Magnetite Using Salt, Sulphate, and Soda Ash Roast-Leach Processes. In Proceedings of the 3rd Young Professionals Conference, Pretoria, South Africa, 9–10 March 2017; pp. 191–200. [Google Scholar]
- Geng, C.; Sun, T.; Yang, H.; Ma, Y.; Gao, E.; Xu, C. Effect of Na2SO4 on the Embedding Direct Reduction of Beach Titanomagnetite and the Separation of Titanium and Iron by Magnetic Separation. ISIJ Int. 2015, 55, 2543–2549. [Google Scholar] [CrossRef]
- Nugraha, A.; Priyono, B.; Maksum, A.; Juna, H.; Soedarsono, J.W. The Effect of Sodium Sulfate (Na2SO4) and Sodium Carbonate (Na2CO3) Addition on the Reduction-Roasting Process of Titania Iron Sand. E3S Web Conf. 2018, 67, 2–7. [Google Scholar] [CrossRef]
- Sui, Y.L.; Guo, Y.F.; Travyanov, A.Y.; Jiang, T.; Chen, F.; Qiu, G.Z. Reduction Roasting–Magnetic Separation of Vanadium Tailings in Presence of Sodium Sulfate and Its Mechanisms. Rare Met. 2016, 35, 954–960. [Google Scholar] [CrossRef]
- Ju, Z.-J.; Wang, C.-Y.; Yin, F. Dissolution Kinetics of Vanadium from Black Shale by Activated Sulfuric Acid Leaching in Atmosphere Pressure. Int. J. Miner. Process. 2015, 138, 1–5. [Google Scholar] [CrossRef]
- Huang, K.; Inoue, K.; Harada, H.; Kawakita, H.; Ohto, K. Leaching of Heavy Metals by Citric Acid from Fly Ash Generated in Municipal Waste Incineration Plants. J. Mater. Cycles Waste Manag. 2011, 13, 118–126. [Google Scholar] [CrossRef]
- Pan, B.; Jin, W.; Liu, B.; Zheng, S.; Wang, S.; Du, H.; Zhang, Y. Cleaner Production of Vanadium Oxides by Cation-Exchange Membrane-Assisted Electrolysis of Sodium Vanadate Solution. Hydrometallurgy 2017, 169, 440–446. [Google Scholar] [CrossRef]
- Wen, J.; Jiang, T.; Xu, Y.; Cao, J.; Xue, X. Efficient Extraction and Separation of Vanadium and Chromium in High Chromium Vanadium Slag by Sodium Salt Roasting-(NH4)2SO4 Leaching. J. Ind. Eng. Chem. 2019, 71, 327–335. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, W.; Zhang, Y.; Song, S.; Bao, S. In-Situ Investigation on Mineral Phase Transition during Roasting of Vanadium-Bearing Stone Coal. Adv. Powder Technol. 2017, 28, 1103–1107. [Google Scholar] [CrossRef]
- Jung, M.; Mishra, B. Vanadium Recovery from Oil Fly Ash by Carbon Removal and Roast-Leach Process. JOM 2018, 70, 168–172. [Google Scholar] [CrossRef]
- Yuan, J.; Cao, Y.; Fan, G.; Du, H.; Dreisinger, D.; Han, G.; Li, M. Study on the Mechanisms for Vanadium Phases’ Transformation of Vanadium Slag Non-Salt Roasting Process. In Rare Metal Technology 2020; Azimi, G., Forsberg, K., Ouchi, T., Kim, H., Alam, S., Baba, A.A., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 235–242. ISBN 978-3-030-36757-2. [Google Scholar]
- Ibrahim, A.H.; Lyu, X.; Atia, B.M.; Gado, M.A.; ElDeeb, A.B. Cost-Effective and High Purity Valuable Metals Extraction from Water Leaching Solid Residues Obtained as a By-Product from Processing the Egyptian Boiler Ash. Minerals 2022, 12, 1084. [Google Scholar] [CrossRef]
- Li, X.; Xie, B.; Wang, G.; Li, X. Oxidation Process of Low-Grade Vanadium Slag in Presence of Na2CO3. Trans. Nonferrous Met. Soc. China 2011, 21, 1860–1867. [Google Scholar] [CrossRef]
- Mahdavian, A.; Shafyei, A.; Alamdariand, E.K.; Haghshenas, D.F. Recovery of Vanadium from Esfahan Steel Company Steel Slag; Optimizing of Roasting and Leaching Parameters. Int. J. ISSI 2006, 3, 17–21. [Google Scholar]
- Li, H.Y.; Wang, C.; Lin, M.; Guo, Y.; Xie, B. Green One-Step Roasting Method for Efficient Extraction of Vanadium and Chromium from Vanadium-Chromium Slag. Powder Technol. 2020, 360, 503–508. [Google Scholar] [CrossRef]
- Wang, M.; Chen, B.; Huang, S.; Wang, X.; Liu, B.; Ge, Q.; Xie, S. A Novel Technology for Vanadium and Chromium Recovery from V-Cr-Bearing Reducing Slag. Hydrometallurgy 2017, 171, 116–122. [Google Scholar] [CrossRef]
- Liu, S.; Wang, L.; Chou, K. A Novel Process for Simultaneous Extraction of Iron, Vanadium, Manganese, Chromium, and Titanium from Vanadium Slag by Molten Salt Electrolysis. Ind. Eng. Chem. Res. 2016, 55, 12962–12969. [Google Scholar] [CrossRef]
- Liu, H.; Du, H.; Wang, D.W.; Wang, S.N.; Zheng, S.L.; Zhang, Y. Kinetics Analysis of Decomposition of Vanadium Slag by KOH Sub-Molten Salt Method. Trans. Nonferrous Met. Soc. China (Engl. Ed.) 2013, 23, 1489–1500. [Google Scholar] [CrossRef]
- Wang, Z.; Zheng, S.; Wang, S.; Qin, Y.; Du, H.; Zhang, Y. Electrochemical Decomposition of Vanadium Slag in Concentrated NaOH Solution. Hydrometallurgy 2015, 151, 51–55. [Google Scholar] [CrossRef]
- Hu, P.; Zhang, Y.; Liu, T.; Huang, J.; Yuan, Y.; Yang, Y. Separation and Recovery of Iron Impurity from a Vanadium-Bearing Stone Coal via an Oxalic Acid Leaching-Reduction Precipitation Process. Sep. Purif. Technol. 2017, 180, 99–106. [Google Scholar] [CrossRef]
- Mazurek, K. Recovery of Vanadium, Potassium and Iron from a Spent Vanadium Catalyst by Oxalic Acid Solution Leaching, Precipitation and Ion Exchange Processes. Hydrometallurgy 2013, 134–135, 26–31. [Google Scholar] [CrossRef]
- Mazurek, K.; Białowicz, K.; Trypuć, M. Recovery of Vanadium, Potassium and Iron from a Spent Catalyst Using Urea Solution. Hydrometallurgy 2010, 103, 19–24. [Google Scholar] [CrossRef]
- Sánchez-Camargo, A.P.; Mendiola, J.A.; Ibáñez, E.; Herrero, M. Supercritical Fluid Extraction. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2014; ISBN 978-0-12-409547-2. [Google Scholar]
- Yang, Q.W.; Xie, Z.M.; Peng, H.; Liu, Z.H.; Tao, C.Y. Leaching of Vanadium and Chromium from Converter Vanadium Slag Intensified with Surface Wettability. J. Cent. South Univ. 2018, 25, 1317–1325. [Google Scholar] [CrossRef]
- Olehile, O.D.; van Dyk, L. Gas Phase Extraction of Vanadium from Spent Vanadium Catalyst and from Tantalum Oxide. 2017. [Google Scholar]
- Aljerf, L. High-Efficiency Extraction of Bromocresol Purple Dye and Heavy Metals as Chromium from Industrial Effluent by Adsorption onto a Modified Surface of Zeolite: Kinetics and Equilibrium Study. J. Environ. Manag. 2018, 225, 120–132. [Google Scholar] [CrossRef] [PubMed]
- Ojha, K.; Pradhan, N.C.; Samanta, A.N. Zeolite from Fly Ash: Synthesis and Characterization. Bull. Mater. Sci. 2004, 27, 555–564. [Google Scholar] [CrossRef]
- Golbad, S.; Khoshnoud, P.; Abu-Zahra, N. Hydrothermal Synthesis of Hydroxy Sodalite from Fly Ash for the Removal of Lead Ions from Water. Int. J. Environ. Sci. Technol. 2017, 14, 135–142. [Google Scholar] [CrossRef]
