Rudimentary Assessment of Waste-to-Wealth of Used Tires Crumbs in Thermal Energy Storage
Abstract
:1. Introduction
1.1. What Are Tires
1.2. Tires as Waste
1.3. Utilization of Wasted Tires
1.4. Recycling Statistics of Wasted Tires
1.5. Utilization of Recycled Tires
1.6. Wasted Tires as Thermal Energy Storage
2. Materials and Methods
2.1. Characterization of Shredded Tires
2.2. Experimental Implementations
2.3. Measuring Instruments and Uncertainty Analysis
3. Results
3.1. Integral Analysis
3.2. Experimental Environment
3.3. Temperature Analysis of TES Materials
3.4. Energy Storage Analaysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Towards the Circular Economy. Economic and Business Rationale for an Accelerated Transition. Available online: https://www.ellenmacarthurfoundation.org/assets/downloads/publications/Ellen-MacArthur-Foundation-Towards-the-Circular-Economy-vol.1.pdf (accessed on 26 April 2022).
- Rada, E.C.; Tolkou, A.; Katsoyiannis, I.; Magaril, E.; Kiselev, A.; Conti, F.; Schiavon, M.; Torretta, V. Evaluating Global Municipal Solid Waste Management Efficiency from a Circular Economy Point of View. WIT Trans. Ecol. Environ. 2021, 253, 207–218. [Google Scholar] [CrossRef]
- Ferronato, N.; Rada, E.C.; Gorritty Portillo, M.A.; Cioca, L.I.; Ragazzi, M.; Torretta, V. Introduction of the circular economy within developing regions: A comparative analysis of advantages and opportunities for waste valorization, determining fundamental changes in public policy. J. Environ. Manag. 2019, 230, 366–378. [Google Scholar] [CrossRef]
- Ibrahim, O.M.O.; Tayeh, B.A. Combined effect of lightweight fine aggregate and micro rubber ash on the properties of cement mortar. Adv. Concr. Constr. 2020, 10, 537–546. [Google Scholar] [CrossRef]
- Chen, B.; Zheng, D.; Xu, R.; Leng, S.; Han, L.; Zhang, Q.; Liu, N.; Dai, C.; Wu, B.; Yu, G.; et al. Disposal methods for used passenger car tires: One of the fastest growing solid wastes in China. Green Energy Environ. 2021; in press. [Google Scholar] [CrossRef]
- Landi, D.; Gigli, S.; Germani, M.; Marconi, M. Investigating the feasibility of a reuse scenario for textile fibres recovered from end-of-life tyres. Waste Manag. 2018, 75, 187–204. [Google Scholar] [CrossRef] [PubMed]
- Mashiri, M.S.; Vinod, J.S.; Sheikh, M.N.; Tsang, H.-H. Shear strength and dilatancy behaviour of sand–tyre chip mixtures. Soils Found. 2015, 55, 517–528. [Google Scholar] [CrossRef] [Green Version]
- Mohajerani, A.; Burnett, L.; Smith, J.V.; Markovski, S.; Rodwell, G.; Rahman, M.T.; Kurmus, H.; Mirzababaei, M.; Arulrajah, A.; Horpibulsuk, S.; et al. Recycling waste rubber tyres in construction materials and associated environmental considerations: A review. Resour. Conserv. Recycl. 2020, 155, 104679. [Google Scholar] [CrossRef]
- Global Tire Recycling Market Analysis 2025: Opportunity, Demand, Growth and Forecast 2017–2025—Edition 2020. Available online: https://www.goldsteinresearch.com/report/global-tire-recycling-industry-market-trends-analysis (accessed on 20 April 2022).
