The Effect of Recycled HDPE Plastic Additions on Concrete Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Cement
2.1.2. The Aggregates
2.1.3. Specimen Preparation of HDPE Lamellar Particles
2.2. Concrete Preparation and Testing
2.2.1. Job Mix Design
2.2.2. Mixing Process
3. The Results
3.1. Concrete Slump Test
3.2. Unit Weight of Concrete
3.3. Tensile and Compressive Strength
4. Discussion and Analysis
4.1. Relationship between HDPE Additions and Slump Value
4.2. Relationship between HDPE Additions and Unit Weight
4.3. The Effect of HDPE Additions to Tensile and Compressive Strength
5. Conclusions and Recommendations for Future Research
- (1).
- This study evaluated the use of 2.5%, 5%, 10%, and 20% HDPE lamellar particle additions at sizes of 10 × 10 mm, 0.5 × 20 mm, and 2.5 × 40 mm incorporated into three concrete types (B0, f’c10, and f’c25). The f’c10 MPa concrete performed best in response to the addition of lamellar particles, whereas 5% was the optimal HDPE content, and 5 × 20 mm was the optimal size.
- (2).
- All variants of HDPE lamellar particles described can be used with f’c10 MPa concrete. However, only 5 × 20 mm HDPE sheets should be used with B0 and f’c25 MPa concrete.
- (3).
- Future research should investigate f’c10 MPa to determine the effects of different percentage additions and material composition into concrete mixes. Additionally, further work is needed to identify whether similar effects apply to different plastic shapes. More testing could explore the valuation of physical concrete properties, e.g., water porosity.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
HDPE Addition | Compressive Test (MPa) | Tensile Test (MPa) | ||||
---|---|---|---|---|---|---|
Number of Specimens | Number of Specimens | |||||
1 | 2 | Average | 1 | 2 | Average | |
B0 | 6.40 | 6.30 | 6.35 | 0.60 | 0.68 | 0.64 |
B0-HDPE 2.5% | ||||||
10 × 10 mm | 6.30 | 6.70 | 6.50 | 0.70 | 0.70 | 0.70 |
5 × 20 mm | 6.80 | 7.00 | 6.90 | 0.80 | 0.70 | 0.75 |
2.5 × 40 mm | 6.80 | 6.60 | 6.70 | 0.70 | 0.65 | 0.68 |
B0-HDPE 5% | ||||||
10 × 10 mm | 6.40 | 6.60 | 6.50 | 0.70 | 0.80 | 0.75 |
5 × 20 mm | 7.40 | 7.40 | 7.40 | 0.80 | 0.80 | 0.80 |
2.5 × 40 mm | 7.15 | 7.25 | 7.20 | 0.70 | 0.74 | 0.72 |
B0-HDPE 10% | ||||||
10 × 10 mm | 5.90 | 6.00 | 5.95 | 0.70 | 0.65 | 0.68 |
5 × 20 mm | 6.90 | 6.90 | 6.90 | 0.70 | 0.70 | 0.70 |
2.5 × 40 mm | 6.40 | 6.42 | 6.41 | 0.64 | 0.60 | 0.62 |
B0-HDPE 20% | ||||||
10 × 10 mm | 5.20 | 5.20 | 5.20 | 0.69 | 0.69 | 0.69 |
5 × 20 mm | 6.20 | 6.20 | 6.20 | 0.65 | 0.66 | 0.66 |
2.5 × 40 mm | 5.50 | 5.45 | 5.48 | 0.60 | 0.60 | 0.60 |
f’c10 | 10.05 | 10.00 | 10.03 | 3.00 | 3.00 | 3.00 |
f’c10-HDPE 2.5% | ||||||
10 × 10 mm | 10.70 | 10.70 | 10.70 | 2.80 | 3.20 | 3.00 |
5 × 20 mm | 12.00 | 12.00 | 12.00 | 2.90 | 3.30 | 3.10 |
2.5 × 40 mm | 11.30 | 11.70 | 11.50 | 2.70 | 2.90 | 2.80 |
f’c10-HDPE 5% | ||||||
10 × 10 mm | 11.50 | 11.50 | 11.50 | 3.20 | 3.15 | 3.18 |
5 × 20 mm | 13.50 | 13.50 | 13.50 | 3.30 | 3.45 | 3.38 |
2.5 × 40 mm | 12.20 | 12.17 | 12.19 | 3.10 | 3.15 | 3.13 |
f’c10-HDPE 10% | ||||||
10 × 10 mm | 10.80 | 10.80 | 10.80 | 2.80 | 3.00 | 2.90 |
