Assessing Alternative Supporting Organic Materials for the Enhancement of Water Reuse in Subsurface Constructed Wetlands Receiving Acid Mine Drainage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collections
2.1.1. Acid Mine Drainage
2.1.2. Substrates
2.2. AMD Column eExposure
2.2.1. Sample Preparation
2.2.2. Experimental Columns
Phase 1
Phase 2
2.3. Chemical/Biological Analyses
2.3.1. Substrates
Pre-AMD Exposure (Day O)
Post-AMD Exposure (Day 35—Phase 1; Day 73—Phase 2)
Test Methods for Substrate Analyses
2.3.2. Water Samples
Untreated AMD (Day 0)
Remediated AMD (Day 35—Phase 1; Day 73—Phase 2)
Test Methods for Water Analyses
2.3.3. Microbial Diversity—16 S rRNA Sequencing
2.4. Data Analyses
3. Results and Discussion
3.1. Phase 1 and 2 Observations
3.1.1. Substrates
Chemical Results
Discussion—Phase 1 Substrate Results
Discussion—Phase 2 Substrate Results
3.1.2. Water Samples
Chemistry Results—Phase 1
Chemistry Results—Phase 2
3.2. Phase 1 Versus Phase 2 Substrate Efficiency and Remediation Achievement
3.3. Microbial Diversity—16S rRNA Sequencing
3.4. Principal Component Analyses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Akcil, A.; Koldas, S. Acid Mine Drainage (AMD): Causes, treatment and case studies. J. Clean. Prod. 2006, 14, 1139–1145. [Google Scholar] [CrossRef]
- Ben Ali, H.E.; Neculita, C.M.; Molson, J.W.; Maqsoud, A.; Zagury, G.J. Performance of passive systems for mine drainage treatment at low temperature and high salinity: A review. Miner. Eng. 2019, 134, 325–344. [Google Scholar] [CrossRef]
- Coetser, S.E.; Pulles, W.; Heath, R.G.M.; Cloete, T.E. Chemical characterisation of organic electron donors for sulfate reduction for potential use in acid mine drainage treatment. Biodegradation 2006, 17, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Dzwairo, B.; Mujuru, M. Assessment of impacts of acid mine drainage on surface water quality of Tweelopiespruit micro-catchment, Limpopo Basin. In Water Quality; Tutu, H., Ed.; IntechOpen: London, UK, 2017. [Google Scholar] [CrossRef] [Green Version]
- Magowo, W.E.; Sheridan, C.; Rumbold, K. Bioremediation of acid mine drainage using Fischer-Tropsch waste water as a feedstock for dissimilatory sulfate reduction. J. Water Process Eng. 2020, 35, 101229. [Google Scholar] [CrossRef]
- Moodley, I.; Sheridan, C.M.; Kappelmeyer, U.; Akcil, A. Environmentally sustainable acid mine drainage remediation: Research developments with a focus on waste/by-products. Miner. Eng. 2018, 126, 207–220. [Google Scholar] [CrossRef]
- Rambabu, K.; Banat, F.; Pham, Q.M.; Ho, S.-H.; Ren, N.-Q.; Show, P.L. Biological remediation of acid mine drainage: Review of past trends and current outlook. Environ. Sci. Ecotechnol. 2020, 2, 100024. [Google Scholar] [CrossRef]
- Steyn, M.; Oberholster, P.J.; Botha, A.M.; Genthe, B.; Van den Heever-Kriek, P.E.; Weyers, C. Treated acid mine drainage and stream recovery: Downstream impacts on benthic macroinvertebrate communities in relation to multispecies toxicity bioassays. J. Environ. Manag. 2019, 235, 377–388. [Google Scholar] [CrossRef]
- Tsukamoto, T.K.; Killion, H.A.; Miller, G.C. Column experiments for microbiological treatment of acid mine drainage: Low-temperature, low-pH and matrix investigations. Water Res. 2004, 38, 1405–1418. [Google Scholar] [CrossRef]
- Costa, M.C.; Duarte, J.C. Bioremediation of acid mine drainage using acidic soil and organic wastes for promoting sulphate-reducing bacteria activity on a column reactor. Water Air Soil Pollut. 2005, 165, 325–345. [Google Scholar] [CrossRef]
- Saha, S.; Sinha, A. Review on treatment of acid mine drainage with waste materials: A novel approach. Glob. Nest J. 2018, 20, 512–528. [Google Scholar] [CrossRef] [Green Version]
- Ford, K.L. Passive Treatment Systems for Acid Mine Drainage. Technical Note 409. 2003. Available online: https://digitalcommons.unl.edu/usblmpub/19/ (accessed on 14 April 2022).
