Fungi and Circular Economy: Pleurotus ostreatus Grown on a Substrate with Agricultural Waste of Lavender, and Its Promising Biochemical Profile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pilot Tests
2.2. Sample Preparation and Biochemical Analysis
3. Results
3.1. Pilot Tests
3.2. Biochemical Analysis
4. Discussion
5. Practical Implications of This Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Zabaniotou, A.; Rovas, D.; Libutti, A.; Monteleone, M. Boosting circular economy and closing the loop in agriculture: Case study of a small-scale pyrolysis–biochar based system integrated in an olive farm in symbiosis with an olive mill. Environ. Dev. 2015, 14, 22–36. [Google Scholar] [CrossRef]
- Branduardi, P. Closing the loop: The power of microbial biotransformations from traditional bioprocesses to biorefineries, and beyond. Microb. Biotechnol. 2021, 14, 68–73. [Google Scholar] [CrossRef]
- Blackwell, M. The fungi: 1, 2, 3 … 5.1 million species? Am. J. Bot. 2011, 98, 426–438. [Google Scholar] [CrossRef] [PubMed]
- López-Mondéjar, R.; Brabcová, V.; Štursová, M.; Davidová, A.; Jansa, J.; Cajthaml, T.; Baldrian, P. Decomposer food web in a deciduous forest shows high share of generalist microorganisms and importance of microbial biomass recycling. ISME J. 2018, 12, 1768–1778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wasser, S.P. Medicinal mushroom science: Current perspectives, advances, evidences, and challenges. Biomed. J. 2014, 37, 345–356. [Google Scholar] [CrossRef] [PubMed]
- Royse, D.J.; Baars, J.; Tan, Q. Current Overview of Mushroom Production in the World. In Edible and Medicinal Mushrooms: Technology and Applications; Zied, D.C., Pardo-Giménez, A., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2017; pp. 5–13. [Google Scholar]
- Ferraro, V.; Venturella, G.; Pecoraro, L.; Gao, W.; Gargano, M.L. Cultivated mushrooms: Importance of a multipurpose crop, with special focus on Italian fungiculture. Plant Biosyst. 2020, 11, 1–19. [Google Scholar] [CrossRef]
- Taofiq, O.; González-Paramás, A.M.; Martins, A.; Barreiro, M.F.; Ferreira, I.C.F.R. Mushrooms extracts and compounds in cosmetics, cosmeceuticals and nutricosmetics-A review. Ind. Crops Prod. 2016, 90, 38–48. [Google Scholar] [CrossRef] [Green Version]
- Ma, G.; Yang, W.; Zhao, L.; Pei, F.; Fang, D.; Hu, Q. A critical review on the health promoting effects of mushrooms nutraceuticals. Food Sci. Hum. Wellness 2018, 7, 125–133. [Google Scholar] [CrossRef]
- Fazenda, M.L.; Seviour, R.; McNeil, B.; Harvey, L.M. Submerged Culture Fermentation of “Higher Fungi”: The Macrofungi. Adv. Appl. Microbiol. 2008, 63, 33–103. [Google Scholar]
- Hyde, K.D.; Xu, J.; Rapior, S.; Jeewon, R.; Lumyong, S.; Niego, A.G.T.; Abeywickrama, P.D.; Aluthmuhandiram, J.V.S.; Brahamanage, R.S.; Brooks, S.; et al. The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Divers. 2019, 97, 1–136. [Google Scholar] [CrossRef] [Green Version]
- Vaverková, M.D.; Adamcová, D.; Radziemska, M.; Voběrková, S.; Mazur, Z.; Zloch, J. Assessment and Evaluation of Heavy Metals Removal from Landfill Leachate by Pleurotus ostreatus. Waste Biomass Valorization 2018, 9, 503–511. [Google Scholar] [CrossRef]
- Appels, F.V.W.; Camere, S.; Montalti, M.; Karana, E.; Jansen, K.M.B.; Dijksterhuis, J.; Krijgsheld, P.; Wösten, H.A.B. Fabrication factors influencing mechanical, moisture- and water-related properties of mycelium-based composites. Mater. Des. 2019, 161, 64–71. [Google Scholar] [CrossRef]
- Meyer, V.; Basenko, E.Y.; Benz, P.J.; Braus, G.H.; Caddick, M.X.; Csukai, M.; de Vries, R.P.; Endy, D.; Frisvad, J.C.; Gunde‑Cimerman, N.; et al. Growing a circular economy with fungal biotechnology: A white paper. Fungal Biol. Biotechnol. 2020, 7, 5. [Google Scholar] [CrossRef] [Green Version]