- Shu, X.; Huang, B. Recycling of waste tire rubber in asphalt and portland cement concrete: An overview. Constr. Build. Mater. 2014, 67, 217–224. [Google Scholar] [CrossRef]
- Cheng, Y.; Hu, M. Reinhard, Environmental and Health Impacts of Artificial Turf: A Review. Environ. Sci. Technol. 2014, 48, 2114–2129. [Google Scholar] [CrossRef] [PubMed]
- Hamdi, A.; Abdelaziz, G.; Farhan, K.Z. Scope of reusing waste shredded tires in concrete and cementitious composite materials: A review. J. Build. Eng. 2021, 35, 102014. [Google Scholar] [CrossRef]
- Al-Attar, A.A.; Hamada, H.M.; Tayeh, B.A.; Awoyera, P.O. Exploring engineering properties of waste tire rubber for construction applications—A review of recent advances. Mater. Today Proc. 2014, 53, A1–A17. [Google Scholar] [CrossRef]
- Li, G.; Stubblefield, M.A.; Garrick, G.; Eggers, J.; Abadie, C.; Huang, B. Development of waste tire modified concrete. Cem. Concr. Res. 2004, 34, 2283–2289. [Google Scholar] [CrossRef]
- Kazmi, S.M.S.; Munir, M.J.; Wu, Y.-F. Application of waste tire rubber and recycled aggregates in concrete products: A new compression casting approach. Resour. Conserv. Recycl. 2021, 167, 105353. [Google Scholar] [CrossRef]
- Alaloul, W.S.; Musarat, M.A.; Haruna, S.; Law, K.; Tayeh, B.A.; Rafiq, W.; Ayub, S. Mechanical Properties of Silica Fume Modified High-Volume Fly Ash Rubberized Self-Compacting Concrete. Sustainability 2021, 13, 5571. [Google Scholar] [CrossRef]
- Jin, D.; Ge, D.; Zhou, X.; You, Z. Asphalt Mixture with Scrap Tire Rubber and Nylon Fiber from Waste Tires: Laboratory Performance and Preliminary M-E Design Analysis. Buildings 2022, 12, 160. [Google Scholar] [CrossRef]
- Geddie, J.; Varadhan, S.; Brock, J. Trading Tires: How the West Fuels a Waste Crisis in Asia, Reuters. Available online: https://www.reuters.com/article/us-asia-waste-tires-insight-idUSKBN1WX0LD (accessed on 22 September 2021).
- Wang, Q.; Wang, N.; Tseng, M.; Huang, Y.; Li, N. Waste tire recycling assessment: Road application potential and carbon emissions reduction analysis of crumb rubber modified asphalt in China. J. Clean. Prod. 2020, 249, 119411. [Google Scholar] [CrossRef]
- Ruwona, W.; Danha, G.; Muzenda, E. A Review on Material and Energy Recovery from Waste Tyres. Procedia Manuf. 2019, 35, 216–222. [Google Scholar] [CrossRef]
- World Business Council for Sustainable Development—WBCSD. ‘Global ELT Management—A Global State of Knowledge on Collection Rates, Recovery Routes, and Management Methods’, World Business Council for Sustainable Development—WBCSD. 2018. Available online: http://docs.wbcsd.org/2018/02/TIP/WBCSD_ELT_management_State_of_Knowledge_Report.pdf (accessed on 22 April 2022).
- Araujo-Morera, J.; Verdejo, R.; López-Manchado, M.A.; Hernández Santana, M. Sustainable mobility: The route of tires through the circular economy model. Waste Manag. 2021, 126, 309–322. [Google Scholar] [CrossRef] [PubMed]
- Williams, J. What Can the World Do with 1.5 Billion Waste Tires? Available online: https://earthbound.report/2017/06/29/what-can-the-world-do-with-1-5-billion-waste-tires/ (accessed on 22 September 2021).
- Abbassi, F.; Ahmad, F. Behavior analysis of concrete with recycled tire rubber as aggregate using 3D-digital image correlation. J. Clean. Prod. 2020, 274, 123074. [Google Scholar] [CrossRef]
- Li, J.; Xiao, X.; Chen, Z.; Xiao, F.; Amirkhanian, S.N. Internal de-crosslinking of scrap tire crumb rubber to improve compatibility of rubberized asphalt. Sustain. Mater. Technol. 2022, 32, e00417. [Google Scholar] [CrossRef]
- Hidalgo Signes, C.; Martínez Fernández, P.; Medel Perallón, E.; Insa Franco, R. Characterisation of an unbound granular mixture with waste tyre rubber for subballast layers. Mater. Struct. Mater. Constr. 2015, 48, 3847–3861. [Google Scholar] [CrossRef]
- Indraratna, B.; Qi, Y.; Jayasuriya, C.; Rujikiatkamjorn, C.; Arachchige, C.M.K. Use of recycled rubber inclusions with granular waste for enhanced track performance. Transp. Eng. 2021, 6, 100093. [Google Scholar] [CrossRef]
- Hambirao, G.S.; Rakaraddi, D.P. Soil stabilization using waste shredded rubber tyre chips. IOSR J. Mech. Civil. Eng. 2014, 11, 20–27. [Google Scholar] [CrossRef]
- Muzenda, E. A Discussion of Waste Tire Utilization Options. In Proceedings of the 2nd International Conference on Research in Science, Engineering and Technology (ICRSET’2014), Dubai, United Arab Emirates, 21–22 March 2014. [Google Scholar]
- Formela, K. Sustainable development of waste tires recycling technologies—Recent advances, challenges and future trends. Adv. Ind. Eng. Polym. Res. 2021, 4, 209–222. [Google Scholar] [CrossRef]
- Eddie, N. Laboy-Nieves. Energy Recovery from Scrap Tires: A Sustainable Option for Small Islands like Puerto Rico. Sustainability 2014, 6, 3105–3121. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Hernández, R.; Panecatl-Bernal, Y.; Méndez-Rojas, M.Á. High yield and simple one-step production of carbon black nanoparticles from waste tires. Heliyon 2019, 5, e02139. [Google Scholar] [CrossRef] [PubMed]
- Badenhorst, H. From Scrap Tires to Clean Renewable Energy. Technical Report. Available online: https://www.up.ac.za/media/shared/404/ZP_Files/Innovate%2009/Articles/from-scrap-tires-to-clean-renewableenergy_badenhorst.zp39689.pdf (accessed on 22 September 2020).
