Assessment of Biodegradation and Eco-Toxic Properties of Novel Starch and Gelatine Blend Bioplastics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Formulation of the Bioplastics
2.3. Degradation Tests
2.4. Microalgae Toxicity
2.5. Nematode Toxicity
2.6. Assessment of Phytotoxicity
2.7. Soil Microbiome Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. Formulation of the Bioplastics
3.2. Soil Respiration Tests
3.3. Microalgae Toxicity
3.4. Nematode Toxicity
3.5. Seed Germination/Phytotoxicity
3.6. Microbial Soil Biodiversity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Geyer, R.; Jambeck, J.; Law, K. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jambeck, J.; Geyer, R.; Wilcox, C.; Siegler, T.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K. Plastic waste inputs from land into the ocean. Science 2015, 347, 768–771. [Google Scholar] [CrossRef]
- Castañeda, R.; Avlijas, S.; Simard, M.; Ricciardi, A. Microplastic pollution in St. Lawrence River sediments. Can. J. Fish. Aquat. Sci. 2014, 71, 1767–1771. [Google Scholar] [CrossRef]
- Romeo, T.; Pietro, B.; Pedà, C.; Consoli, P.; Andaloro, F.; Fossi, M. First evidence of presence of plastic debris in stomach of large pelagic fish in the Mediterranean Sea. Mar. Pollut. Bull. 2015, 95, 358–361. [Google Scholar] [CrossRef]
- Gall, S.; Thompson, R. The impact of debris on marine life. Mar. Pollut. Bull. 2015, 92, 170–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ncube, L.; Ude, A.; Ogunmuyiwa, E.; Zulkifli, R.; Beas, I. An Overview of Plastic Waste Generation and Management in Food Packaging Industries. Recycling 2021, 6, 12. [Google Scholar] [CrossRef]
- Qu, S.; Guo, Y.; Ma, Z.; Chen, W.; Liu, J.; Liu, G.; Wang, Y.; Xu, M. Implications of China’s foreign waste ban on the global circular economy. Resour. Conserv. Recycl. 2019, 144, 252–255. [Google Scholar] [CrossRef]
- Kaza, S.; Bhada-Tata, P.; Ionkova, K.; Van Woerden, F.; Yao, L. What a waste 2.0.A Global Snapshot of Solid Waste Management to 2050, World Bank [pdf]. 2018. Available online: https://openknowledge.worldbank.org/handle/10986/30317 (accessed on 1 September 2021).
- European Commission. EU Plastic Strategy. Available online: https://ec.europa.eu/commission/news/eu-plastics-strategy-2018-nov-20_en (accessed on 2 April 2021).
- Fakhouri, F.; Maria Martelli, S.; Canhadas Bertan, L.; Yamashita, F.; Innocentini Mei, L.; Collares Queiroz, F. Edible films made from blends of manioc starch and gelatin—Influence of different types of plasticizer and different levels of macromolecules on their properties. LWT 2012, 49, 149–154. [Google Scholar] [CrossRef]
- Abe, M.; Branciforti, M.; Brienzo, M. Biodegradation of Hemicellulose-Cellulose-Starch-Based Bioplastics and Microbial Polyesters. Recycling 2021, 6, 22. [Google Scholar] [CrossRef]
- Neves, A.; Moyne, M.; Eyre, C.; Casey, B. Acceptability and Societal Impact of the Introduction of Bioplastics as Novel Environmentally Friendly Packaging Materials in Ireland. Clean Technol. 2020, 2, 127–143. [Google Scholar] [CrossRef] [Green Version]
- Narancic, T.; Cerrone, F.; Beagan, N.; O’Connor, K. Recent Advances in Bioplastics: Application and Biodegradation. Polymers 2020, 12, 920. [Google Scholar]
- Fakhouri, F.; Costa, D.; Yamashita, F.; Martelli, S.; Jesus, R.; Alganer, K.; Collares-Queiroz, F.; Innocentini-Mei, L. Comparative study of processing methods for starch/gelatin films. Carbohydr. Polym. 2013, 95, 681–689. [Google Scholar] [CrossRef]