5 × 20 mm | 11.71 | 11.68 | 11.70 | 3.20 | 3.00 | 3.10 |
2.5 × 40 mm | 11.20 | 11.20 | 11.20 | 2.65 | 2.90 | 2.78 |
f’c10-HDPE 20% | ||||||
10 × 10 mm | 10.20 | 10.20 | 10.20 | 2.60 | 2.80 | 2.70 |
5 × 20 mm | 10.68 | 10.72 | 10.70 | 2.80 | 2.85 | 2.83 |
2.5 × 40 mm | 10.40 | 10.40 | 10.40 | 2.60 | 2.70 | 2.65 |
f’c25 | 25.00 | 25.10 | 25.05 | 4.00 | 4.10 | 4.05 |
f’c25-HDPE 2.5% | ||||||
10 × 10 mm | 25.40 | 25.00 | 25.20 | 4.10 | 4.00 | 4.05 |
5 × 20 mm | 25.50 | 26.30 | 25.90 | 4.15 | 4.10 | 4.13 |
2.5 × 40 mm | 25.30 | 25.70 | 25.50 | 3.80 | 3.98 | 3.89 |
f’c25-HDPE 5% | ||||||
10 × 10 mm | 25.00 | 25.20 | 25.10 | 4.20 | 4.15 | 4.18 |
5 × 20 mm | 26.60 | 27.00 | 26.80 | 4.30 | 4.35 | 4.33 |
2.5 × 40 mm | 26.10 | 25.50 | 25.80 | 4.20 | 4.10 | 4.15 |
f’c25-HDPE 10% | ||||||
10 × 10 mm | 24.40 | 24.00 | 24.20 | 3.80 | 3.90 | 3.85 |
5 × 20 mm | 25.60 | 25.40 | 25.50 | 4.00 | 3.90 | 3.95 |
2.5 × 40 mm | 24.40 | 25.00 | 24.70 | 3.90 | 3.70 | 3.80 |
f’c25-HDPE 20% | ||||||
10 × 10 mm | 22.60 | 22.00 | 22.30 | 3.70 | 3.60 | 3.65 |
5 × 20 mm | 24.50 | 23.60 | 24.05 | 3.90 | 3.72 | 3.81 |
2.5 × 40 mm | 22.90 | 23.10 | 23.00 | 3.50 | 3.52 | 3.51 |
References
- The Association of Plastic Recyclers (APR): Recognition Program Operating Procedures. Available online: https://plasticsrecycling.org/images/pdf/Recognition_Program/Procedure/Recognition_ProgramOperating_Procedures_June_2009.pdf (accessed on 27 May 2020).
- How Long It Takes for Some Everyday Items to Decompose. Available online: http://storage.neic.org/event/docs/1129/how_long_does_it_take_garbage_to_decompose.pdf (accessed on 27 May 2020).
- Verma, R.; Vinoda, K.; Papireddy, M.; Gowda, A. Toxic Pollutants from Plastic Waste—A Review. Procedia Environ. Sci. 2016, 35, 701–708. [Google Scholar] [CrossRef]
- Lebreton, L.C.M.; Van Der Zwet, J.; Damsteeg, J.-W.; Slat, B.; Andrady, A.; Reisser, J. River plastic emissions to the world’s oceans. Nat. Commun. 2017, 8, 15611. [Google Scholar] [CrossRef] [PubMed]
- Van Emmerik, T.; Schwarz, A. Plastic debris in rivers. Wiley Interdiscip. Rev. Water 2020, 7, e1398. [Google Scholar] [CrossRef] [Green Version]
- Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Plastic waste inputs from land into the ocean. Science 2015, 347, 768–771. [Google Scholar] [CrossRef] [PubMed]
- Mattsson, K.; Hansson, L.-A.; Cedervall, T. Nano-plastics in the aquatic environment. Environ. Sci. Process. Impacts 2015, 17, 1712–1721. [Google Scholar] [CrossRef] [PubMed]
- Baier, D.; Rausch, T.M.; Wagner, T.F. The Drivers of Sustainable Apparel and Sportswear Consumption: A Segmented Kano Perspective. Sustainability 2020, 12, 2788. [Google Scholar] [CrossRef] [Green Version]
- Poonyakan, A.; Rachakornkij, M.; Wecharatana, M.; Smittakorn, W. Potential Use of Plastic Wastes for Low Thermal Conductivity Concrete. Materials 2018, 11, 1938. [Google Scholar] [CrossRef] [Green Version]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [Green Version]
- Sistem Informasi Pengelolaan Sampah Nasional. Available online: http://sipsn.menlhk.go.id/?q=3a-komposisi-sampah (accessed on 4 August 2020).