- Martínez, J.D.; Puy, N.; Murillo, R.; García, T.; Navarro, M.V.; Mastral, A.M. Waste tyre pyrolysis—A review. Renew. Sustain. Energy Rev. 2013, 23, 179–213. [Google Scholar] [CrossRef]
- Paukov, A.; Magaril, R.; Magaril, E. An investigation of the feasibility of the organic municipal solid waste processing by coking. Sustainability 2019, 11, 389. [Google Scholar] [CrossRef] [Green Version]
- Abdallah, R.; Juaidi, A.; Assas, M.; Salameh, T.; Manzano-Agugliaro, F. Energy Recovery from Waste Tires Using Pyrolysis: Palestine as Case of Study. Energies 2020, 13, 1817. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Yu, J.; Sun, C.; He, W.; Huang, J.; Li, G. High-value utilization of waste tires: A review with focus on modified carbon black from pyrolysis. Sci. Total Environ. 2020, 742, 140235. [Google Scholar] [CrossRef]
- BQ Chemicals. Available online: https://www.bqchemicals.com/new/ (accessed on 30 April 2022).
Compartment | TES Material | Type of TES |
---|---|---|
C-1 | 100% concrete. (the concrete is 3 parts of sand, 2 parts of cement to 1 part of aggregates) | sensible |
C-2 | 60%vol. Pebbles + 40%vol. Shredded Tires | sensible |
C-3 | 100% Pebbles | sensible |
C-4 | 60%vol. Paraffin Wax + 40%vol. Shredded Tires [PCM] | latent |
C-5 | 100% pure paraffin Wax [PCM] | latent |
C-6 | 100% Shredded Tires | sensible |
C-7 | 60%vol. Concrete + 40%vol. Shredded Tires. (the concrete is 3 parts of sand, 2 parts of cement to 1 part of aggregates) | sensible |
Variable | Instrument | Accuracy of the Instrument | Maximum Value | Uncertainty and % of Relative Uncertainty |
---|---|---|---|---|
Solar Irradiance | Pyranometer, MS402 | ±0.4% due to 0.2% nonlinearity and 0.2% tilt sensitivity | 880 W/m2 | ±3.52 W/m2 or ±0.4% |
Temperature | Type-J Thermocouples | ±0.75% | 112.5 °C | ±0.84 °C or ±0.74% |
Datalogger | ±1.55 °C up to 500 °C | 112.5 °C | ±0.35 °C or ±0.3% | |
Volume of compartment | Measuring tape | ±3 mm | 0.15 × 0.08 × 1.0 m | 3.6 × 10−5 m3 or ±0.3% |
mass | Digital balance | 0.001 kg | 25.2 kg | 0.0252 kg or ±0.1% |
TES Material | Code of the Compartment | Measured Density (kg/m3) | Heat Capacity (J/kg·K) | Mass of TES (kg) |
---|---|---|---|---|
Concrete | C-1 | 2400 | 880 | 25.2 |
Pebbles | C-3 | 1700 | 880 | 17.85 |
Paraffin | C-5 | 900 | 2500 | 9.45 |
Shredded tires | C-6 | 1000 | 1230 | 10.5 |
Mixture | Code of the Compartment | Mass of TES (kg) | Mass Fraction of Component a | Mass Fraction of Component b | Density of Mixture (kg/m3) | Heat Capacity of Mixture (J/kg·K) |
---|---|---|---|---|---|---|
60%vol. Paraffin wax + 40%vol. shredded tires | C-4 | 11.28 | 0.574 | 0.426 | 942.5 | 1960 |
60%vol. concrete + 40%vol. shredded tires | C-7 | 22.08 | 0.783 | 0.217 | 2096.2 | 956 |
60%vol. pebbles + 40%vol. shredded tires | C-2 | 17.04 | 0.7183 | 0.2817 | 1502.8 | 978.6 |