- RoyChowdhury, A.; Sarkar, D.; Datta, R. Remediation of acid mine drainage-impacted water. Curr. Pollut. Rep. 2015, 1, 131–141. [Google Scholar] [CrossRef]
- Kozyatnyk, I.; Lövgren, L.; Haglund, P. On the leaching of mercury by brackish seawater from permeable barriers materials and soil. J. Environ. Chem. Eng. 2015, 3, 1200–1206. [Google Scholar] [CrossRef]
- Kozyatnyk, I.; Lövgren, L.; Tysklind, M.; Haglund, P. Multivariate assessment of barriers materials for treatment of complex groundwater rich in dissolved organic matter and organic and inorganic contaminants. J. Environ. Chem. Eng. 2017, 5, 3075–3082. [Google Scholar] [CrossRef]
- Costa, P.F.; de Matos, L.P.; Leão, V.A.; Teixeira, M.C. Bioremoval of arsenite and sulfate by a mixed culture with sulfate-reducing capacity growing on powdered chicken feathers. J. Environ. Chem. Eng. 2014, 2, 70–75. [Google Scholar] [CrossRef]
- Pat-Espadas, A.M.; Loredo Portales, R.; Amabilis-Sosa, L.E.; Gómez, G.; Vidal, G. Review of constructed wetlands for acid mine drainage treatment. Water 2018, 10, 1685. [Google Scholar] [CrossRef] [Green Version]
- De Klerk, A.R.; Oberholster, P.J.; Van Wyk, J.H.; Truter, J.C.; Schaefer, L.M.; Botha, A.M. The effect of rehabilitation measures on ecological infrastructure in response to acid mine drainage from coal mining. Ecol. Eng. 2016, 95, 463–474. [Google Scholar] [CrossRef]
- Skousen, J.; Zipper, C.E.; Rose, A.; Ziemkiewicz, P.F.; Nairn, R.; McDonald, L.M.; Kleinmann, R.L. Review of passive systems for acid mine drainage treatment. Mine Water Environ. 2017, 36, 133–153. [Google Scholar] [CrossRef] [Green Version]
- WSP Group Africa. Emalahleni Water Reclamation Plant. Consolidated Environmental Management Programme. Anglo Operations (Pty) Ltd. Project No. 41102615; WSP: Bryanston, South Africa, 2021; Available online: https://www.wsp.com/en-ZA/services/public-documents (accessed on 12 April 2022).
- Infrastructure News. Desalination: Affordable, Reliable, Sustainable—Continual Development. 2018. Available online: https://infrastructurenews.co.za/2018/11/16/desalination-affordable-reliable-sustainable/ (accessed on 14 April 2022).
- Matshusa-Masithi, M.P.; Ogola, J.S.; Chimuka, L. Use of compost bacteria to degrade cellulose from grass cuttings in biological removal of sulphate from acid mine drainage. Water SA 2009, 35, 111–116. [Google Scholar] [CrossRef] [Green Version]
- Othman, A.; Sulaiman, A.; Sulaiman, S.K. The study on the effectiveness of organic material in acid mine drainage treatment. J. Teknol. 2015, 77, 79–84. [Google Scholar] [CrossRef] [Green Version]
- Tang, K.; Baskaran, V.; Nemati, M. Bacteria of the sulphur cycle: An overview of microbiology, biokinetics and their role in petroleum and mining industries. Biochem. Eng. J. 2009, 44, 73–94. [Google Scholar] [CrossRef]
- Azaroual, S.E.; Kasmi, Y.; Aasfar, A.; El Arroussi, H.; Zeroual, Y.; El Kadiri, Y.; Zrhridri, A.; Elfahime, E.; Sefiani, A.; Kadmiri, I.M. 16S Metagenomics investigation of bacterial diversity and prediction of its functionalities in Moroccan phosphate mine ecosystem. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, C.K.; Cheng, Y.; Zhang, S.; Zhao, H. A comparison of methods for clustering 16S rRNA sequences into OTUs. PLoS ONE 2013, 8, e70837. [Google Scholar] [CrossRef] [PubMed]
- ThermoFisher Scientific. Ion 16S Metagenomics Kit and Ion Reporter Metagenomics Workflow Solution. 2016. Available online: https://tools.thermofisher.com/content/sfs/brochures/ion-16s-reporter-metagenomics-workflow-flyer.pdf (accessed on 14 April 2022).