- Kang, Y.; Swain, B.; Im, B.; Yoon, J.H.; Park, K.H.; Lee, C.G.; Kim, D.G. Synthesis of Zeolite Using Aluminum Dross and Waste LCD Glass Powder: A Waste to Waste Integration Valorization Process. Metals 2019, 9, 1240. [Google Scholar] [CrossRef]
- Liu, Y.; Yan, C.; Zhao, J.; Zhang, Z.; Wang, H.; Zhou, S.; Wu, L. Synthesis of Zeolite P1 from Fly Ash under Solvent-Free Conditions for Ammonium Removal from Water. J. Clean. Prod. 2018, 202, 11–22. [Google Scholar] [CrossRef]
- Mallapur, V.P.; Oubagaranadin, J.U.K. A Brief Review on the Synthesis of Zeolites from Hazardous Wastes. Trans. Indian Ceram. Soc. 2017, 76, 1–13. [Google Scholar] [CrossRef]
- Vigil de la Villa Mencía, R.; Goiti, E.; Ocejo, M.; Giménez, R.G. Synthesis of Zeolite Type Analcime from Industrial Wastes. Microporous Mesoporous Mater. 2020, 293, 109817. [Google Scholar] [CrossRef]
- Grela, A.; Łach, M.; Bajda, T.; Mikuła, J.; Hebda, M. Characterization of the Products Obtained from Alkaline Conversion of Tuff and Metakaolin. J. Therm. Anal. Calorim. 2018, 133, 217–226. [Google Scholar] [CrossRef]
- Li, X.Y.; Jiang, Y.; Liu, X.Q.; Shi, L.Y.; Zhang, D.Y.; Sun, L.B. Direct Synthesis of Zeolites from a Natural Clay, Attapulgite. ACS Sustain. Chem. Eng. 2017, 5, 6124–6130. [Google Scholar] [CrossRef]
- Pereira, P.M.; Ferreira, B.F.; Oliveira, N.P.; Nassar, E.J.; Ciuffi, K.J.; Vicente, M.A.; Trujillano, R.; Rives, V.; Gil, A.; Korili, S.; et al. Synthesis of Zeolite A from Metakaolin and Its Application in the Adsorption of Cationic Dyes. Appl. Sci. 2018, 8, 608. [Google Scholar] [CrossRef]
- Aytas, S.; Yurtlu, M.; Donat, R. Adsorption Characteristic of U(VI) Ion onto Thermally Activated Bentonite. J. Hazard. Mater. 2009, 172, 667–674. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Wang, X.; Chai, X.; Liu, J.; Deng, N. Adsorption of Uranium (VI) from Aqueous Solution on Calcined and Acid-Activated Kaolin. Appl. Clay Sci. 2010, 47, 448–451. [Google Scholar] [CrossRef]
- Khaleque, A.; Alam, M.M.; Hoque, M.; Mondal, S.; Haider, J.B.; Xu, B.; Johir, M.A.H.; Karmakar, A.K.; Zhou, J.L.; Ahmed, M.B.; et al. Zeolite Synthesis from Low-Cost Materials and Environmental Applications: A Review. Environ. Adv. 2020, 2, 100019. [Google Scholar] [CrossRef]
- Sugano, Y.; Sahara, R.; Murakami, T.; Narushima, T.; Iguchi, Y.; Ouchi, C. Hydrothermal Synthesis of Zeolite a Using Blast Furnace Slag. ISIJ Int. 2005, 45, 937–945. [Google Scholar] [CrossRef]
- Johnson, E.B.G.; Arshad, S.E. Hydrothermally Synthesized Zeolites Based on Kaolinite: A Review. Appl. Clay Sci. 2014, 97–98, 215–221. [Google Scholar] [CrossRef]
- Yao, G.; Lei, J.; Zhang, X.; Sun, Z.; Zheng, S. One-Step Hydrothermal Synthesis of Zeolite X Powder from Natural Low-Grade Diatomite. Materials 2018, 11, 906. [Google Scholar] [CrossRef]
- Wajima, T.; Yoshizuka, K.; Hirai, T.; Ikegami, Y. Synthesis of Zeolite X from Waste Sandstone Cake Using Alkali Fusion Method. Mater. Trans. 2008, 49, 612–618. [Google Scholar] [CrossRef]
- Ayele, L.; Pérez-Pariente, J.; Chebude, Y.; Díaz, I. Conventional versus Alkali Fusion Synthesis of Zeolite A from Low Grade Kaolin. Appl. Clay Sci. 2016, 132–133, 485–490. [Google Scholar] [CrossRef]
- Wajima, T. Synthesis of Zeolite from Blast Furnace Slag Using Alkali Fusion with Addition of EDTA. Adv. Mater. Res. 2014, 1044–1045, 124–127. [Google Scholar] [CrossRef]
- Tsujiguchi, M.; Kobashi, T.; Oki, M.; Utsumi, Y.; Kakimori, N.; Nakahira, A. Synthesis and Characterization of Zeolite A from Crushed Particles of Aluminoborosilicate Glass Used in LCD Panels. J. Asian Ceram. Soc. 2014, 2, 27–32. [Google Scholar] [CrossRef]
- Tsujiguchi, M.; Kobashi, T.; Utsumi, Y.; Kakimori, N.; Nakahira, A. Synthesis of Zeolite a from Aluminoborosilicate Glass Used in Glass Substrates of Liquid Crystal Display Panels and Evaluation of Its Cation Exchange Capacity. J. Am. Ceram. Soc. 2014, 97, 114–119. [Google Scholar] [CrossRef]
- Wu, Y.; Ren, X.; Wang, J. Facile Synthesis and Morphology Control of Zeolite MCM-22 via a Two-Step Sol-Gel Route with Tetraethyl Orthosilicate as Silica Source. Mater. Chem. Phys. 2009, 113, 773–779. [Google Scholar] [CrossRef]
- Le, T.; Wang, Q.; Pan, B.; Ravindra, A.V.; Ju, S.; Peng, J. Process Regulation of Microwave Intensified Synthesis of Y-Type Zeolite. Microporous Mesoporous Mater. 2019, 284, 476–485. [Google Scholar] [CrossRef]
- Ou, X.; Xu, S.; Warnett, J.M.; Holmes, S.M.; Zaheer, A.; Garforth, A.A.; Williams, M.A.; Jiao, Y.; Fan, X. Creating Hierarchies Promptly: Microwave-Accelerated Synthesis of ZSM-5 Zeolites on Macrocellular Silicon Carbide (SiC) Foams. Chem. Eng. J. 2017, 312, 1–9. [Google Scholar] [CrossRef]
- Meng, X.; Xiao, F.S. Green Routes for Synthesis of Zeolites. Chem. Rev. 2014, 114, 1521–1543. [Google Scholar] [CrossRef]
- Khalil, U.; Muraza, O. Microwave-Assisted Hydrothermal Synthesis of Mordenite Zeolite: Optimization of Synthesis Parameters. Microporous Mesoporous Mater. 2016, 232, 211–217. [Google Scholar] [CrossRef]
- Shoppert, A.A.; Loginova, I.V.; Chaikin, L.I.; Rogozhnikov, D.A. Alkali Fusion-Leaching Method For Comprehensive Processing Of Fly Ash. KnE Mater. Sci. 2017, 2, 89. [Google Scholar] [CrossRef]
- Yoldi, M.; Fuentes-Ordoñez, E.G.; Korili, S.A.; Gil, A. Zeolite Synthesis from Industrial Wastes. Microporous Mesoporous Mater. 2019, 287, 183–191. [Google Scholar] [CrossRef]
- Wang, M.; Yang, J.; Ma, H.; Shen, J.; Li, J.; Guo, F. Extraction of Aluminum Hydroxide from Coal Fly Ash by Pre-Desilication and Calcination Methods. Adv. Mater. Res. 2012, 396–398, 706–710. [Google Scholar] [CrossRef]
- Yang, J.; Sun, H.; Peng, T.; Zeng, L.; Chao, L. Separation of Alumina from Aluminum-Rich Coal Fly Ash Using NaOH Molten Salt Calcination and Hydrochemical Process. Clean Technol. Environ. Policy 2022, 24, 1507–1519. [Google Scholar] [CrossRef]
- Ghasemi, Z.; Sourinejad, I.; Kazemian, H.; Hadavifar, M.; Rohani, S.; Younesi, H. Kinetics and Thermodynamic Studies of Cr(VI) Adsorption Using Environmental Friendly Multifunctional Zeolites Synthesized from Coal Fly Ash under Mild Conditions. Chem. Eng. Commun. 2020, 207, 808–825. [Google Scholar] [CrossRef]
- Hammed, A.K.; Dewayanto, N.; Du, D.; Ab Rahim, M.H.; Nordin, M.R. Novel Modified ZSM-5 as an Efficient Adsorbent for Methylene Blue Removal. J. Environ. Chem. Eng. 2016, 4, 2607–2616. [Google Scholar] [CrossRef]
