Mechanical Property Assessment of Interlocking Plastic Pavers Manufactured from Electronic Industry Waste in Brazil
Abstract
:1. Introduction
1.1. Generation of Electronic Waste in the World and Opportunities for the Circular Economy
1.2. Generation of Electronic Waste in Brazil and Motivation to Manufacture WEEE Interlocking Plastic Pavers
2. Materials and Methods
2.1. Manufacture of Interlocking Block
- Classification: Materials containing appropriate and preferred waste for recycling are organized;
- Separation: The main raw material polymers (PS and ABS) are separated from other materials of the equipment, which might serve as cargo;
- Shredding: The separated materials go through the shredding process and are stored in specific quantities for agglutination;
- Agglutination: a compaction technique and agglomeration of previously ground particles with pseudo-plasticization [30] at temperatures between 115 °C and 140 °C. In this process, 70% PS or ABS and 30% load are used (which may be sawdust, fabric, other plastic waste, or even small metals aggregated in previously separated housings);
- Pressing: Put the agglutinated mass in a specific mold (in the form of an interlocking floor, block, or brick) and start pressing for approximately 1 min, solidifying at room temperature (which is between ~20 °C and 30 °C in Valparaíso/GO).
- Deburring: The mass is cleaned by trimming the burrs generated by the material purged in the compression.
2.2. Specimens
- EN ISO 604: 2002-Plastics—Determination of compression properties:
- ASTM D695-02a-Standard Test Method for compression Properties of Rigid Plastics;
- ISO 2039-2: 1987 Plastics—Determination of hardness—Part 2: Rockwell hardness
- ASTM D785-08: 2015-Standard Test Method for Rockwell Hardness of Plastics and Electrical Insulating Materials
2.3. Mechanical Assessments
2.3.1. Evaluation of Resistance to a Compression Load
- “a”: Test at room temperature (which was about 24 °C);
- “b”: Saturation test (24 h of immersion);
- “c”: Hot test (70 °C);
- “d”: Freezing test (0 °C).
Uncertainty Calculation
2.3.2. Surface Hardness Assessment
2.3.3. Evaluation of Average Water Absorption
2.3.4. Evaluation of Resistance to Micro-Abrasive Wear
2.3.5. Study of Surface Topography and Phase Contrast with SPM
3. Results and Discussions
3.1. Resistance to Compression Load
3.2. Surface Hardness
3.3. Average Water Absorption
3.4. Average Density
3.5. Resistance to Micro-Abrasive Wear
- K with load 1 N = (0.0010 ± 0.0002) m3/Nm.
- K with load 3 N = (0.0002 ± 0.0002) m3/Nm.
- K with load 1 N: 0.48 mm
- K with load 3 N: 0.35 mm
3.6. Surface Topographic Analysis and Phase Contrast with SPM—Scanning Probe Microscopy
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, Use, and Fate of All Plastics Ever Made. Sci. Adv. (Calif.) 2017, 3, e1700782. Available online: http://advances.sciencemag.org/content/3/7/e1700782 (accessed on 5 February 2019). [CrossRef] [PubMed] [Green Version]
- Chowdhury, A.; Patel, J. E-Waste Management and its Consequences: A Literature Review. Prestig. E-J. Manag. Res. 2017, 4, 52–63. [Google Scholar]
- Yadav, V.; Sherly, M.A.; Ranjan, P.; Tinoco, R.O.; Boldrin, A.; Damgaard, A.; Laurent, A. Framework for Quantifying Environmental Losses of Plastics from Landfills. Resour. Conserv. Recycl. 2020, 161, 104914. [Google Scholar] [CrossRef]
- Corrêa, H.L.; Figueiredo, M.A.G. Urban Mining: A Brief Review on Prospecting Technologies. Braz. J. Dev. 2020, 6, 29441–29452. [Google Scholar] [CrossRef]
- Khutale, Y.P.; Yadav, S.B.; Awati, R.V.; Awati, V.B. Electronic Waste Management. Int. J. Recent Trends Eng. Res. 2019, 5, 42–50. [Google Scholar] [CrossRef]
- Mao, S.; Gu, W.; Bai, J.; Dong, B.; Huang, Q.; Zhao, J.; Zhuang, X.; Zhang, C.; Yuan, W.; Wang, J. Migration of heavy metal in electronic waste plastics during simulated recycling on a laboratory scale. Chemosphere 2020, 245, 125645. [Google Scholar] [CrossRef]
- ISWA. The Global E-Waste Monitor 2020. Available online: http://www.iswa.org/home/news/news-detail/article/-21c8325490/109/ (accessed on 15 July 2020).
