Functionalization of Crumb Rubber Surface for the Incorporation into Asphalt Layers of Reduced Stiffness: An Overview of Existing Treatment Approaches
Abstract
:1. Introduction
2. Rubber Tires and Their Use in Asphalt Pavements
2.1. History and Waste Management of Tires
2.2. Properties of the Recycled Rubbers
2.3. The Use of Recycled Rubber in the Road Construction Sector
2.3.1. Wet and Dry Processes in Asphalt Pavements Applications
2.3.2. Rubber–Binder Interaction
3. Surface Treatments and Their Effect on Rubber–Bitumen Interactions
3.1. Surface Modification of Polymers
3.1.1. Gamma Radiation
3.1.2. UV-Ozone Treatment
3.1.3. Microwaves Irradiation
3.1.4. Plasma Treatment
3.1.5. Advantages and Disadvantages of the Main Solution for an Application to Highly Rubberized Road Pavements
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ateeq, M.; Al-Shamma’a, A. Experimental Study on the Optimisation of Chemical Treatment to Reduce Waste Rubber Aggregates Absorption Properties. Constr. Build. Mater. 2016, 126, 274–285. [Google Scholar] [CrossRef] [Green Version]
- Kashani, A.; Ngo, T.D.; Hemachandra, P.; Hajimohammadi, A. Effects of Surface Treatments of Recycled Tyre Crumb on Cement-Rubber Bonding in Concrete Composite Foam. Constr. Build. Mater. 2018, 171, 467–473. [Google Scholar] [CrossRef]
- Abdul Hassan, N.; Airey, G.D.; Putra Jaya, R.; Mashros, N.; Aziz, M.A. A Review of Crumb Rubber Modification in Dry Mixed Rubberised Asphalt Mixtures. J. Teknol. 2014, 70. [Google Scholar] [CrossRef] [Green Version]
- Sangiorgi, C.; Eskandarsefat, S.; Tataranni, P.; Simone, A.; Vignali, V.; Lantieri, C.; Dondi, G. A Complete Laboratory Assessment of Crumb Rubber Porous Asphalt. Constr. Build. Mater. 2017, 132, 500–507. [Google Scholar] [CrossRef]
- Eskandarsefat, S.; Sangiorgi, C.; Dondi, G.; Lamperti, R. Recycling Asphalt Pavement and Tire Rubber: A Full Laboratory and Field Scale Study. Constr. Build. Mater. 2018, 176, 283–294. [Google Scholar] [CrossRef]
- Aliabdo, A.A.; Abd Elmoaty, A.E.M.; AbdElbaset, M.M. Utilization of Waste Rubber in Non-Structural Applications. Constr. Build. Mater. 2015, 91, 195–207. [Google Scholar] [CrossRef]
- Mikhailenko, P.; Piao, Z.; Kakar, M.R.; Bueno, M.; Athari, S.; Pieren, R.; Heutschi, K.; Poulikakos, L. Low-Noise Pavement Technologies and Evaluation Techniques: A Literature Review. Int. J. Pavement Eng. 2020, 0, 1–24. [Google Scholar] [CrossRef]
- Fédération Internationale de Football Association (FIFA). Quality Programme for Football Turf Handbook of Test Methods; FIFA: Zurich, Switzerland, 2015. [Google Scholar]
- Ragn-Sells Däckåtervinning AB. “Rubber Granulate”; Ragn-Sells Däckåtervinning AB: Landskrona, Sweden, 2017. [Google Scholar]
- Dondi, G.; Tataranni, P.; Pettinari, M.; Sangiorgi, C.; Simone, A.; Vignali, V. Crumb Rubber in Cold Recycled Bituminous Mixes: Comparison between Traditional Crumb Rubber and Cryogenic Crumb Rubber. Constr. Build. Mater. 2014, 68, 370–375. [Google Scholar] [CrossRef]
