Experimental Study on the Separation of Selected Metal Elements (Sm, Co, Fe, and Cu) from Nitric Acid Leachate Using Specific Precipitants
Abstract
:1. Introduction
2. Results and Discussion
2.1. Selective Precipitation of Sm by Na2SO4
2.2. Selective Precipitation of Fe by NaOH
2.3. Selective Precipitation of Cu by NaOH
2.4. Selective Precipitation of Co by Oxalic Acid
2.5. Characterization of NaSm(SO4)2
2.6. Preparation of Iron Oxide and Characterization
2.7. Preparation of Copper Oxide and Characterization
2.8. Preparation of Cobalt Oxide and Characterization
3. Materials and Methods
3.1. Materials
3.2. Equipment
3.3. Experimental Method
3.3.1. The Composition of the Magnet
3.3.2. Leaching of Magnets
3.3.3. Precipitation Method
3.3.4. Sm Precipitation
3.3.5. Fe and Cu Precipitation
3.3.6. Co Precipitation
3.3.7. Product Preparation and Characterization
3.3.8. Separation Process
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Golev, A.; Scott, M.; Erskine, P.D.; Ali, S.H.; Ballantyne, G.R. Rare earths supply chains: Current status, constraints and opportunities. Resour. Policy 2014, 41, 52–59. [Google Scholar] [CrossRef]
- Massari, S.; Ruberti, M. Rare earth elements as critical raw materials: Focus on international markets and future strategies. Resour. Policy 2013, 38, 36–43. [Google Scholar] [CrossRef]
- USGS. Mineral Commodity Summaries 2023; U.S. Geological Survey: Reston, VA, USA, 2023. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, Q.; Zhang, J.; Huang, Y.; Xiong, T. Did China’s rare earth export policies work?—Empirical evidence from USA and Japan. Resour. Policy 2015, 43, 82–90. [Google Scholar] [CrossRef]
- Fan, J.H.; Omura, A.; Roca, E. Geopolitics and rare earth metals. Eur. J. Political Econ. 2022, 78, 102356. [Google Scholar] [CrossRef]
- Du, X.; Graedel, T.E. Uncovering the end uses of the rare earth elements. Sci. Total Environ. 2013, 461–462, 781–784. [Google Scholar] [CrossRef]
- Salim, H.; Sahin, O.; Elsawah, S.; Turan, H.; Stewart, R.A. A critical review on tackling complex rare earth supply security problem. Resour. Policy 2022, 77, 102697. [Google Scholar] [CrossRef]
- Wübbeke, J. Rare earth elements in China: Policies and narratives of reinventing an industry. Resour. Policy 2013, 38, 384–394. [Google Scholar] [CrossRef]
- Wang, J.; Guo, M.; Liu, M.; Wei, X. Long-term outlook for global rare earth production. Resour. Policy 2020, 65, 101569. [Google Scholar] [CrossRef]
- Paulick, H.; Machacek, E. The global rare earth element exploration boom: An analysis of resources outside of China and discussion of development perspectives. Resour. Policy 2017, 52, 134–153. [Google Scholar] [CrossRef]
- Li, X.Y.; Ge, J.P.; Chen, W.Q.; Wang, P. Scenarios of rare earth elements demand driven by automotive electrification in China: 2018–2030. Resour. Conserv. Recycl. 2019, 145, 322–331. [Google Scholar] [CrossRef]
- Ascenzi, P.; Bettinelli, M.; Boffi, A.; Botta, M.; Simone, G.D.; Luchinat, C.; Marengo, E.; Mei, H.; Aime, S. Rare earth elements (REE) in biology and medicine. Rend. Lincei Sci. Fis. E Nat. 2020, 31, 821–833. [Google Scholar] [CrossRef]