- Ji, Y.; Xu, F.; Wei, W.; Gao, H.; Zhang, K.; Zhang, G.; Xu, Y.; Zhang, P. Efficient and Fast Adsorption of Methylene Blue Dye onto a Nanosheet MFI Zeolite. J. Solid State Chem. 2021, 295, 121917. [Google Scholar] [CrossRef]
- Yuan, W.; Yuan, P.; Liu, D.; Yu, W.; Laipan, M.; Deng, L.; Chen, F. In Situ Hydrothermal Synthesis of a Novel Hierarchically Porous TS-1/Modified-Diatomite Composite for Methylene Blue (MB) Removal by the Synergistic Effect of Adsorption and Photocatalysis. J. Colloid Interface Sci. 2016, 462, 191–199. [Google Scholar] [CrossRef]
- Visa, M. Synthesis and Characterization of New Zeolite Materials Obtained from Fly Ash for Heavy Metals Removal in Advanced Wastewater Treatment. Powder Technol. 2016, 294, 338–347. [Google Scholar] [CrossRef]
- Chen, D.; Hu, X.; Shi, L.; Cui, Q.; Wang, H.; Yao, H. Synthesis and Characterization of Zeolite X from Lithium Slag. Appl. Clay Sci. 2012, 59–60, 148–151. [Google Scholar] [CrossRef]
- Belviso, C. State-of-the-Art Applications of Fly Ash from Coal and Biomass: A Focus on Zeolite Synthesis Processes and Issues. Prog. Energy Combust. Sci. 2018, 65, 109–135. [Google Scholar] [CrossRef]
- Anuwattana, R.; Khummongkol, P. Conventional Hydrothermal Synthesis of Na-A Zeolite from Cupola Slag and Aluminum Sludge. J. Hazard. Mater. 2009, 166, 227–232. [Google Scholar] [CrossRef]
- Kuwahara, Y.; Ohmichi, T.; Kamegawa, T.; Mori, K.; Yamashita, H. A Novel Synthetic Route to Hydroxyapatite-Zeolite Composite Material from Steel Slag: Investigation of Synthesis Mechanism and Evaluation of Physicochemical Properties. J. Mater. Chem. 2009, 19, 7263–7272. [Google Scholar] [CrossRef]
- Kuwahara, Y.; Ohmichi, T.; Kamegawa, T.; Mori, K.; Yamashita, H. A Novel Conversion Process for Waste Slag: Synthesis of a Hydrotalcite-like Compound and Zeolite from Blast Furnace Slag and Evaluation of Adsorption Capacities. J. Mater. Chem. 2010, 20, 5052–5062. [Google Scholar] [CrossRef]
- Ibrahim, A.H.; Lyu, X.; ElDeeb, A.B. Synthesized Zeolite Based on Egyptian Boiler Ash Residue and Kaolin for the Effective Removal of Heavy Metal Ions from Industrial Wastewater. Nanomaterials 2023, 13, 1091. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Cao, J.; Zhang, Y.; Sun, Q. Controllable Preparation of Cubic Zeolite A and Application of Langmuir Model in Carbon Dioxide Adsorption. Nanomaterials 2021, 11, 3375. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.X.; Zhou, L.M.; Chang, Z.B.; Zhang, C.; Chu, M. Synthesis of Na-X Zeolite from Longkou Oil Shale Ash by Alkaline Fusion Hydrothermal Method. Carbon Resour. Convers. 2018, 1, 245–250. [Google Scholar] [CrossRef]
- Mamedova, G.A. Hydrothermal Synthesis of Natrolite-Type Zeolite in the Natural Halloysite-Obsidian System. Glas. Phys. Chem. 2014, 40, 380–383. [Google Scholar] [CrossRef]
- Mamedova, G.A.; Kamseu, E.; Beleuk à Moungam, L.M.; Cannio, M.; Billong, N.; Chaysuwan, D.; Melo, U.C.; Leonelli, C. Synthesis of Zeolite with a Gmelinite Structure in the Dolomite-Halloysite-Obsidian System. J. Clean. Prod. 2016, 42, 518–521. [Google Scholar] [CrossRef]
- Kamseu, E.; Beleuk à Moungam, L.M.; Cannio, M.; Billong, N.; Chaysuwan, D.; Melo, U.C.; Leonelli, C. Substitution of Sodium Silicate with Rice Husk Ash-NaOH Solution in Metakaolin Based Geopolymer Cement Concerning Reduction in Global Warming. J. Clean. Prod. 2017, 142, 3050–3060. [Google Scholar] [CrossRef]
- Alam, M.M.; Hossain, M.A.; Hossain, M.D.; Johir, M.A.H.; Hossen, J.; Rahman, M.S.; Zhou, J.L.; Hasan, A.T.M.K.; Karmakar, A.K.; Ahmed, M.B. The Potentiality of Rice Husk-Derived Activated Carbon: From Synthesis to Application. Processes 2020, 8, 203. [Google Scholar] [CrossRef]
- Taylor, J.H.; Elmes, V.K.; Hurt, A.P.; Coleman, N.J. Synthesis of Feldspathoids and Zeolite K–F from Waste Amber Container Glass. Mater. Chem. Phys. 2020, 246, 122805. [Google Scholar] [CrossRef]
- Mun, S.P.; Ahn, B.J. Chemical Conversion of Paper Sludge Incineration Ash into Synthetic Zeolite. J. Ind. Eng. Chem. 2001, 7, 292–298. [Google Scholar]
- Wajima, T.; Ikegami, Y. Zeolite Synthesis from Paper Sludge Ash via Acid Leaching. Chem. Eng. Commun. 2008, 195, 305–315. [Google Scholar] [CrossRef]
- Tavasoli, M.; Kazemian, H.; Sadjadi, S.; Tamizifar, M. Synthesis and Characterization of Zeolite Nay Using Kaolin with Different Synthesis Methods. Clays Clay Miner. 2014, 62, 508–518. [Google Scholar] [CrossRef]
- Amoni, B.d.C.; de Freitas, A.D.L.; Loiola, A.R.; Soares, J.B.; Soares, S.d.A. A Method for NaA Zeolite Synthesis from Coal Fly Ash and Its Application in Warm Mix Asphalt. Road Mater. Pavement Des. 2019, 20, S558–S567. [Google Scholar] [CrossRef]
- Lin, G.; Zhuang, Q.; Cui, Q.; Wang, H.; Yao, H. Synthesis and Adsorption Property of Zeolite FAU/LTA from Lithium Slag with Utilization of Mother Liquid. Chin. J. Chem. Eng. 2015, 23, 1768–1773. [Google Scholar] [CrossRef]
- Zhang, C.; Li, S. Utilization of Iron Ore Tailing for the Synthesis of Zeolite A by Hydrothermal Method. J. Mater. Cycles Waste Manag. 2018, 20, 1605–1614. [Google Scholar] [CrossRef]
- Poudel, M.B.; Awasthi, G.P.; Kim, H.J. Novel Insight into the Adsorption of Cr(VI) and Pb(II) Ions by MOF Derived Co-Al Layered Double Hydroxide @hematite Nanorods on 3D Porous Carbon Nanofiber Network. Chem. Eng. J. 2021, 417, 129312. [Google Scholar] [CrossRef]
- Kandel, D.R.; Kim, H.J.; Lim, J.M.; Poudel, M.B.; Cho, M.; Kim, H.W.; Oh, B.T.; Nah, C.; Lee, S.H.; Dahal, B.; et al. Cold Plasma-Assisted Regeneration of Biochar for Dye Adsorption. Chemosphere 2022, 309, 136638. [Google Scholar] [CrossRef]
- WHO (World Health Organization). Guidelines for the Safe Use of Wastewater, Excreta and Greywater. In Wastewater Use in Agriculture; World Health Organization: Geneva, Switzerland, 2006; Volume 2. [Google Scholar]
- Shawabkeh, R.; Al-Harahsheh, A.; Hami, M.; Khlaifat, A. Conversion of Oil Shale Ash into Zeolite for Cadmium and Lead Removal from Wastewater. Fuel 2004, 83, 981–985. [Google Scholar] [CrossRef]
- Hamadi, A.; Nabih, K. Synthesis of Zeolites Materials Using Fly Ash and Oil Shale Ash and Their Applications in Removing Heavy Metals from Aqueous Solutions. J. Chem. 2018, 2018, 6207910. [Google Scholar] [CrossRef]