- Pettinari, M.; Dondi, G.; Sangiorgi, C.; Hededal, O. The Effect of Cryogenic Crumb Rubber in Cold Recycled Mixes for Road Pavements. Constr. Build. Mater. 2014, 63, 249–256. [Google Scholar] [CrossRef]
- Dong, D.; Huang, X.; Li, X.; Zhang, L. Swelling Process of Rubber in Asphalt and Its Effect on the Structure and Properties of Rubber and Asphalt. Constr. Build. Mater. 2012, 29, 316–322. [Google Scholar] [CrossRef]
- Daly, W.H.; Balamurugan, S.S.; Negulescu, I.; Akentuna, M.; Mohammad, L.; Cooper, S.B.; Cooper, S.B.; Baumgardner, G.L. Characterization of Crumb Rubber Modifiers after Dispersion in Asphalt Binders. Energy Fuels 2019, 33, 2665–2679. [Google Scholar] [CrossRef]
- Lamperti, R.; Grenfell, J.; Sangiorgi, C.; Lantieri, C.; Airey, G.D. Influence of Waxes on Adhesion Properties of Bituminous Binders. Constr. Build. Mater. 2015, 76, 404–412. [Google Scholar] [CrossRef]
- Bockstal, L.; Berchem, T.; Schmetz, Q.; Richel, A. Devulcanisation and Reclaiming of Tires and Rubber by Physical and Chemical Processes: A Review. J. Clean. Prod. 2019, 236, 117574. [Google Scholar] [CrossRef]
- De Sousa, F.D.B.; Scuracchio, C.H.; Hu, G.-H.; Hoppe, S. Devulcanization of Waste Tire Rubber by Microwaves. Polym. Degrad. Stab. 2017, 138, 169–181. [Google Scholar] [CrossRef]
- Seghar, S.; Asaro, L.; Rolland-Monnet, M.; Aït Hocine, N. Thermo-Mechanical Devulcanization and Recycling of Rubber Industry Waste. Resour. Conserv. Recycl. 2019, 144, 180–186. [Google Scholar] [CrossRef]
- Asaro, L.; Gratton, M.; Seghar, S.; Aït Hocine, N. Recycling of Rubber Wastes by Devulcanization. Resour. Conserv. Recycl. 2018, 133, 250–262. [Google Scholar] [CrossRef]
- Hosseinnezhad, S.; Kabir, S.F.; Oldham, D.; Mousavi, M.; Fini, E.H. Surface Functionalization of Rubber Particles to Reduce Phase Separation in Rubberized Asphalt for Sustainable Construction. J. Clean. Prod. 2019, 225, 82–89. [Google Scholar] [CrossRef]
- Mousavi, M.; Hosseinnezhad, S.; Kabir, S.F.; Burnett, D.J.; Fini, E.H. Reaction Pathways for Surface Activated Rubber Particles. Resour. Conserv. Recycl. 2019, 149, 292–300. [Google Scholar] [CrossRef]
- Han, L.; Zheng, M.; Li, J.; Li, Y.; Zhu, Y.; Ma, Q. Effect of Nano Silica and Pretreated Rubber on the Properties of Terminal Blend Crumb Rubber Modified Asphalt. Constr. Build. Mater. 2017, 157, 277–291. [Google Scholar] [CrossRef]
- Moyano, M.A.; Martín-Martínez, J.M. Surface Treatment with UV-Ozone to Improve Adhesion of Vulcanized Rubber Formulated with an Excess of Processing Oil. Int. J. Adhes. Adhes. 2014, 55, 106–113. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, I.M.; Fathy, E.S.; El-Shafie, M.; Elnaggar, M.Y. Impact of Incorporated Gamma Irradiated Crumb Rubber on the Short-Term Aging Resistance and Rheological Properties of Asphalt Binder. Constr. Build. Mater. 2015, 81, 42–46. [Google Scholar] [CrossRef]
- Aderfors, F.; Roupé, J. The Road towards Sustainability in the Swedish Tyre Industry Association; Svensk Däckåtervinning AB: Vaxholm, Sweden, 2019. [Google Scholar]
- Circular Economy. Available online: https://www.etrma.org/key-topics/circular-economy/ (accessed on 30 December 2020).