- Demets, R.; Roosen, M.; Vandermeersch, L.; Ragaert, K.; Walgraeve, C.; Meester, S. Development and Application of an Analytical Method to Quantify Odour Removal in Plastic Waste Recycling Processes. Resour. Conserv. Recycl. 2020, 161, 104907. [Google Scholar] [CrossRef]
- Boldoczki, S.; Thorenz, A.; Tuma, A. The Environmental Impacts of Preparation for reuse: A Case Study of Weee Reuse in Germany. J. Clean. Prod. 2020, 252, 119736. [Google Scholar] [CrossRef]
- O’reilly, P.G. Regulation, Product Durability, and Market Process in Recycling Electronic Waste. Ph.D. Thesis, Mineral And Energy Economics at the Colorado School of Mines, Faculty and the Board of Trustees of the Colorado School of Mines, Golden, CO, USA, 2019. Available online: http://mountainscholar.org/bitstream/handle/11124/174005/OReilly_mines_0052E_11872.pdf?sequence=1&isAllowed=y (accessed on 27 July 2020).
- Siringo, R.; Herdiansyah, H.; Kusumastuti, R.D. Underlying Factors behind the Low Participation Rate in Electronic Waste Recycling. Global J. Environ. Sci. Manag. 2020, 6, 203–214. Available online: http://www.gjesm.net/article_37686_ee1060947420a30acb5e857c61c2a433.pdf (accessed on 27 July 2020).
- Awasthi, A.K.; Cucchiella, F.; D’Adamo, I.; Li, J.; Rosa, P.; Terzi, S.; Wei, G.; Zeng, X. Modelling the Correlations of E-Waste Quantity with Economic Increase. Sci. Total Environ. 2018, 613–614, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Cucchiella, F.; D’Adamo, I.; Lenny Koh, S.C.; Rosa, P. Recycling of WEEEs: An economic assessment of present and future e-waste streams. Renew. Sustain. Energy Rev. 2015, 51, 263–272. [Google Scholar] [CrossRef] [Green Version]
- ABRIN. Brazilian Association of Recycling and Innovation-Annual Report 2017-Disposal Data, Management, Indicators and Collection. São Paulo: 65p. 2018. Available online: http://www.abrin.eco.br/ (accessed on 13 May 2019).
- Baldé, C.P.; Forti, V.; Gray, V.; Kuehr, R.; Stegmann, P.; The Global E-Waste Monitor. United Nations University (UNU), International Telecommunication Union (ITU) & International Solid Waste Association (ISWA), Bonn/Geneva/Vienna: 2017. Available online: http://collections.unu.edu/view/UNU:6341 (accessed on 13 May 2019).
- Santos, K.L. The Recycling of E-Waste in the Industrialised Global South: The Case of Sao Paulo Macrometropolis. Int. J. Urban Sustain. Dev. 2020, 1–14. [Google Scholar] [CrossRef]
- Souza, R.G.; Clímaco, J.C.N.; Sant’anna, A.P.; Rocha, T.B.; Valle, R.A.B.; Quelhas, O.L.G. Sustainability assessment and prioritisation of e-waste management options in Brazil. Waste Manag. 2016, 57, 46–56. [Google Scholar] [CrossRef] [Green Version]
- MMA–Ministry of the Environment. National Solid Waste Policy. Available online: http://www.mma.gov.br/cidades-sustentaveis/residuos-solidos/politica-nacional-de-residuos-solidos (accessed on 28 July 2020).