- Qiu, R.; Cheng, F.; Huang, H. Removal of Cd2+ from Aqueous Solution Using Hydrothermally Modified Circulating Fluidized Bed Fly Ash Resulting from Coal Gangue Power Plant. J. Clean. Prod. 2018, 172, 1918–1927. [Google Scholar] [CrossRef]
- Huang, X.; Zhao, H.; Hu, X.; Liu, F.; Wang, L.; Zhao, X.; Gao, P.; Ji, P. Optimization of Preparation Technology for Modified Coal Fly Ash and Its Adsorption Properties for Cd2+. J. Hazard. Mater. 2020, 392, 122461. [Google Scholar] [CrossRef] [PubMed]
- Jha, V.K.; Nagae, M.; Matsuda, M.; Miyake, M. Zeolite Formation from Coal Fly Ash and Heavy Metal Ion Removal Characteristics of Thus-Obtained Zeolite X in Multi-Metal Systems. J. Environ. Manag. 2009, 90, 2507–2514. [Google Scholar] [CrossRef] [PubMed]
- Bao, W.; Zou, H.; Gan, S.; Xu, X.; Ji, G.; Zheng, K. Adsorption of Heavy Metal Ions from Aqueous Solutions by Zeolite Based on Oil Shale Ash: Kinetic and Equilibrium Studies. Chem. Res. Chin. Univ. 2013, 29, 126–131. [Google Scholar] [CrossRef]
- Setthaya, N.; Pimraksa, K.; Damrongwiriyanupap, N.; Panias, D.; Mekrattanachai, P.; Chindawong, C. Modified Zeolite from Metakaolin and Fly Ash as Efficient Adsorbent for Cationic Methylene Blue Dye Removal. Chem. Eng. Commun. 2022, 210, 1178–1194. [Google Scholar] [CrossRef]
- Javadian, H.; Ghorbani, F.; Tayebi, H.A.; Asl, S.H. Study of the Adsorption of Cd (II) from Aqueous Solution Using Zeolite-Based Geopolymer, Synthesized from Coal Fly Ash; Kinetic, Isotherm and Thermodynamic Studies. Arab. J. Chem. 2015, 8, 837–849. [Google Scholar] [CrossRef]
- Fernandes Machado, N.R.C.; Miotto, D.M.M. Synthesis of Na-A and -X Zeolites from Oil Shale Ash. Fuel 2005, 84, 2289–2294. [Google Scholar] [CrossRef]
- Yu, J.; Yang, Y.; Chen, W.; Xu, D.; Guo, H.; Li, K.; Liu, H. The Synthesis and Application of Zeolitic Material from Fly Ash by One-Pot Method at Low Temperature. Green Energy Environ. 2016, 1, 166–171. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, T.; Xie, C.; Han, H.; Zhao, F.; Zhang, J.; Song, H.; Wang, B. Pure Zeolite Na-P and Na-X Prepared from Coal Fly Ash under the Effect of Steric Hindrance. J. Chem. Technol. Biotechnol. 2016, 91, 2018–2025. [Google Scholar] [CrossRef]
- Al-Zboon, K.; Al-Harahsheh, M.S.; Hani, F.B. Fly Ash-Based Geopolymer for Pb Removal from Aqueous Solution. J. Hazard. Mater. 2011, 188, 414–421. [Google Scholar] [CrossRef]
- Visa, M.; Isac, L.; Duta, A. Fly Ash Adsorbents for Multi-Cation Wastewater Treatment. Appl. Surf. Sci. 2012, 258, 6345–6352. [Google Scholar] [CrossRef]
- Shyam, R.; Puri, J.K.; Kaur, H.; Amutha, R.; Kapila, A. Single and Binary Adsorption of Heavy Metals on Fly Ash Samples from Aqueous Solution. J. Mol. Liq. 2013, 178, 31–36. [Google Scholar] [CrossRef]
- Adamczuk, A.; Kołodyńska, D. Equilibrium, Thermodynamic and Kinetic Studies on Removal of Chromium, Copper, Zinc and Arsenic from Aqueous Solutions onto Fly Ash Coated by Chitosan. Chem. Eng. J. 2015, 274, 200–212. [Google Scholar] [CrossRef]
- Mostafa Hosseini Asl, S.; Ghadi, A.; Sharifzadeh Baei, M.; Javadian, H.; Maghsudi, M.; Kazemian, H. Porous Catalysts Fabricated from Coal Fly Ash as Cost-Effective Alternatives for Industrial Applications: A Review. Fuel 2018, 217, 320–342. [Google Scholar] [CrossRef]
- Asl, S.M.H.; Javadian, H.; Khavarpour, M.; Belviso, C.; Taghavi, M.; Maghsudi, M. Porous Adsorbents Derived from Coal Fly Ash as Cost-Effective and Environmentally-Friendly Sources of Aluminosilicate for Sequestration of Aqueous and Gaseous Pollutants: A Review. J. Clean. Prod. 2019, 208, 1131–1147. [Google Scholar] [CrossRef]
- Wang, H.; Wang, X.; Xu, Z.; Zhang, M. Synthetic Zeolite from Coal Bottom Ash and Its Application in Cadmium and Nickel Removal from Acidic Wastewater. Desalin. Water Treat. 2016, 57, 26089–26100. [Google Scholar] [CrossRef]
- Visa, M.; Duta, A. TiO2/Fly Ash Novel Substrate for Simultaneous Removal of Heavy Metals and Surfactants. Chem. Eng. J. 2013, 223, 860–868. [Google Scholar] [CrossRef]
- Itskos, G.; Koutsianos, A.; Koukouzas, N.; Vasilatos, C. Zeolite Development from Fly Ash and Utilization in Lignite Mine-Water Treatment. Int. J. Miner. Process. 2015, 139, 43–50. [Google Scholar] [CrossRef]
- Hui, K.S.; Hui, K.N.; Lee, S.K. A Novel and Green Approach to Produce Nano- Porous Materials Zeolite A and MCM-41 from Coal Fly Ash and Their Applications in Environmental Protection. Int. J. Chem. Biol. Eng. 2009, 3, 165–175. [Google Scholar]
- Asl, S.H.; Ahmadi, M.; Ghiasvand, M.; Tardast, A.; Katal, R. Artificial Neural Network (ANN) Approach for Modeling of Cr(VI) Adsorption from Aqueous Solution by Zeolite Prepared from Raw Fly Ash (ZFA). J. Ind. Eng. Chem. 2013, 19, 1044–1055. [Google Scholar] [CrossRef]
- Asl, S.M.H.; Masomi, M.; Hosseini, M.; Javadian, H.; Ruiz, M.; Sastre, A.M. Synthesis of Hydrous Iron Oxide/Aluminum Hydroxide Composite Loaded on Coal Fly Ash as an Effective Mesoporous and Low-Cost Sorbent for Cr(VI) Sorption: Fuzzy Logic Modeling. Process Saf. Environ. Prot. 2017, 107, 153–167. [Google Scholar] [CrossRef]
- Zhou, Q.; Yan, C.; Luo, W. Polypyrrole Coated Secondary Fly Ash-Iron Composites: Novel Floatable Magnetic Adsorbents for the Removal of Chromium (VI) from Wastewater. Mater. Des. 2016, 92, 701–709. [Google Scholar] [CrossRef]
- Xiao, M.; Hu, X.; Gong, Y.; Gao, D.; Zhang, P.; Liu, Q.; Liu, Y.; Wang, M. Solid Transformation Synthesis of Zeolites from Fly Ash. RSC Adv. 2015, 5, 100743–100749. [Google Scholar] [CrossRef]
- Wang, W.X.; Qiao, Y.; Li, T.; Liu, S.; Zhou, J.; Yao, H.; Yang, H.; Xu, M. Improved Removal of Cr(VI) from Aqueous Solution Using Zeolite Synthesized from Coal Fly Ash via Mechano-Chemical Treatment. Asia-Pac. J. Chem. Eng. 2017, 12, 259–267. [Google Scholar] [CrossRef]
- Wen, Y.; Tang, Z.; Chen, Y.; Gu, Y. Adsorption of Cr(VI) from Aqueous Solutions Using Chitosan-Coated Fly Ash Composite as Biosorbent. Chem. Eng. J. 2011, 175, 110–116. [Google Scholar] [CrossRef]
- Pizarro, J.; Castillo, X.; Jara, S.; Ortiz, C.; Navarro, P.; Cid, H.; Rioseco, H.; Barros, D.; Belzile, N. Adsorption of Cu2+ on Coal Fly Ash Modified with Functionalized Mesoporous Silica. Fuel 2015, 156, 96–102. [Google Scholar] [CrossRef]
- Duan, P.; Yan, C.; Zhou, W.; Ren, D. Development of Fly Ash and Iron Ore Tailing Based Porous Geopolymer for Removal of Cu(II) from Wastewater. Ceram. Int. 2016, 42, 13507–13518. [Google Scholar] [CrossRef]