- Godfrey, L. Waste Plastic, the Challenge Facing Developing Countries—Ban It, Change It, Collect It? Recycling 2019, 4, 3. [Google Scholar] [CrossRef] [Green Version]
- Nurdiana, J.; Franco-García, M.-L.; Hophmayer-Tokich, S. Incorporating circular sustainability principles in DKI. Jakarta: Lessons learned from Dutch business schools management. In Towards Zero Waste; Franco-García, M.L., Carpio-Aguilar, J., Bressers, H., Eds.; Greening of Industry Networks Studies; Springer: Cham, Switzerland, 2019; Volume 6, pp. 145–163. [Google Scholar]
- Napper, I.E.; Thompson, R.C. Plastic Debris in the Marine Environment: History and Future Challenges. Glob. Chall. 2020, 4, 1900081. [Google Scholar] [CrossRef]
- EMF (The Ellen Mac Arthur Foundation). Urban Biocycles. 2017. Available online: https://www.ellenmacarthurfoundation.org/publications/urban-biocyles (accessed on 20 June 2020).
- Jain, A.; Siddique, S.; Gupta, T.; Jain, S.; Sharma, R.K.; Chaudhary, S. Fresh, Strength, Durability and Microstructural Properties of Shredded Waste Plastic Concrete. Iran. J. Sci. Technol. Trans. Civ. Eng. 2019, 43, 455–465. [Google Scholar] [CrossRef]
- Kaufmann, J.; Frech, K.; Schuetz, P.; Münch, B. Rebound and orientation of fibers in wet sprayed concrete applications. Constr. Build. Mater. 2013, 49, 15–22. [Google Scholar] [CrossRef]
- Alani, A.M.; Beckett, D. Mechanical properties of a large scale synthetic fibre reinforced concrete ground slab. Constr. Build. Mater. 2013, 41, 335–344. [Google Scholar] [CrossRef]
- Babafemi, A.J.; Šavija, B.; Paul, S.C.; Anggraini, V. Engineering Properties of Concrete with Waste Recycled Plastic: A Review. Sustainability 2018, 10, 3875. [Google Scholar] [CrossRef] [Green Version]
- Islam, J.; Meherier, S.; Islam, A.R. Effects of waste PET as coarse aggregate on the fresh and harden properties of concrete. Constr. Build. Mater. 2016, 125, 946–951. [Google Scholar] [CrossRef]
- Batayneh, M.; Marie, I.; Asi, I. Use of selected waste materials in concrete mixes. Waste Manag. 2007, 27, 1870–1876. [Google Scholar] [CrossRef]
- Akinpelu, M.A.; Odeyemi, S.O.; Olafusi, O.S.; Muhammed, F.Z. Evaluation of splitting tensile and compressive strength relationship of self-compacting concrete. J. King Saud Univ.-Eng. Sci. 2019, 31, 19–25. [Google Scholar] [CrossRef]
- Lavanya, G.; Jegan, J. Evaluation of relationship between split tensile strength and compressive strength for geopolymer concrete of varying grades and molarity. Int. J. Appl. Eng. Res. 2015, 10, 35523–35529. [Google Scholar]
- Choi, Y.; Yuan, R.L. Experimental relationship between splitting tensile strength and compressive strength of GFRC and PFRC. Cem. Concr. Res. 2005, 35, 1587–1591. [Google Scholar] [CrossRef]
- Kim, S.B.; Yi, N.H.; Kim, H.Y.; Kim, J.-H.J.; Song, Y.-C. Material and structural performance evaluation of recycled PET fiber reinforced concrete. Cem. Concr. Compos. 2010, 32, 232–240. [Google Scholar] [CrossRef]