- Galli, E.; Brancaleoni, E.; Di Mario, F.; Donati, E.; Frattoni, M.; Polcaro, C.M.; Rapanà, P. Mycelium growth and degradation of creosote-treated wood by basydiomycetes. Chemosphere 2008, 72, 1069–1072. [Google Scholar] [CrossRef] [PubMed]
- Zitte, L.F.; Awi-Waadu, G.D.B.; John, A.U. Effect of oyster mushroom (Pleurotus ostreatus) mycelia on petroleum hydrocarbon contaminated substrate. J. Agric. Soc. Res. 2012, 12, 115–121. [Google Scholar]
- Mohammadi-Sichani, M.; Assadi, M.M.; Farazmand, A.; Kianirad, M.; Ahadi, A.M.; Hadian-Ghahderijani, H. Ability of Agaricus bisporus, Pleurotus ostreatus and Ganoderma lucidum compost in biodegradation of petroleum hydrocarbon‑contaminated soil. Int. J. Environ. Sci. Technol. 2019, 16, 2313–2320. [Google Scholar] [CrossRef]
- Cardwell, G.; Bornman, J.F.; James, A.P.; Black, L.J. A Review of Mushrooms as a Potential Source of Dietary Vitamin D. Nutrients 2018, 10, 1498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scalbert, A.; Johnson, I.T.; Saltmarsh, M. Polyphenols: Antioxidants and beyond. Am. J. Clin. Nutr. 2005, 81, 215S–217S. [Google Scholar] [CrossRef]
- Venturella, G.; Ferraro, V.; Cirlincione, F.; Gargano, M.L. Medicinal Mushrooms: Bioactive Compounds, Use, and Clinical Trials. Int. J. Mol. Sci. 2021, 22, 634. [Google Scholar] [CrossRef]
- Hernández, D.; Sánchez, J.E.; Yamasakia, K. A simple procedure for preparing substrate for Pleurotus ostreatus cultivation. Bioresour. Technol. 2003, 90, 145–150. [Google Scholar] [CrossRef]
- Nirmalendu, D.; Mukherjeeb, M. Cultivation of Pleurotus ostreatus on weed plants. Bioresour. Technol. 2007, 98, 2723–2726. [Google Scholar]
- Yang, D.; Liang, J.; Wang, Y.; Sun, F.; Tao, H.; Xu, Q.; Zhang, L.; Zhang, Z.; Ho, C.T.; Wan, X. Tea waste: An effective and economic substrate for oyster mushroom cultivation. J. Sci. Food. Agric. 2016, 96, 680–684. [Google Scholar] [CrossRef]
- Tagkouli, D.; Kaliora, A.; Bekiaris, G.; Koutrotsios, G.; Christea, M.; Zervakis, G.I.; Kalogeropoulos, N. Free Amino Acids in Three Pleurotus Species Cultivated on Agricultural and Agro-Industrial By-Products. Molecules 2020, 25, 4015. [Google Scholar] [CrossRef] [PubMed]
- Marlina, L.; Sukotjo, S.; Marsudi, S. Potential of oil palm Empty Fruit Bunch (EFB) as media for oyster mushroom, Pleurotus ostreatus cultivation. Procedia Chem. 2015, 16, 427–431. [Google Scholar] [CrossRef] [Green Version]
- Obodai, M.; Cleland-Okine, J.; Vowotor, K.A. Comparative study on the growth and yield of Pleurotus ostreatus mushroom on different lignocellulosic by-products. J. Ind. Microbiol. Biotechnol. 2003, 30, 146–149. [Google Scholar] [CrossRef] [PubMed]
- Despinasse, Y.; Moja, S.; Soler, C.; Jullien, F.; Pasquier, B.; Bessière, J.-M.; Noûs, C.; Baudino, S.; Nicolè, F. Structure of the Chemical and Genetic Diversity of the True Lavender over Its Natural Range. Plants 2020, 9, 1640. [Google Scholar] [CrossRef]
- Alam, N.; Amin, R.; Khan, A.; Ara, I.; Shim, M.J.; Lee, M.W.; Lee, T.S. Nutritional Analysis of Cultivated Mushrooms in Bangladesh—Pleurotus ostreatus, Pleurotus sajor-caju, Pleurotus florida and Calocybe indica. Mycobiology 2007, 36, 228–232. [Google Scholar] [CrossRef] [Green Version]
- Cateni, F.; Gargano, M.L.; Procida, G.; Venturella, G.; Cirlincione, F.; Ferraro, V. Mycochemicals in wild and cultivated mushrooms: Nutrition and health. Phytochem. Rev. 2021, 3, 1–45. [Google Scholar]
- Ng, T.B. Peptides and proteins from fungi. Peptides 2004, 25, 1055–1073. [Google Scholar] [CrossRef]