- Choudhary, R.P.; Sheoran, A.S. Performance of single substrate in sulphate reducing bioreactor for the treatment of acid mine drainage. Miner. Eng. 2012, 39, 29–35. [Google Scholar] [CrossRef]
- Singh, S.; Chakraborty, S. Performance of organic substrate amended constructed wetland treating acid mine drainage (AMD) of North-Eastern India. J. Hazard. Mater. 2020, 397, 122719. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Mao, X.; Zhang, J.; Du, G.; Chen, J. Effective biodegradation of chicken feather waste by co-cultivation of keratinase producing strains. Microb. Cell Fact. 2019, 18, 84. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, H. Organic wastes as carbon sources to promote sulfate reducing bacterial activity for biological remediation of acid mine drainage. Miner. Eng. 2014, 69, 81–90. [Google Scholar] [CrossRef]
- Dueholm, M.K.D.; Nierychio, M.; Andersen, K.S.; Rudkjøbing, V.; Knutsson, S.; MiDAS Global Consortium; Albertsen, M.; Nielsen, P.H. MiDAS 4: A global catalogue of full-length 16S rRNA gene sequences and taxonomy for studies of bacterial communities in wastewater treatment plants. Nat. Commun. 2022, 13, 1908. [Google Scholar] [CrossRef]
- Gupta, A.; Dutta, A.; Sarkar, J.; Panigrahi, M.K.; Sar, P. Low-abundance members of the Firmicutes facilitate bioremediation of soil impacted by highly acidic mine drainage from the Malanjkhand copper project, India. Front. Microbiol. 2018, 9, 2882. [Google Scholar] [CrossRef]
- Nierychlo, M.; Andersen, K.S.; Xu, Y.; Green, N.; Jiang, C.; Albertsen, M.; Dueholm, M.S.; Nielsen, P.H. MiDAS 3: An ecosystem-specific reference database, taxonomy and knowledge platform for activated sludge and anaerobic digesters reveals species-level microbiome composition of activated sludge. Water Res. 2020, 182, 115955. [Google Scholar] [CrossRef]
- Tiburcio, S.R.G.; Macrae, A.; Peixoto, R.S.; da Costa Rachid, C.T.C.; Mansoldo, F.R.P.; Alviano, D.S.; Alviano, C.S.; Ferreira, D.F.; de Queiroz Venâncio, F.; Ferreira, D.F. Sulphate-reducing bacterial community structure from produced water of the Periquito and Galo de Campina onshore oilfields in Brazil. Sci. Rep. 2021, 11, 20311. [Google Scholar] [CrossRef]
PHASE 1: AMD Volume ± 2 L | PHASE 2: AMD Water Volume Was 2.5 L Substrate Volume Comprised ⅔ Substrate and ⅓ CF | ||||||
---|---|---|---|---|---|---|---|
Substrate | Volume | Comments | Total Weight | Substrate | Volume | Comments | Total Weight |
CM | 1.15 L | Used as control | 540 g | CM | 0.4 L | 190 g CM—Control | 190 g |
Slimes | Experimental substrate—aimed to understand what the various media do to the AMD over time. | 940 g | Slimes & CF | 230 g Slimes + 26 g CF | 256 g | ||
FA | 1250 g | FA & CF | 310 g FA + 26 g CF | 336 g | |||
Sludge | 1820 g | Sludge & CF | 480 g Sludge + 26 g CF | 506 g | |||