- Al-Harahsheh, M.S.; Al Zboon, K.; Al-Makhadmeh, L.; Hararah, M.; Mahasneh, M. Fly Ash Based Geopolymer for Heavy Metal Removal: A Case Study on Copper Removal. J. Environ. Chem. Eng. 2015, 3, 1669–1677. [Google Scholar] [CrossRef]
- Wu, X.W.; Ma, H.W.; Zhang, L.T.; Wang, F.J. Adsorption Properties and Mechanism of Mesoporous Adsorbents Prepared with Fly Ash for Removal of Cu(II) in Aqueous Solution. Appl. Surf. Sci. 2012, 261, 902–907. [Google Scholar] [CrossRef]
- Joshi, M.K.; Pant, H.R.; Liao, N.; Kim, J.H.; Kim, H.J.; Park, C.H.; Kim, C.S. In-Situ Deposition of Silver-Iron Oxide Nanoparticles on the Surface of Fly Ash for Water Purification. J. Colloid Interface Sci. 2015, 453, 159–168. [Google Scholar] [CrossRef]
- Cardoso, A.M.; Paprocki, A.; Ferret, L.S.; Azevedo, C.M.; Pires, M. Synthesis of Zeolite Na-P1 under Mild Conditions Using Brazilian Coal Fly Ash and Its Application in Wastewater Treatment. Fuel 2015, 139, 59–67. [Google Scholar] [CrossRef]
- Attari, M.; Bukhari, S.S.; Kazemian, H.; Rohani, S. A Low-Cost Adsorbent from Coal Fly Ash for Mercury Removal from Industrial Wastewater. J. Environ. Chem. Eng. 2017, 5, 391–399. [Google Scholar] [CrossRef]
- Tauanov, Z.; Shah, D.; Itskos, G.; Inglezakis, V. Optimized Production of Coal Fly Ash Derived Synthetic Zeolites for Mercury Removal from Wastewater. IOP Conf. Ser. Mater. Sci. Eng. 2017, 230, 012044. [Google Scholar] [CrossRef]
- Liu, M.; Hou, L.A.; Xi, B.; Zhao, Y.; Xia, X. Synthesis, Characterization, and Mercury Adsorption Properties of Hybrid Mesoporous Aluminosilicate Sieve Prepared with Fly Ash. Appl. Surf. Sci. 2013, 273, 706–716. [Google Scholar] [CrossRef] [PubMed]
- Belviso, C.; Cavalcante, F.; Di Gennaro, S.; Lettino, A.; Palma, A.; Ragone, P.; Fiore, S. Removal of Mn from Aqueous Solution Using Fly Ash and Its Hydrothermal Synthetic Zeolite. J. Environ. Manag. 2014, 137, 16–22. [Google Scholar] [CrossRef]
- He, K.; Chen, Y.; Tang, Z.; Hu, Y. Removal of Heavy Metal Ions from Aqueous Solution by Zeolite Synthesized from Fly Ash. Environ. Sci. Pollut. Res. 2016, 23, 2778–2788. [Google Scholar] [CrossRef]
- Koukouzas, N.; Vasilatos, C.; Itskos, G.; Mitsis, I.; Moutsatsou, A. Removal of Heavy Metals from Wastewater Using CFB-Coal Fly Ash Zeolitic Materials. J. Hazard. Mater. 2010, 173, 581–588. [Google Scholar] [CrossRef]
- Đolić Maja, K.M.; Đorđe, V.; Veličković, Z.R.-O.V.; Vladimir, P.; Marinković, A. The Removal of Zn2+, Pb2+, and As(V) Ions by Lime Activated Fly Ash and Valorization of the Exhausted Adsorbent. Waste Manag. 2018, 78, 366–378. [Google Scholar] [CrossRef]
- Visa, M.; Andronic, L.; Enesca, A. Behavior of the New Composites Obtained from Fly Ash and Titanium Dioxide in Removing of the Pollutants from Wastewater. Appl. Surf. Sci. 2016, 388, 359–369. [Google Scholar] [CrossRef]
- Cardoso, A.M.; Horn, M.B.; Ferret, L.S.; Azevedo, C.M.; Pires, M. Integrated Synthesis of Zeolites 4A and Na-P1 Using Coal Fly Ash for Application in the Formulation of Detergents and Swine Wastewater Treatment. J. Hazard. Mater. 2015, 287, 69–77. [Google Scholar] [CrossRef]
- He, H.; Xu, S.; Han, R.; Wang, Q. Nutrient Sequestration from Wastewater by Using Zeolite Na-P1 Synthesized from Coal Fly Ash. Environ. Technol. 2017, 38, 1022–1029. [Google Scholar] [CrossRef]
- Wang, Z.; Fan, Y.; Li, Y.; Qu, F.; Wu, D.; Kong, H. Synthesis of Zeolite/Hydrous Lanthanum Oxide Composite from Coal Fly Ash for Efficient Phosphate Removal from Lake Water. Microporous Mesoporous Mater. 2016, 222, 226–234. [Google Scholar] [CrossRef]
- Chen, X.Y.; Wendell, K.; Zhu, J.; Li, J.L.; Yu, X.; Zhang, Z. Synthesis of Nano-Zeolite from Coal Fly Ash and Its Potential for Nutrient Sequestration from Anaerobically Digested Swine Wastewater. Bioresour. Technol. 2012, 110, 79–85. [Google Scholar] [CrossRef] [PubMed]
Sources | Technology | Chemical Composition | Ref. | ||||
---|---|---|---|---|---|---|---|
V2O5/V2O3 | FeO/Fe2O3 | Cr2O3 | TiO2 | MnO/MnO2 | |||
Panzhihua Iron and Steel | BF-BOF | 8.5–14.3 | 32.9–42.1 | 2.1–4.3 | 11.1–12.9 | 5.9–9.1 | [36] |
Kapok Iron and Steel | BF-BOF | 14.2–16.0 | 31.9–32.3 | - | 12.0 | 7.6–8.7 | [37] |
Chengde Xinxin Vanadium and Titanium Chemical | BF-BOF | 8.5 | 51.1 | 3.5 | 10.5 | 5.2 | [38] |
Desheng Iron and Steel Group | BF-BOF | 15.2–20.8 | 35.3–64.5 | 7.7–10.6 | 6.39–8.5 | 5.5–7.6 | [39] |
Chengde Iron and Steel | BF-BOF | 10.2–13.4 | 36.7–49.1 | 1.7–4.2 | 6.8–11.1 | 5.2–7.2 | [40] |
Esfahan Steel | BF-BOF | 1.5–1.9 | 17.3–17.6 | - | 1.0–1.5 | 4.2–4.5 | [41] |
Sichuan Weiyuan Iron and Steel | BF-BOF | 14.3 | 24.8 | 4.4 | 7.4 | 8.5 | [42] |
Pan Steel | DR-EAF | 8.9 | 24.3–25.2 | 2.0–8.7 | 3.3–14.7 | 1.6–13.8 | [43] |
CITIC Jinzhou Ferroalloy | DR-EAF | 15.3 | 30.5 | 2.3 | 13.7 | 10.9 | [44] |
British Steel | BF-BOF | 0.82 | 32.0 | 0.2 | 0.3 | 4.5 | [45] |
References | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Element (ppm) | Ref. [53], PP | Ref. [53], DP | Ref. [21] | Ref. [54] | Ref. [55] | Ref. [56] | Ref. [57] | Ref. [58] | Ref. [35] | Ref. [59] | Ref. [25] |
Carbon (%) | 90.40 | 56.70 | 85.56 | 51.86 | - | 67.4 | - | 77.40 | - | 14.73 | 18.65 |
Sulfur (%) | 7.77 | 27.18 | - | - | - | 8.6 | - | 7.10 | - | 5.83 | 11.23 |
Vanadium | 9072 | 31,044 | 2958 | 34,487 | 50,000 | 38,000 | 7670 | 12,900 | 3540 | 85,000 | 49,100 |
Nickel | 2382 | 13,633 | 1762 | 11,852 | 15,400 | 16,000 | 18,000 | 6800 | 1055 | 52,500 | 24,200 |
Cadmium | 1.65 | 3.7 | 3.28 | 1.59 | - | - | - | - | 60.4 | - | 920 |
Arsenic | 2.54 | 1846 | 2.24 | 68.29 | - | - | - | - | 128.5 | - | 1.61 |
Cobalt | 2.88 | 12.33 | 3.28 | 247.79 | 2200 | - | - | - | 60.7 | - | 2140 |
Chromium | 36.79 | 113.09 | 4.06 | 107.60 | 8000 | - | - | - | 70.4 | - | - |
Selenium | 1.00 | 6.81 | 11.60 | 13.20 | - | - | - | - | 7.25 | - | - |
Lead | 17.09 | 13.94 | 11.00 | 116.10 | - | - | - | - | 27.85 | 7200 | 1900 |
Zinc | 21.92 | 118 | 130 | 592.10 | - | - | 1110 | 4000 | 65.5 | 38,000 | 7600 |
Copper | 10.44 | 50.40 | 170.4 | 120.30 | - | - | 17,000 | 57.12 | 290 | 1760 | |
Iron | 7210 | 8771 | - | - | 220,500 | 8000 | 59,800 | 1400 | 176.5 | 97,400 | 59,600 |
Magnesium | 6971 | 94,608 | - | - | 2000 | - | 3430 | 14,100 | 3615 | 5920 | 3.6 |
Manganese | 23.9 | 149.26 | - | - | - | - | - | 12.8 | 900 | 2.4 | |
Calcium | 582.3 | 4121.2 | - | - | - | - | - | 2300 | 3380 | 2100 | 2354 |