- Bontoux, L.; Leone, F.; Nicolai, M.; Papameletiou, D. The Recycling Industry in the European Union: Impediments and Prospects; Institute for Prospective Technological Studies; European Commission—Joint Research Centre Institute for Prospective Technological Studies: Sevilla, Spain, 1996; p. 59. [Google Scholar]
- European Tyres Rubber Manufactures Association. European Tyre and Rubber Industry–Statistics; ETRMA: Saint-Josse-ten-Noode, Belgium, 2019; p. 52. [Google Scholar]
- Zanetti, M.C.; Fiore, S.; Ruffino, B.; Santagata, E.; Dalmazzo, D.; Lanotte, M. Characterization of Crumb Rubber from End-of-Life Tyres for Paving Applications. Waste Manag. 2015, 45, 161–170. [Google Scholar] [CrossRef] [Green Version]
- Re Depaolini, A.; Bianchi, G.; Fornai, D.; Cardelli, A.; Badalassi, M.; Cardelli, C.; Davoli, E. Physical and Chemical Characterization of Representative Samples of Recycled Rubber from End-of-Life Tires. Chemosphere 2017, 184, 1320–1326. [Google Scholar] [CrossRef]
- Li, P.; Ding, Z.; Zou, P.; Sun, A. Analysis of Physico-Chemical Properties for Crumb Rubber in Process of Asphalt Modification. Constr. Build. Mater. 2017, 138, 418–426. [Google Scholar] [CrossRef]
- Piao, Z.; Mikhailenko, P.; Kakar, M.R.; Bueno, M.; Hellweg, S.; Poulikakos, L.D. Urban Mining for Asphalt Pavements: A Review. J. Clean. Prod. 2021, 280, 124916. [Google Scholar] [CrossRef]
- Park, J.; Ju, W.; Paek, K.; Kim, Y.; Choi, Y.; Kim, J.; Hwang, Y. Pre-Treatments of Polymers by Atmospheric Pressure Ejected Plasma for Adhesion Improvement. Surf. Coat. Technol. 2003, 174–175, 547–552. [Google Scholar] [CrossRef]
- Johansson, K.S. 20-Surface Modification of Plastics. In Applied Plastics Engineering Handbook (Second Edition); Plastics Design Library; Kutz, M., Ed.; William Andrew Publishing: Oxford, UK, 2017; pp. 443–487. ISBN 978-0-323-39040-8. [Google Scholar]
- Purbrick, M.D. Polymer Surfaces: From Physics to Technology, Revised and Updated Edition|Wiley; John Wiley and Sons Ltd.: Chichester, UK, 2000; ISBN 0-471-97100-6. [Google Scholar]
- Types of Radioactivity: Alpha, Beta, and Gamma Decay. Available online: https://chem.libretexts.org/Courses/can/intro/17%3A_Radioactivity_and_Nuclear_Chemistry/17.03%3A_Types_of_Radioactivity%3A_Alpha%2C_Beta%2C_and_Gamma_Decay (accessed on 9 February 2021).
- Gamma Rays Compared with X-rays for Radiographic Inspection. Available online: https://www.twi-global.com/technical-knowledge/faqs/faq-what-are-the-advantages-and-disadvantages-of-gamma-rays-when-compared-with-x-rays-for-radiographic-inspection.aspx (accessed on 9 February 2021).