Slag | 2200 g | Slag & CF | 630 g Slag + 26 g CF | 656 g | |||
Discard | 1400 g | Discard & CF | 360 g Discard + 26 g CF | 386 g | |||
CF | 200 g | CF | 120 g CF | 120 g | |||
Blank | 3 L | No substrate, only filter media and AMD | N/A | CM & CF | 130 g CM + 26 g CF | 156 g | |
Filter Media—Cumulative weight for each experimental column was 16 g (not added to total reported weight) |
Selected Chemical Parameters | Analyses Method |
---|---|
Total carbon % | Medium combustion and infrared detection (LECO CS23o instrument) |
Total organic carbon (%) | Boiling medium in diluted acid (removing inorganic carbon as CO2); remaining organic carbon is dried and analysed by combustion and infrared detection (LECO CS23o instrument) |
Total inorganic carbon (%) | Calculated from total carbon and organic carbon results (TC − TOC = TIC) |
Total nitrogen (%) | DUMAS/Combustion method |
Total phosphorous (%) | Inductively Coupled Plasma Optical Emission spectroscopy (ICP-OES) |
Water-soluble phosphorous (%) | Inductively Coupled Plasma Optical Emission spectroscopy (ICP-OES) |
Selected Chemical Parameters | Analyses Method |
---|---|
Acidity (mg CaCO3/L) | Titrimetric (indicator/pH): Acidity |
Total alkalinity (mg CaCO3/L) | Titrimetric (indicator/pH): Alkalinity |
pH | pH: Electrometric |
Oxidation reduction potential (mV) | mV Reading: Electrometric |
Total dissolved solids (mg/L) | Calculation: Adding cations and anions measured |
Ammonium and ammonia (mg N/L) | Spectrometry: Ammonia calculated according to pH, ammonium and ammonia concentration |
Total organic nitrogen (mg N/L) | Spectrometry calculation |
Nitrite (mg N/L) | Spectrometry |
Orthophosphate (mg P/L) | Spectrometry |
Sulphate (mg SO4/L) | Spectrometry |
Aluminium (mg Al/L) | ICP Spectrometry |
Iron (mg Fe/L) | ICP Spectrometry |
Manganese (mg Mn/L) | ICP Spectrometry |
Total organic carbon (mg C/L) | TOC analyser: Analytiklena combustion |
Sulphide (mg S2/L) | Titrimetric (combined with metals) |
Phase 1—Single Substrate | CF | CM | Slag | Sludge | Slimes | FA | Discard | ||
---|---|---|---|---|---|---|---|---|---|
Pre-AMD exposure | % TC | 46.7 | 22.6 | 1.57 | 8.73 | 11.3 | 18.1 | 18.1 | |
% TOC | 2.36 | 12.2 | 0.93 | 2.52 | 9.40 | 16.9 | 16.9 | ||
% TIC | 44.3 | 10.4 | 0.64 | 6.21 | 1.90 | 1.20 | 1.20 | ||
Phase 2—Mixed substrates | CF Alone | CM Alone | Slag and CF | Sludge and CF | Slimes and CF | FA and CF | Discard and CF | CM and CF | |
Pre-AMD exposure | % TC | 48.66 | 18.63 | 3.27 | 8.65 | 15.64 | 23.15 | 11.86 | 24.48 |
% TOC | 48.65 | 18.56 | 3.16 | 8.65 | 14.64 | 22.27 | 11.72 | 24.41 | |
% TIC | 0.01 | 0.01 | 0.12 | 0.05 | 1.0 | 0.88 | 0.14 | 0.07 | |
% N | 14.8 | 1.75 | 0.77 | 0.7 | 1.38 | 0.12 | 1.23 | 3.63 | |