- Node, K.; Huo, Y.; Ruan, X.; Yang, B.; Spiecker, M.; Ley, K.; Zeldin, D.C.; Liao, J.K. Anti-inflammatory properties of cytochrome P450 epoxygenase-derived eicosanoids. Science 1999, 285, 1276–1279. [Google Scholar] [CrossRef] [Green Version]
- Pednault, K.; Angers, P.; Avis, T.J.; Gosselin, A.; Tweddel, R.J. Fatty acid profiles of polar and non-polar lipids of Pleurotus ostreatus and P. cornucopiae var. ‘citrino-pileatus’ grown at different temperatures. Mycol. Res. 2007, 111, 1228–1234. [Google Scholar] [CrossRef] [PubMed]
- Kuksis, A.; Pruzanski, W. Chapter 3—Epoxy Fatty Acids: Chemistry and Biological Effects. In Fatty Acids: Chemistry, Synthesis, and Applications; Ahmad, M.U., Ed.; Academic Press and AOCS Press: Cambridge, MA, USA, 2017; pp. 83–119. [Google Scholar]
- Kennedy, M.J.; Reader, S.L.; Davies, R.J. Fatty acid production characteristics of fungi with particular emphasis on gamma linolenic acid production. Biotechnol. Bioeng. 1993, 42, 625–634. [Google Scholar] [CrossRef] [PubMed]
- Corrêa, R.C.G.; Brugnari, T.; Bracht, A.; Peralta, R.M.; Ferreira, I.C.F.R. Biotechnological, nutritional and therapeutic uses of Pleurotus spp. (Oyster mushroom) related with its chemical composition: A review on the past decade findings. Trends Food Sci. Technol. 2016, 50, 103–117. [Google Scholar] [CrossRef] [Green Version]
- Greene, J.F.; Newman, J.W.; Williamson, K.C.; Hammock, B.D. Toxicity of Epoxy Fatty Acids and Related Compounds to Cells Expressing Human Soluble Epoxide Hydrolase. Chem. Res. Toxicol. 2000, 13, 217–226. [Google Scholar] [CrossRef]
% Barley Straw | % Lavender | |
---|---|---|
1 | 100 | 0 |
2 | 0 | 100 |
3 | 50 | 50 |
4 | 60 | 40 |
5 | 70 | 30 |
2018 | 2019 | |||
---|---|---|---|---|
Substrate | POA | POC | POA | POC |
1 | 493 | 537 | 851 | 826 |
2 | 287 | 294 | 456 | 490 |
3 | 370 | 407 | 623 | 538 |
4 | 424 | 435 | 594 | 545 |
5 | 452 | 439 | 793 | 753 |
Group | % of Acetonitrile | Retention Time (min) |
---|---|---|
Group 1 carboxylic acids, alcohols, and nucleosides | 0–11 | 3–5 |
Group 2 carbohydrates, amino acids, dipeptides, tripeptides, and their derivatives (Amadori products) | 15–32 | 7–15 |
Group 3 nucleotides, polyphenols, and lactones | 35–48 | 16.5–20 |
Group 4 fatty acids and their derivatives | 50–69 | 22.5–30 |
Group 5 cholanic acid and apolar compounds | 70–100 | 35–40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Piazza, S.; Benvenuti, M.; Damonte, G.; Cecchi, G.; Mariotti, M.G.; Zotti, M. Fungi and Circular Economy: Pleurotus ostreatus Grown on a Substrate with Agricultural Waste of Lavender, and Its Promising Biochemical Profile. Recycling 2021, 6, 40. https://doi.org/10.3390/recycling6020040
Di Piazza S, Benvenuti M, Damonte G, Cecchi G, Mariotti MG, Zotti M. Fungi and Circular Economy: Pleurotus ostreatus Grown on a Substrate with Agricultural Waste of Lavender, and Its Promising Biochemical Profile. Recycling. 2021; 6(2):40. https://doi.org/10.3390/recycling6020040
Chicago/Turabian StyleDi Piazza, Simone, Mirko Benvenuti, Gianluca Damonte, Grazia Cecchi, Mauro Giorgio Mariotti, and Mirca Zotti. 2021. "Fungi and Circular Economy: Pleurotus ostreatus Grown on a Substrate with Agricultural Waste of Lavender, and Its Promising Biochemical Profile" Recycling 6, no. 2: 40. https://doi.org/10.3390/recycling6020040
APA StyleDi Piazza, S., Benvenuti, M., Damonte, G., Cecchi, G., Mariotti, M. G., & Zotti, M. (2021). Fungi and Circular Economy: Pleurotus ostreatus Grown on a Substrate with Agricultural Waste of Lavender, and Its Promising Biochemical Profile. Recycling, 6(2), 40. https://doi.org/10.3390/recycling6020040