- Bikit, I. Gamma Rays: Technology, Applications and Health Implications; Nova Science Publishers: Hauppauge, NY, USA, 2013; p. 413. [Google Scholar]
- McKeen, L.W. (Ed.) 10-Elastomers and Rubbers. In The Effect of UV Light and Weather on Plastics and Elastomers (Fourth Edition); Plastics Design Library; William Andrew Publishing: Oxford, UK, 2019; pp. 279–359. ISBN 978-0-12-816457-0. [Google Scholar]
- Upadhya, K. A Review of: “Fundamentals of Plasma Chemistry and Technology” By H.V. Boenig Technomic Publishing Co. Lancaster, PA 17604 417 Pages, Hard Cover, 1988. Mater. Manuf. Process. 1991, 6, 557–559. [Google Scholar] [CrossRef]
- Henniker Plasma Atmospheric Plasma Treatment Explained. Available online: https://plasmatreatment.co.uk/pt/plasma-technology-overview/atmospheric-plasma-treatment (accessed on 5 February 2021).
- Sivaram, S. Fundamentals of Plasma Chemistry. In Chemical Vapor Deposition: Thermal and Plasma Deposition of Electronic Materials; Sivaram, S., Ed.; Springer: Boston, MA, USA, 1995; pp. 119–143. ISBN 978-1-4757-4751-5. [Google Scholar]
- Plasma Technology. What Is Plasma?|Plasmatreat. Available online: https://www.plasmatreat.com/plasma-technology/what-is-plasma.html (accessed on 9 February 2021).
- ScienceDirect Topics Microwave Irradiation—An Overview. Available online: https://www.sciencedirect.com/topics/medicine-and-dentistry/microwave-irradiation (accessed on 5 February 2021).
- Lucas, J. Live Science Contributor. February 9 2018. What Are Microwaves? Available online: https://www.livescience.com/50259-microwaves.html (accessed on 10 February 2021).
- Utracki, L.A. Head Polymer Blends program. Plasma Deposition, Treatment, And Etching Of Polymers. Mater. Manuf. Process. 1993, 8, 385–390. [Google Scholar] [CrossRef]
- Bagher, A.M. Advantages of Gamma Radiation in Science and Industry. J. Adv. Phys. 2014, 3, 97–103. [Google Scholar] [CrossRef]
- Martínez-Barrera, G.; Ávila-Córdoba, L.I.; Martínez-López, M.; Herrera-Sosa, E.S.; Vigueras-Santiago, E.; Barrera-Díaz, C.E.; González-Rivas, F.; González-Rivas, N. Gamma Radiation as a Recycling Tool for Waste Materials Used in Concrete. Evol. Ioniz. Radiat. Res. 2015. [Google Scholar] [CrossRef] [Green Version]
- Burillo, G.; Clough, R.L.; Czvikovszky, T.; Guven, O.; Le Moel, A.; Liu, W.; Singh, A.; Yang, J.; Zaharescu, T. Polymer Recycling: Potential Application of Radiation Technology. Radiat. Phys. Chem. 2002, 64, 41–51. [Google Scholar] [CrossRef]
- ScienceDirect Topics Surface Activation—An Overview. Available online: https://www.sciencedirect.com/topics/engineering/surface-activation (accessed on 11 December 2019).