% P | 0.1 | 0.34 | ND | 0.02 | 0.09 | 0.07 | 0.04 | 0.30 | |
% Water-soluble P | 0.02 | 0.07 | ND | ND | ND | ND | ND | 0.06 | |
Phase 2—Mixed substrates | CF Alone | CM Alone | Slag and CF | Sludge and CF | Slimes and CF | FA and CF | Discard and CF | CM and CF | |
Post-AMD exposure | % TC | 37.8 ± 5.5 | 26.9 ± 11.6 | 2.8 ± 0.38 | 9.3 ± 1.81 | 13.7 ± 0.51 | 5.1 ± 0.36 | 17.1 ± 0.85 | 16.1 ± 13.7 |
% TOC | 37.8 ± 5.5 | 26.9 ± 11.6 | 2.7 ±0.35 | 9.2 ±1.80 | 12.5 ± 0.49 | 4.2 ±0.30 | 17.0 ± 0.86 | 16.1 ± 13.7 | |
% TIC | 0 ± 0.01 | 0.02 ± 0.01 | 0.2 ± 0.03 | 0.1 ± 0.03 | 1.2 ± 0.04 | 0.9 ± 0.06 | 0.1 ± 0.01 | 0.03 ± 0.01 | |
% N | 10.8 ± 1.6 | 2.06 ± 1.7 | 0.41 ± 0.11 | 0.9 ± 0.15 | 1.2 ± 1.01 | 1.0 ± 0.10 | 1.2 ± 0.13 | 2.2 ± 1.58 | |
% P | 0.07 ± 0.01 | 0.20 ± 0.03 | 0.01 ± 0.01 | 0.02 ± 0.00 | 0.06 ± 0.01 | 0.07 ± 0.00 | 0.04 ± 0.00 | 0.20 ± 0.04 | |
% Water-soluble P | ND | 0.01 ± 0.00 | ND | ND | ND | ND | ND | 0.01 ± 0.00 |
Parameter | Pre-Exposure | Remediated AMD | |||||||
---|---|---|---|---|---|---|---|---|---|
AMD | Blank | CM | Slimes | FA | Sludge | Slag | CF | Discard | |
Alkalinity (mg CaCO3/L) | 0 | 0 | 6 313 | 217 | 283 | 6 | 27 | 2340 | 324 |
pH | 2.62 | 2.54 | 7.04 | 7.55 | 6.52 | 4.70 | 5.43 | 6.01 | 6.37 |
TDS (mg/L) | 4 533 | 4521 | 14,752 | 13,574 | 5333 | 3272 | 3836 | 6530 | 7656 |
SO4 (mg/L) | 3 325 | 3357 | 1939 | 6997 | 2934 | 2387 | 2770 | 2996 | 5344 |
Al (mg/L) | 72 | 85 | 1 | 0 | <0.01 | 0.85 | 5 | <0.01 | 0 |
Fe (mg/L) | 264 | 227 | 0 | 0 | 1 | 13 | 5 | 1 | 0 |
Mn (mg/L) | 26 | 26 | 4 | 5 | 16 | 24 | 28 | 19 | 19 |
NH3 and NH4 (mg N/L) | 9 | 7 | 332 | 5 | 9 | 11 | 4 | 879 | 3 |
NO2 and NO3 (mg N/L) | <0.35 | <0.35 | <0.35 | 48 | 22 | <0.35 | <0.35 | <0.35 | <0.35 |
NO2 (mg N/L) | <0.01 | <0.01 | <0.01 | 20 | 2 | <0.01 | <0.01 | <0.01 | <0.01 |
Ortho-P (mg P/L) | <0.03 | 0.065 | 50 | 0.057 | <0.03 | <0.03 | <0.03 | 1.05 | <0.03 |
S2 (mg/L) | 3 | 5 | 71 | <0.5 | 1 | 7 | 4 | 16 | 5 |
TOC (mg C/L) | 3 | 19 | 4219 | 19 | 78 | 74 | 25 | 2409 | 48 |
SO4 Reduction—Phase 1 | CM | Sludge | Slag | FA | CF | Slimes | Discard |
---|---|---|---|---|---|---|---|
Volume-related reduction achieved (1.15 L substrate) | 42% | 28% | 17% | 12% | 10% | 110% increase | 60% increase |
Weight-related reduction achieved relative to cow manure carbon content analysed | 42% | 8% | 4% | 5% | 27% | 63% increase | 23% increase |
Parameter | Pre-Exposure (Day 0) | Remediated AMD Water (Day 73) | |||||||
---|---|---|---|---|---|---|---|---|---|
AMD | CM & CF | CM | Slimes & CF | FA & CF | Sludge & CF | Slag & CF | CF | Discard & CF | |
Alkalinity (mg/L) | 0 | 2450 | 2454 | 1542 | 1819 | 101 | 390 | 839 | 559 |
pH | 3.00 | 7.03 | 7.20 | 7.87 | 7.32 | 5.73 | 7.10 | 6.81 | 6.16 |
TDS (mg/L) | 4 351 | 5131 | 5432 | 4404 | 4277 | 2938 | 3428 | 3436 | 3998 |