- Nikbin, I.M.; Rahimi, S.; Allahyari, H.; Fallah, F. Feasibility study of waste Poly Ethylene Terephthalate (PET) particles as aggregate replacement for acid erosion of sustainable structural normal and lightweight concrete. J. Clean. Prod. 2016, 126, 108–117. [Google Scholar] [CrossRef]
- Silva, A.L.P.; Prata, J.C.; Walker, T.R.; Campos, D.; Duarte, A.C.; Soares, A.M.; Barcelò, D.; Rocha-Santos, T. Rethinking and optimising plastic waste management under COVID-19 pandemic: Policy solutions based on redesign and reduction of single-use plastics and personal protective equipment. Sci. Total. Environ. 2020, 742, 140565. [Google Scholar] [CrossRef] [PubMed]
- Bahij, S.; Omary, S.; Feugeas, F.; Faqiri, A. Fresh and hardened properties of concrete containing different forms of plastic waste—A review. Waste Manag. 2020, 113, 157–175. [Google Scholar] [CrossRef] [PubMed]
- Fraternali, F.; Ciancia, V.; Chechile, R.; Rizzano, G.; Feo, L.; Incarnato, L. Experimental study of the thermo-mechanical properties of recycled PET fiber-reinforced concrete. Compos. Struct. 2011, 93, 2368–2374. [Google Scholar] [CrossRef]
- Merli, R.; Preziosi, M.; Acampora, A.; Lucchetti, M.C.; Petrucci, E. Recycled fibers in reinforced concrete: A systematic literature review. J. Clean. Prod. 2020, 248, 119207. [Google Scholar] [CrossRef]
- Pešić, N.; Živanović, S.; Garcia, R.; Papastergiou, P. Mechanical properties of concrete reinforced with recycled HDPE plastic fibres. Constr. Build. Mater. 2016, 115, 362–370. [Google Scholar] [CrossRef] [Green Version]
- Lopez, N.; Collado, E.; Diacos, L.A.; Morente, H.D. Evaluation of Pervious Concrete Utilizing Recycled HDPE as Partial Replacement of Coarse Aggregate with Acrylic as Additive. MATEC Web Conf. 2019, 258, 01018. [Google Scholar] [CrossRef]
- ASTM C 33-99ae1. Standard Specification for Concrete Aggregates; ASTM International: West Conshohocken, PA, USA, 2002. [Google Scholar]
- ASTM International. Standard Test Method for Bulk Density (“Unit Weight”) and Voids in Aggregate; ASTM C29/C29M-07: West Conshohocken, PA, USA, 2003. [Google Scholar]
- ASTM International. Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine; ASTM C131/C131M-20: West Conshohocken, PA, USA, 2005. [Google Scholar]
- American Concrete Institute. ACI Manual of Concrete Practice. In Part 1: Materials and General Properties of Concrete; American Concrete Institute: Farmington Hills, MI, USA, 2000. [Google Scholar]
- Setareh, M.; Darvas, R. Reinforced Concrete Technology. In Concrete Structures; Springer: Cham, Switzerland, 2017; pp. 1–35. [Google Scholar] [CrossRef]
- ASTM International. Standard Test Method for Slump of Hydraulic Cement Concrete; ASTMC143: West Conshohocken, PA, USA, 2000. [Google Scholar]