- Ramos, M.; Valdés, A.; Beltrán, A.; Garrigós, M. Gelatin-Based Films and Coatings for Food Packaging Applications. Coatings 2016, 6, 41. [Google Scholar] [CrossRef] [Green Version]
- Wasswa, J.; Tang, J.; Gu, X. Utilization of Fish Processing By-Products in the Gelatin Industry. Food Rev. Int. 2007, 23, 159–174. [Google Scholar] [CrossRef]
- Huang, T.; Tu, Z.; Shangguan, X.; Wang, H.; Zhang, L.; Sha, X. Rheological and structural properties of fish scales gelatin: Effects of conventional and ultrasound-assisted extraction. Int. J. Food Prop. 2017, 20, S1210–S1220. [Google Scholar] [CrossRef]
- Boyle, S.; Kakouli-Duarte, T. The effects of chromium VI on the fitness and on the β-tubulin genes during in vivo development of the nematode Steinernema feltiae. Sci. Total Environ. 2008, 404, 56–67. [Google Scholar] [CrossRef]
- Mroczkowska, M.; Culliton, D.; Germaine, K.; Neves, A. Comparison of Mechanical and Physicochemical Characteristics of Potato Starch and Gelatine Blend Bioplastics Made with Gelatines from Different Sources. Clean Technol. 2021, 3, 424–436. [Google Scholar] [CrossRef]
- Klebercz, O. Manual of the Laboratory Practices; Department of Applied Biotechnology and Food Science, Environmental Toxicology: Budapest, Hungary, 2013; Available online: http://envirotox.hu/wp-content/uploads/2017/10/Laboratory_practices_manual_Environmental_Tox.pdf (accessed on 20 July 2021).
- International Organization for Standardization. ISO 17556:2012 Plastics—Determination of the Ultimate Aerobic Biodegradability of Plastic Materials in Soil by Measuring the Oxygen Demand in Respirometer or the Amount of Carbon Dioxide Evolved; ISO: Geneva, Switzerland, 2012. [Google Scholar]
- White, G. A Method for Obtaining Infective Nematode Larvae from Cultures. Science 1927, 66, 302–303. [Google Scholar] [CrossRef]
- Nur Hanani, Z.; Roos, Y.; Kerry, J. Use of beef, pork and fish gelatin sources in the manufacture of films and assessment of their composition and mechanical properties. Food Hydrocoll. 2012, 29, 144–151. [Google Scholar] [CrossRef]
- Neidhardt, K.; Wasmuth, T. PRM157 Methodological Challenges of IQWiG’s Efficiency Frontier Concept Elicited by Multiple Patient-Relevant Endpoints—Why Prioritization of Endpoints Cannot Be Avoided. Value Health 2012, 15, A489. [Google Scholar] [CrossRef] [Green Version]
- Sforzini, S.; Oliveri, L.; Chinaglia, S.; Viarengo, A. Application of Biotests for the Determination of Soil Ecotoxicity after Exposure to Biodegradable Plastics. Front. Environ. Sci. 2016, 4, 68. [Google Scholar] [CrossRef]
- Bongers, T.; Ferris, H. Nematode community structure as a bioindicator in environmental monitoring. Trends Ecol. Evol. 1999, 14, 224–228. [Google Scholar] [CrossRef]
- Gómez-Guillén, M.; Turnay, J.; Fernández-Díaz, M.; Ulmo, N.; Lizarbe, M.; Montero, P. Structural and physical properties of gelatin extracted from different marine species: A comparative study. Food Hydrocoll. 2002, 16, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Hazir, S.; Stock, S.; Kaya, H.; Koppenhöfer, A.; Keskin, N. Developmental Temperature Effects on Five Geographic Isolates of the Entomopathogenic Nematode Steinernema feltiae (Nematoda: Steinernematidae). J. Invertebr. Pathol. 2001, 77, 243–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, Y.; Ossowicki, A.; Yang, X.; Huerta Lwanga, E.; Dini-Andreote, F.; Geissen, V.; Garbeva, P. Effects of plastic mulch film residues on wheat rhizosphere and soil properties. J. Hazard. Mater. 2020, 387, 121711. [Google Scholar] [CrossRef] [PubMed]