- Xavier, L.H.; Resíduos Eletroeletrônicos na Região Metropolitana do Recife (RMR): Guia Prático para um Ambiente Sustentável. 1ª edição. Recife: Editora Massangana. 2014. Available online: https://www.researchgate.net/publication/271587261_Residuos_Eletroeletronicos_na_Regiao_Metropolitana_do_Recife_Guia_pratico_para_um_ambiente_sustentavel (accessed on 13 May 2019).
- Hopewell, J.; Dvorak, R.; Kosior, E. Plastics recycling: Challenges and Opportunities. Philosophical Transactions of The Royal Society B: Biological Sciences. R. Soc. 2009, 364, 2115–2126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Oliveira Vieira, B.; Guarnieri, P.; Camara e Silva, L.; Alfinito, S. Prioritizing Barriers to Be Solved to the Implementation of Reverse Logistics of E-Waste in Brazil under a Multicriteria Decision Aid Approach. Sustainability 2020, 12, 4337. [Google Scholar] [CrossRef]
- MCTIC: Ministry of Science, Technology, Innovations and Communications. Computers for Inclusion. 2019. Available online: http://www.mctic.gov.br/mctic/opencms/indicadores/detalhe/O-Centro-de-Recondicionamento-de-Computadores-2.html (accessed on 10 March 2019).
- Manjunath, B.T.A. Partial Replacement of E-plastic Waste as Coarse-Aggregate in Concrete. Procedia Environ. Sci. 2016, 35, 731–739. [Google Scholar] [CrossRef]
- Hamsavathi, K.; Prakash, K.S.; Kavimani, V. Green High Strength Concrete Containing Recycled Cathode Ray Tube Panel Plastics (E-Waste) as Coarse Aggregate in Concrete Beams for Structural Applications. J. Build. Eng. 2020, 30, 101192. [Google Scholar] [CrossRef]
- Silva, A.P. Fabricação de Análise de Pavimentos Intertravados (PAVERS) Utilizando Resíduos de Borracha de Pneus Inservíveis e Resíduos de Construção Civil e Demolição (RCD) Como Agregado Miúdo; 29 f. TCC (University Graduate)-Curso de Engenharia Civil; Universidade do Vale do Paraíba: São José dos Campos, Brazil, 2016. [Google Scholar]
- Paschoalin Filho, J.A.; Pires, G.W.M.O.; Rezende, L.V.S.; Santana, J.C.C. Resistência a Compressão e Absorção de água de peças de piso Intertravado Manufaturadas com Resíduos de pet. HOLOS 2019, 1, 1–21. [Google Scholar] [CrossRef]
- Jain, N.; Garg, M.; Minocha, A.K. Green Concrete from Sustainable Recycled Coarse Aggregates: Mechanical and Durability Properties. J. Waste Manag. 2015, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Silva, F.L.; Moreira, G.F.; Coelho, H.C.S.; Pires, K.S.; Kruger, F.L.; Araujo, F.G.S. Caracterização Quantitativa Eletrônica de Blocos Intertravados com Rejeito de Minério de Ferro. XXVIII Encontro Nacional de Tratamento de Minérios e Metalurgia Extrativa. Belo Horizonte-MG. 2019. Available online: https://www.artigos.entmme.org/?wpfb_file_sort=%3Cfile_size (accessed on 7 January 2020).
- Dias, M.R.Q. Separação de Plásticos de REEE Recorrendo à Separação Gravítica e Flutuação por Espumas. IST Técnico Lisboa. Engenharia Geológica e de Minas. Lisboa. 2013. Available online: http://fenix.tecnico.ulisboa.pt/downloadFile/395146045208/Disserta%C3%A7%C3%A3o_MaraDias_MEGM_54230.pdf (accessed on 28 May 2020).
- Wassermann, A.I. Processamento e Características Mecânicas de resíduos Plásticos Misturados. Universidade Federal do Rio Grande do Sul–Departamento de Engenharia Química. Porto Alegre. 2006. Available online: http://lume.ufrgs.br/bitstream/handle/10183/17360/000714892.pdf;jsessionid=4BE30884E5DF1BECC0AC870E76A497E4?sequence=1 (accessed on 31 June 2019).
- Callister, W.D.J.; Rethwisch, D.G. Materials Science and Engineering: An Introduction, 8th ed.; John Wiley and Sons: Hoboken, NJ, USA, 2009; Available online: https://www.amazon.com/Materials-Science-Engineering-Introduction-8th/dp/0470419970 (accessed on 20 January 2021).