- Gupta, S.K.; Singh, P.; Singh, R.; Kumar, R. Impact of Swift Heavy Ions and Gamma Radiation upon Optical, Structural, and Chemical Properties of Polypropylene Polymer Films. Adv. Polym. Technol. 2015, 34. [Google Scholar] [CrossRef]
- Albano, C.; Reyes, J.; Ichazo, M.; González, J.; Hernández, M.; Rodríguez, M. Mechanical, Thermal and Morphological Behaviour of the Polystyrene/Polypropylene (80/20) Blend, Irradiated with γ-Rays at Low Doses (0–70 KGy). Polym. Degrad. Stab. 2003, 80, 251–261. [Google Scholar] [CrossRef]
- Faldini, S.B.; Terence, M.C.; Miranda, L.F.; Munhoz, A.H.; Domingues, L.S.; Coghetto, G. Characterization Of Crumb Rubber Modified By Gamma Radiation; INIS.IAEA: Vienna, Austria, 2013; p. 11. [Google Scholar]
- Martínez-Barrera, G.; del Coz-Díaz, J.J.; Álvarez-Rabanal, F.P.; López Gayarre, F.; Martínez-López, M.; Cruz-Olivares, J. Waste Tire Rubber Particles Modified by Gamma Radiation and Their Use as Modifiers of Concrete. Case Stud. Constr. Mater. 2020, 12, e00321. [Google Scholar] [CrossRef]
- Chen, H.-B.; Wang, P.-C.; Liu, B.; Zhang, F.-S.; Ao, Y.-Y. Gamma Irradiation Induced Effects of Butyl Rubber Based Damping Material. Radiat. Phys. Chem. 2018, 145, 202–206. [Google Scholar] [CrossRef]
- Newton, R.G. Mechanism of Exposure-Cracking of Rubbers. With a Review of the Influence of Ozone. Rubber Chem. Technol. 1945, 18, 504–556. [Google Scholar] [CrossRef]
- Iwase, Y.; Shindo, T.; Kondo, H.; Ohtake, Y.; Kawahara, S. Ozone Degradation of Vulcanized Isoprene Rubber as a Function of Humidity. Polym. Degrad. Stab. 2017, 142, 209–216. [Google Scholar] [CrossRef]
- Lippens, P. 3—Low-pressure cold plasma processing technology. In Plasma Technologies for Textiles; Woodhead Publishing Series in Textiles; Shishoo, R., Ed.; Woodhead Publishing: Sawston, UK; Cambridge, UK, 2007; pp. 64–78. ISBN 978-1-84569-073-1. [Google Scholar]
- Liu, J.; Liu, P.; Zhang, X.; Lu, P.; Zhang, X.; Zhang, M. Fabrication of Magnetic Rubber Composites by Recycling Waste Rubber Powders via a Microwave-Assisted in Situ Surface Modification and Semi-Devulcanization Process. Chem. Eng. J. 2016, 295, 73–79. [Google Scholar] [CrossRef]
- Martin, D.; Ighigeanu, D.; Mateescu, E.; Craciun, G.; Ighigeanu, A. Vulcanization of Rubber Mixtures by Simultaneous Electron Beam and Microwave Irradiation. Radiat. Phys. Chem. 2002, 65, 63–65. [Google Scholar] [CrossRef]
- Phetarporn, V.; Loykulnant, S.; Kongkaew, C.; Seubsai, A.; Prapainainar, P. Composite Properties of Graphene-Based Materials/Natural Rubber Vulcanized Using Electron Beam Irradiation. Mater. Today Commun. 2019, 19, 413–424. [Google Scholar] [CrossRef]
- Yang, X.; Shen, A.; Li, B.; Wu, H.; Lyu, Z.; Wang, H.; Lyu, Z. Effect of Microwave-Activated Crumb Rubber on Reaction Mechanism, Rheological Properties, Thermal Stability, and Released Volatiles of Asphalt Binder. J. Clean. Prod. 2020, 248, 119230. [Google Scholar] [CrossRef]
- Liang, M.; Xin, X.; Fan, W.; Ren, S.; Shi, J.; Luo, H. Thermo-Stability and Aging Performance of Modified Asphalt with Crumb Rubber Activated by Microwave and TOR. Mater. Des. 2017, 127, 84–96. [Google Scholar] [CrossRef]
- Chtourou, H.; Riedl, B.; Kokta, B.V. Surface Modification of Polyethylene Pulp Fiber by Ozone Treatment. An Analytical and Thermal Characterization. Polym. Degrad. Stab. 1994, 43, 149–156. [Google Scholar] [CrossRef]