- Bosker, T.; Bouwman, L.; Brun, N.; Behrens, P.; Vijver, M. Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum. Chemosphere 2019, 226, 774–781. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Smith, P.; Maximova, S.; Guiltinan, M. Application of glycerol as a foliar spray activates the defence response and enhances disease resistance of Theobroma cacao. Mol. Plant Pathol. 2015, 16, 27–37. [Google Scholar] [CrossRef]
- Balestri, E.; Menicagli, V.; Ligorini, V.; Fulignati, S.; Raspolli Galletti, A.; Lardicci, C. Phytotoxicity assessment of conventional and biodegradable plastic bags using seed germination test. Ecol. Indic. 2019, 102, 569–580. [Google Scholar] [CrossRef]
- Bergey, D.; Whitman, W.; De Vos, P.; Garrity, G.; Jones, D. Bergey’s manual of systematic bacteriology. In The Firmicutes; Springer: New York, NY, USA, 2009. [Google Scholar]
- Kielak, A.; Barreto, C.; Kowalchuk, G.; van Veen, J.; Kuramae, E. The Ecology of Acidobacteria: Moving beyond Genes and Genomes. Front. Microbiol. 2016, 7, 744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Cong, J.; Lu, H.; Li, G.; Qu, Y.; Su, X.; Zhou, J.; Li, D. Community structure and elevational diversity patterns of soil Acidobacteria. J. Environ. Sci. 2014, 26, 1717–1724. [Google Scholar] [CrossRef]
- Landesman, W.; Freedman, Z.; Nelson, D. Seasonal, sub-seasonal and diurnal variation of soil bacterial community composition in a temperate deciduous forest. FEMS Microbiol. Ecol. 2019, 95, fiz002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adhikari, D.; Mukai, M.; Kubota, K.; Kai, T.; Kaneko, N.; Araki, K.; Kubo, M. Degradation of Bioplastics in Soil and Their Degradation Effects on Environmental Microorganisms. J. Agric. Chem. Environ. 2016, 5, 23–34. [Google Scholar] [CrossRef] [Green Version]
- Ahimbisibwe, M.; Banadda, N.; Seay, J.; Nabuuma, B.; Atwijukire, E.; Wembabazi, E.; Nuwamanya, E. Influence of Weather and Purity of Plasticizer on Degradation of Cassava Starch Bioplastics in Natural Environmental Conditions. J. Agric. Chem. Environ. 2019, 8, 237–250. [Google Scholar] [CrossRef]
- Rosen, M. Environmental sustainability tools in the biofuel industry. Biofuel Res. J. 2018, 5, 751–752. [Google Scholar] [CrossRef] [Green Version]
Gelatine Type | ||||
---|---|---|---|---|
Seed Type | Control | Piscine | Porcine | Bovine |
Cress | 41.8 | 15.4 | 30.2 | 0.3 |
Sorgho | 27.5 | 36.6 | 31.6 | 32.3 |
Mustard | 41.9 | 8.7 | 4.7 | 21.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mroczkowska, M.; Germaine, K.; Culliton, D.; Kakouli Duarte, T.; Neves, A.C. Assessment of Biodegradation and Eco-Toxic Properties of Novel Starch and Gelatine Blend Bioplastics. Recycling 2021, 6, 81. https://doi.org/10.3390/recycling6040081
Mroczkowska M, Germaine K, Culliton D, Kakouli Duarte T, Neves AC. Assessment of Biodegradation and Eco-Toxic Properties of Novel Starch and Gelatine Blend Bioplastics. Recycling. 2021; 6(4):81. https://doi.org/10.3390/recycling6040081
Chicago/Turabian StyleMroczkowska, Marta, Kieran Germaine, David Culliton, Thomais Kakouli Duarte, and Adriana Cunha Neves. 2021. "Assessment of Biodegradation and Eco-Toxic Properties of Novel Starch and Gelatine Blend Bioplastics" Recycling 6, no. 4: 81. https://doi.org/10.3390/recycling6040081
APA StyleMroczkowska, M., Germaine, K., Culliton, D., Kakouli Duarte, T., & Neves, A. C. (2021). Assessment of Biodegradation and Eco-Toxic Properties of Novel Starch and Gelatine Blend Bioplastics. Recycling, 6(4), 81. https://doi.org/10.3390/recycling6040081