- ASTM International. Test Method for Compressive Strength of Cylindrical Concrete Specimens; ASTMC39: West Conshohocken, PA, USA, 2014. [Google Scholar]
- ASTM International. Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens; ASTMC496: West Conshohocken, PA, USA, 2009. [Google Scholar]
- Hasan, M.J.; Afroz, M.; Mahmud, H.M.I. An experimental investigation on the mechanical behavior of macro synthetic fibre reinforced concrete. Int. J. Civ. Environ. Eng. 2011, 11, 18–23. [Google Scholar]
- Xu, L.; Li, B.; Ding, X.; Chi, Y.; Li, C.; Huang, B.; Shi, Y. Experimental Investigation on Damage Behavior of Polypropylene Fiber Reinforced Concrete under Compression. Int. J. Concr. Struct. Mater. 2018, 12, 68. [Google Scholar] [CrossRef]
- Turner, R.P.; Kelly, C.A.; Fox, R.; Hopkins, B. Re-Formative Polymer Composites from Plastic Waste: Novel Infrastructural Product Application. Recycling 2018, 3, 54. [Google Scholar] [CrossRef] [Green Version]
- Kamaruddin, M.A.; Abdullah, M.M.; Zawawi, M.H.; Zainol, M.R.R. Potential use of Plastic Waste as Construction Materials: Recent Progress and Future Prospect. IOP Conf. Series Mater. Sci. Eng. 2017, 267, 012011. [Google Scholar] [CrossRef]
- Mazaheripour, H.; Ghanbarpour, S.; Mirmoradi, S.; Hosseinpour, I. The effect of polypropylene fibers on the properties of fresh and hardened lightweight self-compacting concrete. Constr. Build. Mater. 2011, 25, 351–358. [Google Scholar] [CrossRef]
- Yin, S.; Tuladhar, R.; Shi, F.; Combe, M.; Collister, T.; Sivakugan, N. Use of macro plastic fibres in concrete: A review. Constr. Build. Mater. 2015, 93, 180–188. [Google Scholar] [CrossRef]
- Aldahdooh, M.; Jamrah, A.; Alnuaimi, A.; Martini, M.; Ahmed, M. Influence of various plastics-waste aggregates on properties of normal concrete. J. Build. Eng. 2018, 17, 13–22. [Google Scholar] [CrossRef]
- Ismail, Z.Z.; Al-Hashmi, E.A. Use of waste plastic in concrete mixture as aggregate replacement. Waste Manag. 2008, 28, 2041–2047. [Google Scholar] [CrossRef] [PubMed]
- Albano, C.; Camacho, N.; Hernández, M.; Matheus, A.; Gutiérrez, A. Influence of content and particle size of waste pet bottles on concrete behavior at different w/c ratios. Waste Manag. 2009, 29, 2707–2716. [Google Scholar] [CrossRef] [PubMed]
- Almeshal, I.; Tayeh, B.A.; Alyousef, R.; Alabduljabbar, H.; Mohamed, A.M. Eco-friendly concrete containing recycled plastic as partial replacement for sand. J. Mater. Res. Technol. 2020, 9, 4631–4643. [Google Scholar] [CrossRef]
- Tasdemir, C.; Sengul, O.; Tasdemir, M.A. A comparative study on the thermal conductivities and mechanical properties of lightweight concretes. Energy Build. 2017, 151, 469–475. [Google Scholar] [CrossRef]
- Alqahtani, F.K.; Ghataora, G.; Khan, M.I.; Dirar, S. Novel lightweight concrete containing manufactured plastic aggregate. Constr. Build. Mater. 2017, 148, 386–397. [Google Scholar] [CrossRef]