TES Material and Compartment Code | Charging Period (Hours) | Stored Solar Thermal Energy (W) | Percentage of Enhancement | Rate of Charging (W/h) | Remarks |
---|---|---|---|---|---|
100% shredded tires | 4.5 | 313.6 | - | 69.7 | - |
Paraffin wax | 7 | 888.6 | 127 | ||
60%vol. Paraffin + 40%vol. shredded tires | 7 | 741 | −20% | 105.8 | Negative effect |
100% Concrete | 5.5 | 410 | - | 74.5 | |
60%vol. Concrete + 40%vol. shredded tires | 6 | 783.6 | 42.9% | 130.6 | Positive effect |
100% black painted pebbles | 6 | 670 | - | 111.7 | |
60%vol. black painted pebbles + 40%vol. shredded tires | 5.5 | 849.5 | 27.7% | 154.5 | Considerable enhancement |
TES Material and Compartment Code | Discharge Period (Hours) | Released Thermal Energy (W) | % Enhancement (%) | Rate of Discharging (W/h) | Remarks |
---|---|---|---|---|---|
100% shredded tires | 5.5 | 273.4 | - | 49.7 | - |
Paraffin wax | 3 | 242.6 | - | 80.9 | - |
60%vol. Paraffin + 40%vol. shredded tires | 3 | 184.3 | −31.6 | 61.4 | Crumbs reduced the discharge capacity |
100% Concrete | 4.5 | 157.7 | - | 35 | - |
60%vol. Concrete + 40%vol. shredded tires | 4 | 208.8 | 24.4 | 52.2 | Small enhancement |
100% Black painted pebbles | 4 | 338.6 | - | 84.7 | - |
60%vol. Black painted pebbles + 40%vol. shredded tires | 4.5 | 483.4 | 30% | 107.4 | Considerable enhancement |
TES Material and Compartment Code | Charging Capacity (W/kg) | Percentage of Enhancement (%) | Discharging Capacity (W/kg) | Percentage of Enhancement (%) | Remarks |
---|---|---|---|---|---|
100% shredded tires | 29.9 | 26 | - | ||
Paraffin wax | 94 | 25.7 | - | ||
60% Paraffin + 40% shredded tires | 65.7 | −43 | 16.3 | −57.7 | Crumbs reduced the capacity |
100% Concrete | 16.3 | 6.3 | - | ||
60% Concrete + 40% shredded tires | 35.5 | 54 | 9.5 | 33.7 | Large enhancement |
100% Black painted pebbles | 37.5 | 19 | - | ||
60% black painted pebbles + 40% shredded tires | 50 | 25 | 28.4 | 33 | Good enhancement |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Kayiem, H.H.; Bhayo, B.A.; Magaril, E.; Ravi, P. Rudimentary Assessment of Waste-to-Wealth of Used Tires Crumbs in Thermal Energy Storage. Recycling 2022, 7, 40. https://doi.org/10.3390/recycling7030040
Al-Kayiem HH, Bhayo BA, Magaril E, Ravi P. Rudimentary Assessment of Waste-to-Wealth of Used Tires Crumbs in Thermal Energy Storage. Recycling. 2022; 7(3):40. https://doi.org/10.3390/recycling7030040
Chicago/Turabian StyleAl-Kayiem, Hussain H., Bilawal A. Bhayo, Elena Magaril, and Pavithra Ravi. 2022. "Rudimentary Assessment of Waste-to-Wealth of Used Tires Crumbs in Thermal Energy Storage" Recycling 7, no. 3: 40. https://doi.org/10.3390/recycling7030040
APA StyleAl-Kayiem, H. H., Bhayo, B. A., Magaril, E., & Ravi, P. (2022). Rudimentary Assessment of Waste-to-Wealth of Used Tires Crumbs in Thermal Energy Storage. Recycling, 7(3), 40. https://doi.org/10.3390/recycling7030040