Sodium | 1395 | 7555 | - | - | - | 19,000 | - | - | 1310 | 2045 | 1524 |
Aluminum | 3541 | 1041.8 | - | - | - | 1040 | 2870 | 2500 | 642.4 | 7123 | 4252 |
Barium | 7.42 | 49.68 | - | - | - | - | - | - | 69.0 | - | 5214 |
Others (ppm) | - | - | Hg, 0.25 | - | Mo, 3500 | Si, 8000 | - | Si, 800; O, 93 200 | - | Si, 39,000 | Si, 36,800 |
Source | Mineralogical Phases | Ref. |
---|---|---|
Panzhihua Iron and Steel | (Fe,Mn)V2O4,(Fe,Mn)2SiO4,CaMn(SiO3)2 | [36] |
Kapok Iron and Steel | (Fe, Mn)O, (V,Ti)2O3, 2(Fe,Mn)O, SiO2, SiO2 | [37] |
Chengde Xinxin Vanadium and Titanium Chemical | (Mn0.84Fe0.16)(Mn0.16Fe1.34Cr0.5)O4, Fe2.1Ti0.74Mn0.02V0.01Ca0.01Si0.01Al0.05Mg0.06O4,Fe2SiO4, SiO2 | [38] |
Desheng Iron and Steel Group | (Mg,Fe)(V,Cr)2O4, Fe2SiO4, Ca(Fe,Mg)Si2O6,Fe2TiO4 | [39] |
Chengde Iron and Steel | (Mn,Fe)(V,Cr)2O4, Fe2SiO4, SiO2 | [40] |
Esfahan Steel | Ca(OH)2,Ca3SiO5, CaFeO2,Ca2V2O7 | [41] |
Sichuan Weiyuan Iron and Steel | (Mn,Fe)(V,Cr)2O4,Fe2SiO4, (Fe,Mg)Si2O6,Mg2TiO4 | [42] |
Pan Steel | (Mn,Fe)(V,Cr)2O4,Fe2TiO4, (Fe,Mn)2SiO4 | [43] |
CITIC Jinzhou Ferroalloy | (Mn,Fe)(V,Cr)2O4,CaFeAlSiO6,Fe2.5Ti0.5O4 | [44] |
British Steel | MgO, Al2O3, β-Ca2SiO4, Ca2(Al,Fe)2O5, FeO, Mg(OH)2, C | [45] |
Fiume Santo-Porto Torres | MgSO4.H2O, (VO2)2H2(SO4)3, VOSO4.nH2O CaSO4, NiSO4.nH2O | [64] |
El Kriymat Electric power station | (VO2)2, FeV2O4, Mg2SiO4, Ca2V2O7, (Ca(Fe,Al)2SiO6), NiSO4.H2O6 | [22,25] |
Ref. | Acid Leaching | Leaching Efficiency | ||||
---|---|---|---|---|---|---|
Lixiviant | Conditions | Temp. °C | Time | S/L Ratio | ||
[98] | H2SO4 | −250 µm, 60 g/l H2SO4, 15 bar of O2 pressure | 200 °C | 15 min | 1:1 |
|
[85] | H2SO4 | 1.35 M H2SO4, 300 rpm stirring | 40 °C | 90 min | 1:5 |
|
[87] | H2SO4 | −75 µm, 19.5% H2SO4 Conc. | 80 °C | 120 min | 1:9 |
|
[26] | H2SO4 | 1 M H2SO4, 300 rpm stirring | 100 °C | 30 min | 1:3 |
|
[88] | H2SO4 | −500 µm, 110 °C drying, 0.5 M H2SO4 | Room Temp. | 24 h | 1:4 |
|
[89] | H2SO4 + HCl + HNO3 | 1.0 M Conc., 300 rpm stirring | RT | 6 h | 1:5 |
|
[48] | H2SO4 | −75 µm, 5~9% H2SO4 Conc. | 20~80 °C | 30~60 min | 1:4 |
|
[90] | H2SO4 | 180 g/L H2SO4, 4% MnO2, 500 rpm stirring | 80 °C | 600 min | 1:10 |
|
[92] | Ultrasound, H2SO4 | −75 µm, 27.9% lemon juice, 10% H2O2 | 35 °C | 120 min | 0.01% |
|
[99] | H2SO4 | −100 µm, 0.5 N H2SO4, 400 rpm stirring | 30 °C | 120 min | 1:5 |
|
Ref. | Alkaline Leaching | Leaching Efficiency | ||||
---|---|---|---|---|---|---|
Lixiviant | Condition | Temp. °C | Time | S/L Ratio | ||
[99] | NaOH | −250 µm, 2 N NaOH, pH 14, 400 rpm agitation speed | 30 °C | 120 min | 1:5 |
|
[99] | NH4OH | −250 µm, 4 N NH4OH, pH 10 | 30 °C | 120 min | 1:5 |
|
NH4OH + (NH4)2SO4 + NaOH | 0.25 N NH4OH, 4 N (NH4)2SO4, pH 8.5, 2 M NaOH | 30 °C | 120 min | 1:5 |
| |
[100] | NaOH | 2 M H2SO4, 300 rpm stirring | 100 °C | 120 min | 1:3 |
|
[88] | NaOH | 2 M NaOH+ H2O, 200 rpm agitation speed | RT | 24 h | 1:4 |
|
Na2CO3 | 0.66 M Na2CO3, 200 rpm stirring | RT | 24 h | 1:4 |
| |
[101] | NaOH | −500 µm, 110 °C drying, 0.5 M H2SO4 | 100 °C | 240 min | 1:2.7 |
|
[102] | HN4Cl + NH4OH | 2 M HN4Cl + NH4OH | 50 °C | 300 min | 1:5 |
|
Na2CO3 | 2 M Na2CO3 | 70 °C | 240 min | 1:4 |
| |
[103] | NH4Cl + NH3 | 2 M NH4Cl+ 2M NH3 | 50 °C | 300 min | 1:19 |
|
Na2CO3 | 2 M Na2CO3, 200 rpm stirring | 70 °C | 300 min | 1:20 |
| |
[55] | NaOH + H2SO4 | 8 M NaOH 5 M H2SO4, | 100 °C 100 °C | 180 min | 1:5 1:4 |
|
Calcium Oxide (CaO) | ∆G (kJ/mol O2) | Eqs. |
---|---|---|
4/5FeV2O4 + 4/5CaO + O2→4/5CaV2O6 + 2/5Fe2O3 | ∆G(T) = −439.86 + 0.21T (kJ/mol O2) | (3) |
4/5FeV2O4 + 12/5CaO + O2→4/5Ca3V2O8 + 2/5Fe2O3 | ∆G(T) = −655.92 + 0.44T (kJ/mol O2) | (4) |
4/7FeCr2O4 + 8/7CaO + O2→8/7CaCrO4 + 2/7Fe2O3 | ∆G(T) = −255.77 + 0.15T (kJ/mol O2) | (5) |
2/3MgCr2O4 + 4/3CaO + O2→4/3CaCrO4 + 2/3MgO | ∆G(T) = −468.37 + 0.32T (kJ/mol O2) | (6) |
Acid-leaching of calcified roasted product | ||
CaV2O6 + 2H2SO4→(VO2)2SO4 + CaSO4 + 2H2O | (7) | |
Ca3V2O8 + 4H2SO4→(VO2)2SO4 + 3CaSO4 + 4H2O | (8) | |
CaCrO4 + H2SO4→H2CrO4 + CaSO4 | (9) | |
Alkali-leaching of calcified roasted product | ||
CaV2O6 + Na2CO3→ 2NaVO3 + CaCO3 | (10) | |
Ca3V2O8 + 3Na2CO3→2Na3VO4 + 3CaCO3 | (11) | |
Ca3V2O8 + 3(NH4)2CO3→2(NH4)3VO4 + 3CaCO3 | (12) | |
CaCrO4 + (NH4)2CO3→(NH4)2CrO4 + CaCO3 | (13) |
Ref. | Roasting | Leaching | Results | ||
---|---|---|---|---|---|
Salt | Conditions | Lixiviant | Conditions | ||
[143] | CaO | 1:1.1 V/Ca molar ratio, 900 °C for 120 min. | (NH4)2CO3 | 600 g/L of (NH4)2CO3 Conc., 20 (mL/g) L/S, 80 °C, 70 min. |
|
[144] | CaO | 900 °C for 180 min. | NH4HCO3 | 15% NH4HCO3, 75 °C, 180 min. |
|
[147] | CaO | 1:16 CaO/solid ratio, 850 °C for 120 min. | H2SO4 | 15% H2SO4 Conc., 10 (mL/g) L/S ratio, 55 °C, 70 min. |
|
[42] | CaO | 0.42 CaO/solid ratio, 850 °C for 150 min. | H2SO4 | pH 2.5, 4 L/S ratio, 65 °C, 60 min. |
|
[148] | CaO | 0.5 CaO/V2O3 molar ratio, 900 °C for 60 min. | H2SO4 | 20% H2SO4 Conc., 5 (mL/g) L/S ratio, 50 °C, 60 min. |
|
[149] | CaO | 1 CaO/V2O5 molar ratio, 900 °C for 120 min. | (NH4)2SO4 + H2SO4 | 250.0 g/L (NH4)2SO4 Conc., 3.75 M H2SO4 conc., 10 (mL/g) L/S ratio, 20 °C, 60 min. |
|
[139] | CaO | 0.5 CaO/V2O5 molar ratio, 900 °C for 60 min. | Na2CO3 | 160 (g/L) Na2CO3 Conc., 10 L/S, 80 °C, 60 min. |
|
[150] | CaCO3 | 1 Ca/V molar ratio, 850 °C for 120 min. | H2SO4 | 15% H2SO4 Conc., 10 (mL/g) L/S, 10 (mL/g), 50 °C, 60 min. |
|
[151] | (1st) CaO (2nd) Na2CO3 | 1st stage: 5 CaO/V2O3 molar ratio, 780 °C for 60 min 2nd stage: 3.3 Na2CO3/Cr2O3 at 950 °C | 1st stage: H2SO4 2nd stage: Water | 1st stage: 3.75 M H2SO4 Conc., 5 L/S ratio, 70 °C, 60 min. 2nd stage: 3 L/S ratio, 3 (mL/g), 25 °C, 20 min. | 1st stage:
|
Sodium Sulfate (Na2SO4) | ∆G (kJ/mol O2) | Eqs. |
---|---|---|
4/3FeV2O4 + 4/3Na2SO4 + O2→8/3NaVO3 + 2/3Fe2O3 + 4/3SO2 | ∆G(T) = −155.62 − 0.08T | (14) |
4FeV2O4 + 8Na2SO4+ O2→4Na4V2O7 + 2Fe2O3 + 8SO2 | ∆G(T) = 985.43 − 1.19T | (15) |
FeCr2O4 + 2Na2SO4 + O2→2Na2CrO4 + 1/2Fe2O3 + 2SO2 | ∆G(T) = 936.43 − 0.59T | (16) |
2MgCr2O4 + 4Na2SO4 + O2→4Na2CrO4 + 2MgO +4SO2 | ∆G(T) = 1195.64 − 0.78T | (17) |
Sodium chloride (NaCl) | ||
4/5FeV2O4 + 8/5NaCl + 4/5H2O + O2→8/5NaVO3 + 2/5Fe2O3 + 8/5HCl | ∆G(T) = −245.36 + 0.04T | (18) |
4/9FeV2O4 + 16/9NaCl + 4/9H2O + O2→4/9Na4V2O7 + 2/9Fe2O3 + 8/9HCl | ∆G(T) = −113.65 − 0.05T | (19) |
4/7FeCr2O4 +16/7NaCl + 8/7H2O + O2→8/7Na2CrO4 + 8/7Fe2O3 + 16/7HCl | ∆G(T) = 79.07 − 0.01T | (20) |