- ISO-International Standardization Organization. 604:2002: Plastics-Determination of Compression Properties; ISO: Geneva, Switzerland, 2012. [Google Scholar]
- BIPM: Bureau International des Poids et Mesures. JCGM 100:2008 GUM, 1995 with Minor Corrections Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement; Paris, France, 2010; Available online: https://www.bipm.org/en/publications/guides/gum.html (accessed on 20 January 2021).
- ABNT-Brazilian Association of Technical Standards. ABNT NBR 9781/2013: Concrete Paving Units-Specification and Test Methods; ABNT/MB 3483: Rio de Janeiro, Spain, 2013. [Google Scholar]
- Kassman, A.; Jacobson, S.; Erickson, L.; Hedenqvist, P.; Olsson, M. A new test method for the intrinsic abrasion resistance of thin coatings. Surf. Coat. Technol. 1991, 50, 75–84. [Google Scholar] [CrossRef]
- Santos, L.C. Influência do Tratamento Térmico de Revenimento Sobre a Resistência ao Desgaste Abrasivo de Corpos Moedores Produzidos Com Ferro Fundido Branco de Alto Cromo; 59 f. TCC (University graduate)-Engenharia Metalúrgica; Universidade Federal de Ouro Preto: Ouro Preto, Spain, 2014. [Google Scholar]
- Leite, F.L.; Zeimath, E.C.; Herrmann, P.S.P. Análise de Minerais do Solo por Espectroscopia de Força Atômica. EmbrapaSão Carlos-Sp 2005, 70, 1–7. Available online: http://www.infoteca.cnptia.embrapa.br/bitstream/doc/28204/1/CT702005.pdf (accessed on 26 October 2018).
- Winslow, D.N. A Rockwell Hardness Test for Portland Cement Concrete. Purdue University-West Lafayette, Indiana. 1981. Available online: http://pdfs.semanticscholar.org/c4f4/a5d61aa8017b453ce85533c011ccbec8262b.pdf?_ga=2.251600705.615054613.1599741451-287955651.1599741451 (accessed on 10 September 2020).
- Herrmann, P.S.P.; da Silva, M.A.; Bernardes, F.R.; Job, A.E.; Colnago, L.A.; Frommer, J.E.; Mattoso, L.H. Microscopia de Varredura por Força: Uma Ferramenta Poderosa no Estudo de Polímeros. Polímeros: Ciência e Tecnologia, São Paulo. 1997, Volume 1, pp. 51–61. Available online: http://www.scielo.br/pdf/po/v7n4/8878.pdf (accessed on 13 May 2019).
- UN. The 2030 Agenda for Sustainable Development. 2015. Available online: http://sdgs.un.org/goals (accessed on 23 January 2020).
Compression strength at room temperature | (42 ± 5) MPa |
Saturated compression strength | (46 ± 14) MPa |
High temperature compression strength | (27 ± 12) MPa |
Frozen compression strength | (44 ± 12) MPa |
Young’s modulus at room temperature | (1.420 ± 0.013) GPa |
Saturated Young’s modulus | (0.950 ± 0.008) GPa |
Hot Young’s modulus | (1.110 ± 0.006) GPa |
Frozen Young’s modulus | (1.150 ± 0.004) GPa |
Standard | Requirements | |||||
---|---|---|---|---|---|---|
Light Traffic and Pedestrians | Heavy Traffic | Bike Paths and Parking | Special Vehicles | Acceptable Limits | ||
ABNT NBR 9781:2013 | Brazil | ≥35 MPa | ≥50 MPa | - | - | - |
ASTM C936:1996 | USA | - | - | - | - | ≥55 MPa |
CSA A231.2-95 | Canada | - | - | - | - | ≥50 MPa |
SANS 1058:2009 | South Africa | ≥25 MPa | ≥50 MPa | - | - | - |