- Mohammed, A.A.; Mohammed, I.I.; Mohammed, S.A. Some properties of concrete with plastic aggregate derived from shredded PVC sheets. Constr. Build. Mater. 2019, 201, 232–245. [Google Scholar] [CrossRef]
- Awad, H.K. Influence of Cooling Methods on the Behavior of Reactive Powder Concrete Exposed to Fire Flame Effect. Fibers 2020, 8, 19. [Google Scholar] [CrossRef] [Green Version]
- Neville, A.M. Properties of Concrete, 4th ed.; Longman Group: Essex, UK, 1995; p. 844. [Google Scholar]
Standard | Targeted Testing |
---|---|
ASTM C-127 | Specific gravity of coarse aggregate |
ASTM C33-99a | Adequate grading requirement and aggregate quality; sieve analysis |
ASTM C29/C29M-07 | Unit weight for fine and coarse aggregate |
ASTM C131/C131M-20 | Resistance to degradation by abrasion on small-size coarse aggregate |
ACI 211.1-91 | Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete |
ASTM C143 | Slump test |
ASTM C39 | Compressive strength |
ASTM C496 | Tensile strength |
Materials | Properties | Value | Allowable Range |
---|---|---|---|
Cement type 1 | Specific gravity | 3.18 g/cm3 | 3.1–3.3 g/cm3 |
Fine Aggregate | Sieve size | Figure 1a | Following ASTM C33-99a |
Unit weight | 2.54 g/cm3 | 2.5–2.7 g/cm3 | |
Coarse Aggregate | Sieve size | Figure 1b | Following ASTM C33-99a |
Unit weight | 2.55 g/cm3 | 2.5–2.7 g/cm3 | |
Resistance to abrasion | 23% | Maximum of 27% |
Description | B0 | f’c10 | f’c25 |
---|---|---|---|
Targeted average compressive strength of the concrete | 7 MPa | 10 MPa | 25 MPa |
Water to cement ratio | 0.95 | 0.63 | 0.52 |
Slump value | 120 ± 5 mm | 120 ± 5 mm | 120 ± 5 mm |
Amount of water | 180 kg/m3 | 190 kg/m3 | 215 kg/m3 |
Amount of cement | 190 kg/m3 | 295 kg/m3 | 413 kg/m3 |
Fine aggregate content | 969 kg/m3 | 828 kg/m3 | 687 kg/m3 |
Coarse aggregate content | 1010 kg/m3 | 1014 kg/m3 | 1220 kg/m3 |
HDPE Addition | Volume of Concrete (m3) | Cement (kg) | Fine Aggregate (kg) | Coarse Aggregate (kg) | Water (kg) | HDPE Lamellar (kg) | Number of Specimens | |
---|---|---|---|---|---|---|---|---|
Compressive Strength | Tensile Strength | |||||||
B0 | 0.021 | 4.03 | 20.54 | 21.41 | 3.82 | 0 | 2 | 2 |
B0-HDPE 2.5% | ||||||||
10 × 10 mm | 0.021 | 4.03 | 20.54 | 21.41 | 3.82 | 0.10 | 2 | 2 |
5 × 20 mm | 0.021 | 4.03 | 20.54 | 21.41 | 3.82 | 0.10 | 2 | 2 |
2.5 × 40 mm | 0.021 | 4.03 | 20.54 | 21.41 | 3.82 | 0.10 | 2 | 2 |
B0-HDPE 5% | ||||||||
10 × 10 mm | 0.021 | 4.03 | 20.54 | 21.41 | 3.82 | 0.20 | 2 | 2 |
5 × 20 mm | 0.021 | 4.03 | 20.54 | 21.41 | 3.82 | 0.20 | 2 | 2 |
2.5 × 40 mm | 0.021 | 4.03 | 20.54 | 21.41 | 3.82 | 0.20 | 2 | 2 |
B0-HDPE 10% | ||||||||
10 × 10 mm | 0.021 | 4.03 | 20.54 | 21.41 | 3.82 | 0.40 | 2 | 2 |
5 × 20 mm | 0.021 | 4.03 | 20.54 | 21.41 | 3.82 | 0.40 | 2 | 2 |
2.5 × 40 mm | 0.021 | 4.03 | 20.54 | 21.41 | 3.82 | 0.40 | 2 | 2 |