2/3MgCr2O4 + 8/3NaCl + 4/3H2O + O2→4/3Na2CrO4 + 4/3MgO + 8/3HCl | ∆G(T) = 148.14 − 0.12T | (21) |
4/7FeV2O4 + 8/7NaCl + O2→8/7NaVO3 + 2/7Fe2O3 + 4/7Cl2 | ∆G(T) = −186.26 + 0.09T | (22) |
4/9FeV2O4 + 16/9NaCl + O2→4/9Na4V2O7 + 2/9Fe2O3 + 8/9Cl2 | ∆G(T) = −80.26 + 0.06T | (23) |
4/7FeCr2O4 + 16/7NaCl + O2→8/7Na2CrO4 + 2/7Fe2O3 + 8/7Cl2 | ∆G(T) = 55.83 + 0.02T | (24) |
2/5MgCr2O4 + 8/5NaCl + O2→4/5Na2CrO4 + 2/5MgO + 4/5Cl2 | ∆G(T) = 36.74 + 0.005T | (25) |
Sodium carbonate (Na2CO3) | ||
4/5FeV2O4 + 4/5Na2CO3 + O2→8/5NaVO3 + 2/5Fe2O3 + 4/5CO2 | ∆G(T) = −345.3 + 0.04T | (26) |
4/5FeV2O4 + 8/5Na2CO3 + O2→4/5Na4V2O7 + 2/5Fe2O3 + 8/5CO2 | ∆G(T) = −306.70 + 0.07T | (27) |
4/7FeCr2O4 + 8/7Na2CO3 + O2→8/7Na2CrO4 + 2/7Fe2O3 + 8/7CO2 | ∆G(T) = −94.64 − 0.04T | (28) |
2/3MgCr2O4 + 4/3Na2CO3 + O2→4/3Na2CrO4 + 2/3MgO + 4/3CO2 | ∆G(T) = −92.39 + 0.14T | (29) |
Sodium hydroxide (NaOH) | ||
4/5FeV2O4 + 8/5NaOH + O2→8/5NaVO3+ 2/5Fe2O3 + 4/5H2O | ∆G(T) = −458.66 + 0.11T | (30) |
4/5FeV2O4 + 16/5NaOH + O2→4/5Na4V2O7 + 2/5Fe2O3 + 8/5H2O | ∆G(T) = −533.41 + 0.08T | (31) |
4FeCr2O4 + 8NaOH→4Na2CrO4 + 2Fe2O3 +4H2O | ∆G(T) = −273.10 − 0.02T | (32) |
2/3MgCr2O4 + 8/3NaOH + O2→4/3Na2CrO4 + 2/3MgO + 4/3H2O | ∆G(T) = −210.17 + 0.01T | (33) |
Water leaching of sodium roasted product | ||
+ Na+ | (34) | |
+ Na+ | (35) | |
Acid-leaching of sodium roasted product | ||
2NaVO3 + 2H2SO4→(VO2)2SO4 + Na2SO4 + 2H2O | (36) | |
Na4V2O7 + 3H2SO4→(VO2)2SO4 + 2Na2SO4 + 3H2O | (37) | |
Na2CrO4 + H2SO4→H2CrO4 + Na2SO4 | (38) | |
Alkaline-leaching of sodium roasted product | ||
Na2O.V2O5 + 4NaOH→2Na3VO4 + 2H2O | (39) | |
2NaVO3 + (NH4)2CO3→2NH4VO3 + Na2CO3 | (40) | |
Na4V2O7 + 2(NH4)2CO3→(NH4)4V2O7 +2Na2CO3 | (41) | |
Na2CrO4 + 2(NH4)2CO3→(NH4)4V2O7 + 2Na2CO3 | (42) |
Spots | Composition (wt., %) | |||||||
---|---|---|---|---|---|---|---|---|
V | Ni | Fe | O | Na | Mg | Al | Si | |
S1 | 18.57 | 2.93 | 5.88 | 28.07 | 25.39 | 15.12 | 3.03 | 1.01 |
S2 | 2.24 | 7.72 | 4.47 | 26.34 | 23.21 | 31.59 | 3.15 | 1.28 |
S3 | 1.2 | 10.39 | 17.58 | 20.56 | 18.05 | 22.88 | 5.61 | 3.73 |
S4 | 10.08 | 4.61 | 6.01 | 30.5 | 28.24 | 13.5 | 6.02 | 1.04 |
S5 | 3.94 | 3.14 | 25.2 | 24.6 | 19.83 | 11.42 | 9.34 | 2.53 |
Spots | Composition (wt., %) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
V | Ni | Fe | O | Na | Mg | Ca | Al | Si | ||
850 °C | S1 | 17.86 | 1.45 | 5.29 | 38.23 | 20.45 | 7.19 | 1.02 | 3.96 | 4.55 |
S2 | 12.62 | 1.74 | 4.83 | 35.01 | 25.11 | 7.05 | 0.98 | 7.58 | 5.08 | |
S3 | 10.06 | 1.41 | 3.27 | 37.54 | 27.04 | 6.89 | 1.08 | 7.26 | 5.45 | |
S4 | 14.08 | 1.97 | 2.46 | 33.93 | 25.06 | 8.87 | 1.5 | 5.97 | 6.16 | |
M1 | 0.92 | 22.11 | 38.77 | 27.87 | 1.15 | 5.45 | 1.01 | 1.63 | 1.09 | |
M2 | 0.81 | 4.28 | 7.24 | 35.3 | 15.42 | 3.95 | 1.92 | 14.57 | 16.51 | |
M3 | 1.07 | 19.95 | 36.81 | 25.76 | 2.08 | 9.03 | 1.02 | 1.45 | 2.83 | |
1000 °C | S1 | 19.35 | 16.76 | 23.21 | 25.61 | 1.03 | 9.5 | 2.02 | 1.51 | 1.01 |
S2 | 18.87 | 15.98 | 21.28 | 27.84 | 1.31 | 10.46 | 1.98 | 1.36 | 0.92 | |
S3 | 19.06 | 19.19 | 20.14 | 26.75 | 1.56 | 9.69 | 1.04 | 1.47 | 1.1 | |
M | - | - | - | 47.18 | 3.14 | 32.21 | 1.5 | - | 15.97 | |
N1 | - | - | - | 30.65 | 46.04 | - | 3.51 | 9.7 | 10.1 | |
N2 | - | - | - | 28.71 | 39.45 | - | 2.08 | 19.84 | 9.92 |
Ref. | Roasting | Leaching | Results | ||
---|---|---|---|---|---|
Sodium-Salt Roasting | Conditions | Lixiviant | Conditions | ||
[59,165] | NaCl | 1st stage Roasting at 850 °C for 150 min. 2nd stage Water leaching solid residue (WLSR) | Water H2SO4 | 10 (mL/g) L/S ratio at 25 °C for 90 min. −63 µm, 8% H2SO4 Conc., in 15 (mL/g) L/S ratio at 85 °C; for 240 min. | 1st stage:
|
[43] | Na2CO3 + O2 | 1st stage (V-roasting) 3.3 Na/V molar ratio at 800 °C for 120 min. 2nd stage (Cr-roasting) 2.86 Na/(V,Cr) molar ratio at 950 °C for 120 min. | Water | 1st stage: 3 (mL/g) L/S ratio at 25 °C; for 20 min. 2nd stage: 3 (mL/g) L/S ratio at 25 °C; for 20 min. |
1st stage:
|
[166] | Na2CO3 | 41/9 Na2CO3/solid ratio at 700 °C for 150 min. | Water | 5 (mL/g) L/S ratio at 90 °C for 30 min. |
|
[167] | Na2CO3 | 0.1 Na2CO3/solid ratio at 0.2 1000 °C for 45 min. | Na2CO3 + NaOH | 45 + 10 (g/L) of Na2CO3 + NaOH Conc., in 20 L/S at 80 °C for 60 min. |
|
[41] | Na2CO3 | 1.0 Na2CO3/solid ratio, at 2.0 1000 °C for 120 min. | H2SO4 | 3.0 M H2SO4 Conc., in 15 (mL/g) L/S ratio at 70 °C; for 150 min. |
|
[161] | Na2CO3 | 2.5 Na2CO3/solid ratio at 850 °C for 60 min. | (NH4)2SO4 | 30.0 (g/L) (NH4)2SO4 Conc., in 3 (mL/g) L/S ratio at 20 °C for 60 min. |
|
[153] | NaOH + O2 | 7.67 Na/V molar ratio at 700 °C for 120 min. | Water | 70 (mL/g) L/S ratio at 25 °C for 60 min. |
|
[168] | NaOH | 0.3 NaOH/solid ratio at 800 °C for 180 min. | Water | 10 (mL/g) L/S ratio at 30 °C for 60 min. |
|
[169] | Na2CO3 + NaCl | 3:2:5 Na2CO3/NaCl/solid ratio at 700 °C for 120 min. | Water | 4 (mL/g) L/S ratio at 95 °C for 180 min. |
|
[170] | NaOH | 0.3 NaOH/solid ratio at 850 °C for 120 min. | NaOH pressure leaching | 5 (mL/g) L/S ratio; 0–5 MPa O2 partial pressure at 210 °C for 120 min. |
|
Source | Method | Conditions | Results | Principle | Highlight | Ref. |
---|---|---|---|---|---|---|
Vanadium spent catalyst | Urea leaching | Time, 1 h; temperature, 20 °C; urea conc., 20%; pH = 14 | V = 80% |
|
| [175] |
Vanadium-bearing shale, vanadium-bearing coal | Chelating leaching | Time, 4 h; temperature, 95 °C; chelator conc., 6.0 M; additive (CaF2), 5% (wt.) | 87% V |
|
| [3,173] |
Vanadium-bearing slag | Surface wettability control | Leaching conditions: not specified Surfactant added: 0.25–1.0% (wt.) | 69% V (with surfactant), 51% V (without surfactant) |
|
| [177] |
Vanadium spent catalyst | Supercritical leaching | Fluid, acetylacetone; temperature, 190 °C; time, 7 h | V = 60% |
|
| [178] |
Ref. | Non-Salt Roasting | Leaching | Results | |
---|---|---|---|---|
Conditions | Lixiviant | Conditions | ||
[56] | 850 °C, −250 µm for 60 min. | H2SO4 | 2.0 M of H2SO4 Conc., at 100 °C; for 60 min. |
|
[36] | 850 °C for 60 min. | Na2CO3 | 160.0 (g/L) of Na2CO3 Conc., and 10 (mL/g) L/S ratio at 95 °C for 150 min |
|
[109] | 900 °C for 150 min. | (NH4)2CO3 | 25% of Na2CO3 Conc., and 4 L/S ratio at 50 °C for 150 min. |
|
[110] | 10 N2/O2, at 800 °C for 60 min. | H2SO4 | 2 M of H2SO4 Conc., at 90 °C; for 150 min. |
|