- Martín-Martínez, J.M.; Romero-Sánchez, M.D. Strategies to Improve the Adhesion of Rubbers to Adhesives by Means of Plasma Surface Modification. Eur. Phys. J. Appl. Phys. 2006, 34, 125–138. [Google Scholar] [CrossRef]
- Ortiz-Magán, A.B.; Pastor-Blas, M.M.; Ferrándiz-Gómez, T.P.; Morant-Zacarés, C.; Martín-Martínez, J.M. Surface Modifications Produced by N2 and O2 RF Plasma Treatment on a Synthetic Vulcanized Styrene-Butadiene Rubber. Plasmas Polym. 2001, 6, 81–105. [Google Scholar] [CrossRef]
- Xiaowei, C.; Sheng, H.; Xiaoyang, G.; Wenhui, D. Crumb Waste Tire Rubber Surface Modification by Plasma Polymerization of Ethanol and Its Application on Oil-Well Cement. Appl. Surf. Sci. 2017, 409, 325–342. [Google Scholar] [CrossRef]
- Li, J.; Xiao, F.; Amirkhanian, S.N. High Temperature Rheological Characteristics of Plasma-Treated Crumb Rubber Modified Binders. Constr. Build. Mater. 2020, 236, 117614. [Google Scholar] [CrossRef]
Reference | Method/Procedures | Analysis | Results |
---|---|---|---|
Faldini et al. [52] | Rubber type: ELTs Rubber | SEM |
|
Rubber size: (0.044–4.75 mm) |
| ||
Dose rate: 11.6 kGy/h | FTIR |
| |
Doses: 500 & 1000 kGy | TGA |
| |
Institutional Reactor | DSC | ||
Chen et al. [54] | Rubber type: Butyl rubber based damping material (vulcanized) | Soxhlet extraction |
|
Rubber size: Several | FTIR |
| |
Dose rate: 6.6 kGy/h | SEM |
| |
Doses: 10; 100; 200; 350 kGy | Dynamic mechanical properties |
| |
Institutional Reactor 60Co | Tensile properties |
| |
Martínez-Barrera et al. [53] | Rubber type: ELTs Rubber | SEM |
|
Rubber size: 0.85–2.8 mm | XRD |
| |
Dose rate: 2.5 kGy/h |
| ||
Doses: 200; 250; 300 kGy | FTIR |
| |
Institutional Reactor 60Co | Raman |
| |
UV-Visible |
| ||
TGA |
| ||
DSC |
| ||
Inside of concrete | Compressive strength and elasticity modulus (ASTM C39/C39M-14) |
| |
1, 2 and 5% by weight | |||
Ibrahim et al. [23] | Rubber type: ELTs Rubber | SEM |
|
Rubber size: 2 mm | |||
Dose rate: 2.8 kGy/h | |||
Doses: 100; 200; 300 kGy | FTIR |
| |
Institutional Reactor | Rheological |
| |
RTFOT |
| ||
Inside of asphalt | |||
5 and 10% weight | Anti-ageing |
|
Reference | Method/Procedures | Analysis | Results |
---|---|---|---|
Moyano et al. [22] | Rubber type: Vulcanized SBS rubber UV lamp: 254 nm (90%) and 185 nm (10%) Radiation intensity: 10 mW/cm2 Distance from lamp: 1–5 cm Ozone concentration: Low Humidity: Uncontrolled | ATR-IR |
|
XPS |
| ||
Contact angle |
| ||
SEM |
| ||
T-peel test |
| ||
Iwase et al. [56] | Rubber type: Vulcanized carbon black-filled Rubber Ozone concentration: High Humidity and temperature: 40 °C 80%RH or 80 °C 20%RH | SEM |
|
ATR-IR |
|
Reference | Method/Procedures | Analysis | Results |
---|---|---|---|
De Sousa et al. [16] | Rubber type: ELTs crumb rubber Rubber size: 0.177 mm Power: 800 watts Treatment length: 1, 5, and 5.5 min | ATR-FTIR |
|
Sol-Gel content |
| ||
Yang et al. [61] | Rubber type: ELTs crumb rubber Rubber size: 0.35 mm Power: 800 watts Treatment length: 1.5 min Inside of asphalt binder 10, 15, 20% rubber weight | SEM |
|
DSR |
| ||
GPC |
| ||
AFM |
| ||
FT-IR |
| ||
TGA |
| ||
Liang et al. [62] | Rubber type: Cryogenic ELTs crumb rubber Rubber size: 0.420 mm Power: 500 watts Treatment length: 5 min Inside of asphalt binder 4.5% rubber weight | FT-IR |
|
SEM |
| ||