B0-HDPE 20% | ||||||||
10 × 10 mm | 0.021 | 4.03 | 20.54 | 21.41 | 3.82 | 0.81 | 2 | 2 |
5 × 20 mm | 0.021 | 4.03 | 20.54 | 21.41 | 3.82 | 0.81 | 2 | 2 |
2.5 × 40 mm | 0.021 | 4.03 | 20.54 | 21.41 | 3.82 | 0.81 | 2 | 2 |
f’c10 | 0.021 | 6.25 | 17.55 | 21.49 | 4.03 | 0 | 2 | 2 |
f’c10-HDPE 2.5% | ||||||||
10 × 10 mm | 0.021 | 6.25 | 17.55 | 21.49 | 4.03 | 0.16 | 2 | 2 |
5 × 20 mm | 0.021 | 6.25 | 17.55 | 21.49 | 4.03 | 0.16 | 2 | 2 |
2.5 × 40 mm | 0.021 | 6.25 | 17.55 | 21.49 | 4.03 | 0.16 | 2 | 2 |
f’c10-HDPE 5% | ||||||||
10 × 10 mm | 0.021 | 6.25 | 17.55 | 21.49 | 4.03 | 0.31 | 2 | 2 |
5 × 20 mm | 0.021 | 6.25 | 17.55 | 21.49 | 4.03 | 0.31 | 2 | 2 |
2.5 × 40 mm | 0.021 | 6.25 | 17.55 | 21.49 | 4.03 | 0.31 | 2 | 2 |
f’c10-HDPE 10% | ||||||||
10 × 10 mm | 0.021 | 6.25 | 17.55 | 21.49 | 4.03 | 0.63 | 2 | 2 |
5 × 20 mm | 0.021 | 6.25 | 17.55 | 21.49 | 4.03 | 0.63 | 2 | 2 |
2.5 × 40 mm | 0.021 | 6.25 | 17.55 | 21.49 | 4.03 | 0.63 | 2 | 2 |
f’c10-HDPE 20% | ||||||||
10 × 10 mm | 0.021 | 6.25 | 17.55 | 21.49 | 4.03 | 1.25 | 2 | 2 |
5 × 20 mm | 0.021 | 6.25 | 17.55 | 21.49 | 4.03 | 1.25 | 2 | 2 |
2.5 × 40 mm | 0.021 | 6.25 | 17.55 | 21.49 | 4.03 | 1.25 | 2 | 2 |
f’c25 | 0.021 | 8.75 | 14.56 | 25.09 | 4.56 | 0.00 | 2 | 2 |
f’c25-HDPE 2.5% | ||||||||
10 × 10 mm | 0.021 | 8.75 | 14.56 | 25.09 | 4.56 | 0.22 | 2 | 2 |
5 × 20 mm | 0.021 | 8.75 | 14.56 | 25.09 | 4.56 | 0.22 | 2 | 2 |
2.5 × 40 mm | 0.021 | 8.75 | 14.56 | 25.09 | 4.56 | 0.22 | 2 | 2 |
f’c25-HDPE 5% | ||||||||
10 × 10 mm | 0.021 | 8.75 | 14.56 | 25.09 | 4.56 | 0.44 | 2 | 2 |
5 × 20 mm | 0.021 | 8.75 | 14.56 | 25.09 | 4.56 | 0.44 | 2 | 2 |
2.5 × 40 mm | 0.021 | 8.75 | 14.56 | 25.09 | 4.56 | 0.44 | 2 | 2 |
f’c25-HDPE 10% | ||||||||
10 × 10 mm | 0.021 | 8.75 | 14.56 | 25.09 | 4.56 | 0.88 | 2 | 2 |
5 × 20 mm | 0.021 | 8.75 | 14.56 | 25.09 | 4.56 | 0.88 | 2 | 2 |
2.5 × 40 mm | 0.021 | 8.75 | 14.56 | 25.09 | 4.56 | 0.88 | 2 | 2 |
f’c25-HDPE 20% | ||||||||
10 × 10 mm | 0.021 | 8.75 | 14.56 | 25.09 | 4.56 | 1.75 | 2 | 2 |
5 × 20 mm | 0.021 | 8.75 | 14.56 | 25.09 | 4.56 | 1.75 | 2 | 2 |
2.5 × 40 mm | 0.021 | 8.75 | 14.56 | 25.09 | 4.56 | 1.75 | 2 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamrin; Nurdiana, J. The Effect of Recycled HDPE Plastic Additions on Concrete Performance. Recycling 2021, 6, 18. https://doi.org/10.3390/recycling6010018
Tamrin, Nurdiana J. The Effect of Recycled HDPE Plastic Additions on Concrete Performance. Recycling. 2021; 6(1):18. https://doi.org/10.3390/recycling6010018
Chicago/Turabian StyleTamrin, and Juli Nurdiana. 2021. "The Effect of Recycled HDPE Plastic Additions on Concrete Performance" Recycling 6, no. 1: 18. https://doi.org/10.3390/recycling6010018
APA StyleTamrin, & Nurdiana, J. (2021). The Effect of Recycled HDPE Plastic Additions on Concrete Performance. Recycling, 6(1), 18. https://doi.org/10.3390/recycling6010018