SO4 (mg/L) | 3 208 | 1218 | 1085 | 1843 | 1605 | 2071 | 2250 | 1919 | 2497 |
Al (mg/L) | 68 | 0.04 | 0.22 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
Fe (mg/L) | 245 | 0.17 | 0.26 | 0.39 | 0.13 | 31 | 0.34 | 0.19 | 17 |
Mn (mg/L) | 25.4 | 9.5 | 7.4 | 2.2 | 1.3 | 16.6 | 17.4 | 16.6 | 19.8 |
NH3 & NH4 mg/L) | 12 | 146 | 49 | 89 | 201 | 61 | 65 | 153 | 48 |
Total N (mg/L) | 12 | 146 | 49 | 89 | 201 | 61 | 65 | 153 | 48 |
Ortho-P (mg/L) | <0.03 | 25 | 34 | 0.12 | 0.93 | <0.03 | <0.03 | 0.06 | <0.03 |
S2 (mg/L) | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 |
TOC (mg C/L) | 20 | 1011 | 361 | 464 | 1543 | 142 | 26 | 1040 | 85 |
SO4 Reduction—Phase 2 | CM | Sludge and CF | Slag and CF | FA and CF | CF | Slimes and CF | Discardand CF |
---|---|---|---|---|---|---|---|
Volume-related reduction achieved (1.04 L substrate) | 66% | 35% | 30% | 50% | 40% | 43% | 22% |
Weight-related reduction achieved relative to cow manure carbon content analysed | 66% | 13% | 9% | 28% | 63% | 29% | 11% |
Substrate | % TOC | % N | % P |
---|---|---|---|
Cow manure (Control) | 0.13 | 0.18 | 1.71 |
Chicken feathers | 0.27 | 0.13 | 0.02 |
Cow manure and chicken feathers | 0.62 | 0.61 | 1.35 |
Slimes and chicken feathers | 0.35 | 0.65 | 0.06 |
Fly ash and chicken feathers | 3.62 | 1.93 | 0.13 |
Sludge and chicken feathers | 0.13 | 0.56 | Not detected |
Slag and chicken feathers | 0.02 | 1.29 | Not detected |
Discard and chicken feathers | 0.04 | 0.29 | Not detected |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oberholzer, M.M.; Oberholster, P.J.; Ndlela, L.L.; Botha, A.-M.; Truter, J.C. Assessing Alternative Supporting Organic Materials for the Enhancement of Water Reuse in Subsurface Constructed Wetlands Receiving Acid Mine Drainage. Recycling 2022, 7, 41. https://doi.org/10.3390/recycling7030041
Oberholzer MM, Oberholster PJ, Ndlela LL, Botha A-M, Truter JC. Assessing Alternative Supporting Organic Materials for the Enhancement of Water Reuse in Subsurface Constructed Wetlands Receiving Acid Mine Drainage. Recycling. 2022; 7(3):41. https://doi.org/10.3390/recycling7030041
Chicago/Turabian StyleOberholzer, Martha M., Paul J. Oberholster, Luyanda L. Ndlela, Anna-Maria Botha, and Johannes C. Truter. 2022. "Assessing Alternative Supporting Organic Materials for the Enhancement of Water Reuse in Subsurface Constructed Wetlands Receiving Acid Mine Drainage" Recycling 7, no. 3: 41. https://doi.org/10.3390/recycling7030041
APA StyleOberholzer, M. M., Oberholster, P. J., Ndlela, L. L., Botha, A. -M., & Truter, J. C. (2022). Assessing Alternative Supporting Organic Materials for the Enhancement of Water Reuse in Subsurface Constructed Wetlands Receiving Acid Mine Drainage. Recycling, 7(3), 41. https://doi.org/10.3390/recycling7030041