[133] | 900 °C for 150 min. | (NH4)2C2O4 | 13% of (NH4)2C2O4 Conc., and 4 L/S ratio at 70 °C for 60 min. |
|
Raw Material | Chemical Composition % | Advantages | Limitations | Synthesis Route | Zeolite Type | Ref. |
---|---|---|---|---|---|---|
BFS | CaO (40.1), SiO2 (34.58), A12O3 (14.78), MgO (5.29) | Availability, low cost, convenient preparation steps. |
| Hydrothermal | A | [217,218] |
Natural obsidian | 80.04% SiO2, 12.27% Al2O3, 0.16% TiO2, 0.84% FeO, 0.18% MgO, 1.10% CaO, 3.14% Na2O and 3.04% K2O | Higher silica content, availability. |
| Hydrothermal | Organic template-free EMT-type, natrolite, Za-gmelinite | [222,223] |
RHA (Residue is rich in amorphous silica) | 80% silica, Al2O3, iron oxide, CaO, MgO, sodium and potassium oxides, and others | Low cost, ultrafine size, highly porous, and chemically reactive. |
| Hydrothermal | ZSM5, T, Na-Y | [224,225] |
Waste glass materials | SiO2 (63%), Al2O3 (18%), B2O3 (10%), and alkaline earth oxides | Excellent mechanical and thermal properties, free of harmful elements. |
| Hydrothermal | A | [198,199,226] |
SASR | SiO2 26.57%, Al2O3 5.81%, Fe2O3 18.93%, TiO2 0.13%, MgO 0.04%, K2O 0.13%, Na2O 0.18%, P2O5 3.61%, LOI 17.88% | Availability, low cost, ultrafine size, convenient preparation steps. |
| Hydrothermal, Alkali fusion | Faujasite | [219] |
Paper sludge ash | SiO2 35.9%, Al2O3 22.8%, CaO 33.2%, Na2O 0.6%, MgO 4.5%, Fe2O3 0.9%, TiO2 2.2% | Amorphous and crystalline phases formed by incineration; low temperature required. |
| Hydrothermal | Na-P1 | [227,228] |
Waste stone cake | SiO2 38.9%, Al2O3 12.2%, CaO 6.9%, Na2O 1.4%, K2O 1.8%, MgO 2.7%, Fe2O3 3.1%, CO2 32.6%, SO3 0.1%, P2O5 0.1% | Specific pore sizes and large surface areas, high silica content. |
| Hydrothermal, Alkali fusion | zeolite-A, P, X and ZSM-5 | [195] |
Clay materials (kaolin, smectite) | SiO2 46.5%, Al2O3 41.18%, Fe2O3 0.19%, TiO2 0.13%, MgO 0.04%, K2O 0.13%, Na2O 0.18%, ZrO2 0.01%, SO3 0.15%, P2O5 0.03%, LOI 16.25% | Availability, convenient source for producing low silica zeolites like Y, and use of kaolin waste for zeolite synthesis reduces the cost of reagents. |
| Hydrothermal, Alkali fusion | NaA, mordenite, Faujasite, and, NaP | [229] |
Coal fly ash | SiO2 38.3%, Al2O3 34.8%, CaO 11.0%, Fe2O3 8.1%, Others 7.8% | The main constituents are silica and alumina, which offer the potential to convert it to zeolite, producing low-price zeolite with high purity; and no harmful effect. |
| Hydrothermal, microwave-assisted hydrothermal method, and fusion methods. | X, Na-P1, A, Y | [183,206,230] |
Lithium slag | SiO2 70.67%, Al2O3 27.24%, Fe2O3 0.52%, SO3 0.45%, CaO 0.29%, K2O 0.22%, MgO 0.16%, Na2O 0.13%, P2O5 0.12%, Others < 0.1% | High silicon aluminum ratio. |
| Hydrothermal | X, FAU/LTA | [214,231] |
Waste of iron mine tailings/iron ore tailing | SiO2 67.58%, Al2O3 8.70%, Fe2O3 7.42%, CaO 5.78%, MgO 4.37%, K2O 2.32%, Na2O 2.15%, Cl 0.69%, TiO2 0.33%, P2O5 0.26%, SO3 0.23%, MnO 0.10%, SrO 0.06% | Have economic and environmental aspects. |
| Hydrothermal | A, ZSM-5 | [232] |
Metals | Cd | Cr | Cu | Mn | Pb | Fe | Ni | Zn | V | |
---|---|---|---|---|---|---|---|---|---|---|
(mg.L−1) | 6.127 | 7.016 | 10.294 | 8.152 | 11.493 | 8.219 | 0.002 | 17.051 | 0.01 | |
MLDWHO | 0.01 | 0.01 | 1 | 0.1 | 0.01 | 1.5 | 0.1 | 1 | 0.002 | |
Number of Cycles | 1 | U. D | U. D | U. D | 2.1 | U. D | 3.1 | U. D | U. D | U. D |
2 | U. D | U. D | U. D | 0.6 | U. D | 1.1 | U. D | U. D | U. D | |
3 | U. D | U. D | U. D | 0.05 | U. D | U. D | U. D | U. D | U. D | |
4 | U. D | U. D | U. D | U. D | U. D | U. D | U. D | U. D | U. D | |
5 | 0.08 | 0.05 | 1.3 | 2.12 | 0.51 | 2.5 | 0.054 | 1.66 | 0.027 | |
6 | 0.45 | 2.01 | 1.7 | 7.12 | 1.07 | 4.5 | 0.098 | 3.87 | 0.089 |
Heavy Metals and Nutrients | Adsorbent | Removal Efficiency | Ref. |
---|---|---|---|
Cd2+ | ZFA-600 Zeolite X TiO2/FA) FA-Z MG-Z and MT-Z | 84% 100% 80% 60% ~98% and 75% | [243] |
[253] | |||
[254] | |||
[248] | |||
[255] | |||
Co2+ | MCM-41 | ~90% | [256] |
Cr3+ | ~90% | ||
Cr6+ | ZFA | >80% | [257] |
CFA-FeOOH | 84.9% | [258] | |
MSFA/PPy | [259] | ||
ZFA-Na-A | [260] | ||
Zeolite X | [261] | ||
Chitosan/CFA | [262] | ||
Cu2+ | FA-MS | 98% | [263] |
FA-IOT-Geo | 98.3% | [264] | |
CFA-Geo | 93.9% | [265] | |
MPF | [266] | ||
TiO2/FA | 90% | [254] | |
MG-Z and MT-Z | 100% | [255] | |
Ag-Fe3O4/FA | [267] | ||
Fe3+ | Zeolite NaeP1 | 100% | [268] |
Hg2+ | Zeolite LTA ZFA HMAS zeolite | 94% 91.27% ~95% | [269] |
[270] | |||
[271] | |||
Mn2+ | CFA Zeolite | 100% | [272] |
Zeolite | 100% | [273] | |
Ni2+ | Zeolite | [245] | |
FA-Na-P/TEA FA-Na-X FA-Na-P/Na-Br FA-Na-P | 96.2% 95.5% 95% 92.5% | [246] | |
Zeolite X | 95% | [253] | |
MG-Z and MT-Z | ~50% and 52% | [255] | |
PB/FA—SA-FA | 100% | [274] | |
Pb2+ | ZCFA Geopolymer FA-Z 1:10 FA MG-Z and MT-Z PB/FA—SA-FA | 98.1% | [181] |
90.66% | [247] | ||
100% | [248] | ||
>90% | [249] | ||
100% | [255] | ||
100% | [274] | ||
Zn2+ | FA-Z | 70% | [248] |
FAICS | [250] | ||
FA | [275] | ||
FA | [276] | ||
NH4+ | PB/FA—SA-FA | 100% | [274] |
Zeolite NaeP1 | ~61% | [277] | |
Z-P1 | 65.2% | [278] | |
PO43+ | ZHLO | 60% | [279] |
ZFA | 91% | [280] | |
Z-P1 | 92.3% | [278] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
H. Ibrahim, A.; Lyu, X.; E. Sharafeldin, H.; ElDeeb, A.B. Eco-Friendly and Complex Processing of Vanadium-Bearing Waste for Effective Extraction of Valuable Metals and Other By-Products: A Critical Review. Recycling 2025, 10, 6. https://doi.org/10.3390/recycling10010006
H. Ibrahim A, Lyu X, E. Sharafeldin H, ElDeeb AB. Eco-Friendly and Complex Processing of Vanadium-Bearing Waste for Effective Extraction of Valuable Metals and Other By-Products: A Critical Review. Recycling. 2025; 10(1):6. https://doi.org/10.3390/recycling10010006
Chicago/Turabian StyleH. Ibrahim, Ahmed, Xianjun Lyu, Hani E. Sharafeldin, and Amr B. ElDeeb. 2025. "Eco-Friendly and Complex Processing of Vanadium-Bearing Waste for Effective Extraction of Valuable Metals and Other By-Products: A Critical Review" Recycling 10, no. 1: 6. https://doi.org/10.3390/recycling10010006
APA StyleH. Ibrahim, A., Lyu, X., E. Sharafeldin, H., & ElDeeb, A. B. (2025). Eco-Friendly and Complex Processing of Vanadium-Bearing Waste for Effective Extraction of Valuable Metals and Other By-Products: A Critical Review. Recycling, 10(1), 6. https://doi.org/10.3390/recycling10010006