Selective Recovery of Tin from Electronic Waste Materials Completed with Carbothermic Reduction of Tin (IV) Oxide with Sodium Sulfite
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Effect of Temperature and the Amount of Sodium Sulfite
2.2. Kinetic Studies
2.3. The Proposed Mechanism of the Smelting Process
2.4. The Effect of the Presence of Lead
3. Materials and Methods
3.1. Chemicals
3.2. Instrumentation
3.3. Smelting Process
3.4. Chemical Analysis
3.5. Experimental Data Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Angadi, S.I.; Sreenivas, T.; Jeon, H.-S.; Baek, S.-H.; Mishra, B.K. A review of cassiterite beneficiation fundamentals and plant practices. Miner. Eng. 2015, 70, 178. [Google Scholar] [CrossRef]
- Barry, B.T.K. Tin Processing in Encyclopedia Britannica; Encyclopaedia Britannica, Inc.: Chicago, IL, USA, 2017. [Google Scholar]
- Su, Z.; Zhang, Y.; Liu, B.; Lu, M. Extraction and Separation of Tin from Tin-Bearing Secondary Resources: A Review. JOM 2017, 69, 2364. [Google Scholar] [CrossRef]
- Jun, W.S.; Yun, P.S.; Lee, E.C. Leaching behavior of tin from Sn–Fe alloys in sodium hydroxide solutions. Hydrometallurgy 2004, 73, 71. [Google Scholar] [CrossRef]
- Choi, Y.I.; Salman, S.; Kuroda, K.; Okido, M. Synergistic corrosion protection for AZ31 Mg alloy by anodizing and stannate post-sealing treatments. Electrochim. Acta 2013, 97, 313. [Google Scholar] [CrossRef]
- Ranitović, M.; Kamberović, Z.; Korać, M.; Jovanović, N.; Mihjalović, A. Hydrometallurgical recovery of tin and lead from waste printed circuit boards (WPCBs): Limitations and opportunities. Metalurgija 2016, 55, 153. [Google Scholar]
- Barakat, M.A.; Koike, K. Acid leaching of indium–lead–tin alloy wire scrap. J. Soc. Mater. Eng. Resour. Jpn. 1997, 10, 36. [Google Scholar] [CrossRef]
- Castro, L.A.; Martins, A.H. Recovery of tin and copper by recycling of printed circuit boards from obsolete computers. Braz. J. Chem. Eng. 2009, 26, 649. [Google Scholar] [CrossRef]
- Kim, S.K.; Lee, J.C.; Yoo, K.K. Leaching of tin from waste Pb-free solder in hydrochloric acid solution with stannic chloride. Hydrometallurgy 2016, 165, 143. [Google Scholar] [CrossRef]
- Leveque, G.; Abanades, S. Thermodynamic and Kinetic Study of the Carbothermal Reduction of SnO2 for Solar Thermochemical Fuel Generation. Energy Fuels 2014, 28, 1396. [Google Scholar] [CrossRef]
- Kim, B.-S.; Lee, J.-C.; Yoon, H.-S.; Kim, S.-K. Reduction of SnO2 with Hydrogen. Mater. Trans. 2011, 52, 1814. [Google Scholar] [CrossRef]
- Cetinkaya, S.; Eroglu, S. Thermodynamic analysis and reduction of tin oxide with methane. Int. J. Miner. Process. 2012, 110–111, 71. [Google Scholar] [CrossRef]
- El Deeb, A.B.; Morsi, I.M.; Atlam, A.A.; Omar, A.A.; Fathy, W.M. Pyrometallurgical Extraction of Tin Metal from the Egyptian Cassiterite Concentrate. Int. J. Sci. Eng. Res. 2015, 6, 54. [Google Scholar]
- Ha, H.; Yoo, M.; An, H.; Shin, K.; Han, T.; Sohn, Y.; Kim, S.; Lee, S.-R.; Han, J.H.; Kim, H.Y. Design of Reduction Process of SnO2 by CH4 for Efficient Sn Recovery. Sci. Rep. 2017, 7, 14427. [Google Scholar] [CrossRef] [PubMed]
- Hyk, W.; Kitka, K.; Rudnicki, D. Method for the Selective Recovery of Tin and a Reactor for Use in Said Method. PCT/IB2019/052273, 26 September 2019. [Google Scholar]
- Lewis, R.J., Sr. (Ed.) Hawley’s Condensed Chemical Dictionary, 13th ed.; John Wiley & Sons, Inc.: New York, NY, USA, 1997; p. 1029. [Google Scholar]
- Han, G.B.; Park, N.-K.; Yoon, S.H.; Lee, T.J. Catalytic reduction of sulfur dioxide with carbon monoxide over tin dioxide for direct sulfur recovery process. Chemosphere 2008, 72, 1744. [Google Scholar] [CrossRef] [PubMed]
- Stacy, W.O.; Vastola, F.J.; Walker, P.L., Jr. Interaction of sulfur dioxide with active carbon. Carbon 1968, 6, 917. [Google Scholar] [CrossRef]
- Karan, K.; Mehrotra, A.K.; Behie, L.A. Thermal decomposition of carbonyl sulfide at temperatures encountered in the front end of modified claus plants. Chem. Eng. Comm. 2005, 192, 370. [Google Scholar] [CrossRef]
Reducing Agent (Temperature [°C]) | Tin Recovery [%] | Reference |
---|---|---|
C graphite/CO (1000) | 100 | 10 |
H2 (1300) | 100 | 11 |
CH4 (1473) | 100 | 12 |
C charcoal/Na2CO3-NaNO3 (1000) | 95 | 13 |
Ar-balanced CH4 (1000) | 80 | 14 |
C charcoal/Na2SO3 (1050) | 98 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hyk, W.; Kitka, K. Selective Recovery of Tin from Electronic Waste Materials Completed with Carbothermic Reduction of Tin (IV) Oxide with Sodium Sulfite. Recycling 2024, 9, 54. https://doi.org/10.3390/recycling9040054
Hyk W, Kitka K. Selective Recovery of Tin from Electronic Waste Materials Completed with Carbothermic Reduction of Tin (IV) Oxide with Sodium Sulfite. Recycling. 2024; 9(4):54. https://doi.org/10.3390/recycling9040054
Chicago/Turabian StyleHyk, Wojciech, and Konrad Kitka. 2024. "Selective Recovery of Tin from Electronic Waste Materials Completed with Carbothermic Reduction of Tin (IV) Oxide with Sodium Sulfite" Recycling 9, no. 4: 54. https://doi.org/10.3390/recycling9040054
APA StyleHyk, W., & Kitka, K. (2024). Selective Recovery of Tin from Electronic Waste Materials Completed with Carbothermic Reduction of Tin (IV) Oxide with Sodium Sulfite. Recycling, 9(4), 54. https://doi.org/10.3390/recycling9040054