Low temperature creep behavior |
| ||
Viscoelastic performance intermediate temperatures |
| ||
Storage stability |
|
References | Method/Procedures | Standard for Assessment | Results |
---|---|---|---|
Ortiz-Magan et al. [65] | Rubber type: Volcanized SBS rubber Type of plasma: Low-Pressure N2 and O2 Power: 50 W Treatment length: 1 to 15 min Lab plasma chamber | ATR-IR |
|
| |||
XPS |
| ||
SFM |
| ||
SEM |
| ||
Contact angle |
| ||
T-peel |
| ||
Xiaowei et al. [66] | Rubber type: Crumb rubber Pressure: 10 Pa Plasma type: O2 plasma Power: 60, 80, 100, 120 W Treatment length: 1 to 5 min Lab plasma chamber | ATR-IR |
|
Contact angle |
| ||
SEM |
| ||
XPS |
| ||
Li et al. [67] | Rubber type: ELTs crumb rubber Size of particles: (0.177 mm, 0.420, 0.595 mm) Plasma Type: Air plasma Power: 250 W Treatment length: 8 min Lab plasma chamber | SEM |
|
Inside of the binder 2 Type of binder 15% weight rubber | High-temperature properties (rotational viscosity, failure temperature, rutting factor, phase angle, storage modulus, loss modulus) |
|
Methods | Major Effect on the Surface | Radiation Type | Treatment Length | Parameters Control | Applicability |
---|---|---|---|---|---|
Gamma | Softening Texturization | Radioactive highly-penetrating and ionizing | hours | Control of the absorbed dose and length of treatment | Applicable to several shapes of material Difficult to acquire a gamma ray equipment. |
UV-Ozone | Ablation Softening Texturization | Penetrating and ionizing | hours | Control of radiation distance, ozone concentration, and humidity values. | Applicable to several shapes of materials but challenging with powders. Several existing apparatuses |
Microwaves | Reactions’ acceleration Desulfurization Softening | Non-penetrating | minutes | Control of the length of treatment and power | Applicable to several shapes of material Easy to acquire a microwave equipment. |
Plasma | Activation Ablation Texturization | Non penetrating | seconds | Control of the source of plasma and length of treatment | Applicable to several shapes of materials but challenging with powders. Several existing apparatus |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makoundou, C.; Johansson, K.; Wallqvist, V.; Sangiorgi, C. Functionalization of Crumb Rubber Surface for the Incorporation into Asphalt Layers of Reduced Stiffness: An Overview of Existing Treatment Approaches. Recycling 2021, 6, 19. https://doi.org/10.3390/recycling6010019
Makoundou C, Johansson K, Wallqvist V, Sangiorgi C. Functionalization of Crumb Rubber Surface for the Incorporation into Asphalt Layers of Reduced Stiffness: An Overview of Existing Treatment Approaches. Recycling. 2021; 6(1):19. https://doi.org/10.3390/recycling6010019
Chicago/Turabian StyleMakoundou, Christina, Kenth Johansson, Viveca Wallqvist, and Cesare Sangiorgi. 2021. "Functionalization of Crumb Rubber Surface for the Incorporation into Asphalt Layers of Reduced Stiffness: An Overview of Existing Treatment Approaches" Recycling 6, no. 1: 19. https://doi.org/10.3390/recycling6010019
APA StyleMakoundou, C., Johansson, K., Wallqvist, V., & Sangiorgi, C. (2021). Functionalization of Crumb Rubber Surface for the Incorporation into Asphalt Layers of Reduced Stiffness: An Overview of Existing Treatment Approaches. Recycling, 6(1), 19. https://doi.org/10.3390/recycling6010019