AS/NZS 4456.4:2003 | Australia | ≥25 MPa | ≥35 MPa | ≥15 MPa | ≥60 MPa | - |
BSEM 1388:2003 | Europe | No individual results <3.6 MPa and breaking load <250 N/mm | ||||
Compression strength of the Interlocking Block made from WEEE | Room temperature (MPa) = 37–47 | |||||
Saturated (MPa) = 32–60 | ||||||
Hot (MPa) = 15–39 | ||||||
Frozen (MPa) = 32–56 |
Point Measurement (Left, Middle, Right) | Point Correction (Left, Middle, Right) | ||||
---|---|---|---|---|---|
45.6 | 52.7 | 49.1 | 46.9 | 54.0 | 50.4 |
48.6 | 52.6 | 42.7 | 49.9 | 53.9 | 44.0 |
50.5 | 52.2 | 46.8 | 51.8 | 53.5 | 48.1 |
51.9 | 47.9 | 50.5 | 53.2 | 49.2 | 51.8 |
51.7 | 52.6 | 50.9 | 53.0 | 53.9 | 52.2 |
Point-corrected average hardness (HRC) | 51.0 | 52.9 | 49.3 | ||
Average hardness (HRC) | 51.1 |
Standard | Requirements | |
---|---|---|
ABNT NBR 9781:2013 | Brazil | ≤6% |
ASTM C936:1996 | USA | Average: ≤5% |
BSEM 1388:2003 | Europe | <6% |
Interlocking Block Made from WEEE | A (%) = 0.081–0.089 |
Specimen | 3b | 4b | 5b | 7b | 8b |
---|---|---|---|---|---|
Measures (g) | 8.2142 | 9.6173 | 8.3386 | 9.5825 | 8.4978 |
8.2142 | 9.6173 | 8.3386 | 9.5825 | 8.4978 | |
8.2142 | 9.6173 | 8.3386 | 9.5825 | 8.4978 | |
8.2142 | 9.6173 | 8.3386 | 9.5825 | 8.4978 | |
8.2142 | 9.6173 | 8.3386 | 9.5825 | 8.4978 | |
Individual average (g) | 8.2142 | 9.6173 | 8.3386 | 9.5825 | 8.4978 |
Volume (cm3) | 7.99 | 8.18 | 8.11 | 8.83 | 8.01 |
Density (g/cm3) | 1.02806 | 1.17571 | 1.02819 | 1.08522 | 1.06090 |
Average density (g/cm3) | 1.075615 |
Standard | Requirement | |
---|---|---|
ABNT NBR 12042:1992 | Brazil | Group A: floor with high traffic demand ≤0.8 mm |
Group B: heavy pedestrian traffic between 0.8 mm and 1.6 mm | ||
Group C: light traffic between 1.6 mm and 2.4 mm | ||
ASTM C936:1996 | USA | Volume loss: ≤15 cm3/50 cm2 |
BSEM 1388:2003 | Europe | <23 mm |
Interlocking block made from WEEE | K with load 1 N (m3/Nm) = 0.0008 to 0.0012 | |
K with load 3 N (m3/Nm) = 0 to 0.0004 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gabriel, L.T.; Bianchi, R.F.; Bernardes, A.T. Mechanical Property Assessment of Interlocking Plastic Pavers Manufactured from Electronic Industry Waste in Brazil. Recycling 2021, 6, 15. https://doi.org/10.3390/recycling6010015
Gabriel LT, Bianchi RF, Bernardes AT. Mechanical Property Assessment of Interlocking Plastic Pavers Manufactured from Electronic Industry Waste in Brazil. Recycling. 2021; 6(1):15. https://doi.org/10.3390/recycling6010015
Chicago/Turabian StyleGabriel, Luiz Tadeu, Rodrigo Fernando Bianchi, and Américo T. Bernardes. 2021. "Mechanical Property Assessment of Interlocking Plastic Pavers Manufactured from Electronic Industry Waste in Brazil" Recycling 6, no. 1: 15. https://doi.org/10.3390/recycling6010015
APA StyleGabriel, L. T., Bianchi, R. F., & Bernardes, A. T. (2021). Mechanical Property Assessment of Interlocking Plastic Pavers Manufactured from Electronic Industry Waste in Brazil. Recycling, 6(1), 15. https://doi.org/10.3390/recycling6010015