- Penchoff, D.A.; Sims, C.B.; Windus, T.L. Rare Earth Elements and Critical Materials: Uses and Availability. In Rare Earth Elements and Actinides: Progress in Computational Science Applications; Penchoff, D.A., Windus, T.L., Peterson, C.C., Eds.; American Chemical Society: Washington, WA, USA, 2021; pp. 63–74. [Google Scholar] [CrossRef]
- Yang, Y.; Lan, C.; Wang, Y.; Zhao, Z.; Li, B. Recycling of ultrafine NdFeB waste by the selective precipitation of rare earth and the electrodeposition of iron in hydrofluoric acid. Sep. Purif. Technol. 2020, 230, 115870. [Google Scholar] [CrossRef]
- Padhan, E.; Nayak, A.K.; Sarangi, K. Recovery of neodymium and dysprosium from NdFeB magnet swarf. Hydrometallurgy 2017, 74, 210–215. [Google Scholar] [CrossRef]
- Padhan, E.; Sarangi, K. Recovery of Nd and Pr from NdFeB magnet leachates with bi-functional ionic liquids based on Aliquat 336 and Cyanex 272. Hydrometallurgy 2017, 167, 134–140. [Google Scholar] [CrossRef]
- Swain, N.; Mishra, S.; Acharya, M.R. Hydrometallurgical route for recovery and separation of samarium (III) and cobalt (II) from simulated waste solution using tri-n-octyl phosphine oxide—A novel pathway for synthesis of samarium and cobalt oxides nanoparticles. J. Alloys Compd. 2020, 815, 152423. [Google Scholar] [CrossRef]
- Pragnell, W.M.; Williams, A.J.; Evans, H.E. The oxidation morphology of SmCo alloys. J. Alloys Compd. 2009, 487, 69–75. [Google Scholar] [CrossRef]
- Su, X.; Wang, Y.; Guo, X.; Dong, Y.; Gao, Y.; Sun, X. Recovery of Sm(III), Co(II) and Cu(II) from waste SmCo magnet by ionic liquid-based selective precipitation process. Waste Manag. 2018, 78, 992–1000. [Google Scholar] [CrossRef]
- Eldosouky, A.; Skulj, I. Recycling of SmCo5 magnets by HD process. J. Magn. Magn. Mater. 2018, 454, 249–253. [Google Scholar] [CrossRef]
- Zheng, X.; Zhang, F.; Liu, E.; Xu, X.; Yan, Y. Efficient Recovery of Neodymium in Acidic System by Free-Standing Dual-Template Docking Oriented Ionic Imprinted Mesoporous Films. ACS Appl. Mater. Interfaces 2017, 9, 730–739. [Google Scholar] [CrossRef]
- Maat, N.; Nachbaur, V.; Larde, R.; Juraszek, J.; Breton, J.M.L. An Innovative Process Using Only Water and Sodium Chloride for Recovering Rare Earth Elements from Nd–Fe–B Permanent Magnets Found in the Waste of Electrical and Electronic Equipment. ACS Sustain. Chem. Eng. 2016, 4, 6455–6462. [Google Scholar] [CrossRef]
- Jha, M.K.; Kumari, A.; Panda, R.; Kumar, J.R.; Yoo, K.; Lee, J.Y. Review on hydrometallurgical recovery of rare earth metals. Hydrometallurgy 2016, 165, 2–26. [Google Scholar] [CrossRef]
- Bogart, J.A.; Cole, B.E.; Boreen, M.A.; Schelter, E.J. Accomplishing simple, solubility-based separations of rare earth elements with complexes bearing size-sensitive molecular apertures. Proc. Natl. Acad. Sci. USA 2016, 113, 14887–14892. [Google Scholar] [CrossRef] [PubMed]
- Walton, A.; Yi, H.; Rowson, N.A.; Speight, J.D.; Mann, V.S.J.; Sheridan, R.S.; Bradshaw, A.; Harris, I.R.; Williams, A.J. The use of hydrogen to separate and recycle neodymium–iron–boron-type magnets from electronic waste. J. Clean. Prod. 2015, 104, 236–241. [Google Scholar] [CrossRef]
- Moore, M.; Gebert, A.; Stoica, M.; Uhlemann, M.; Loser, W. A route for recycling Nd from Nd-Fe-B magnets using Cu melts. J. Alloys Compd. 2015, 647, 997–1006. [Google Scholar] [CrossRef]
- Maroufi, S.; Nekouei, R.K.; Sahajwalla, V. Thermal Isolation of Rare Earth Oxides from Nd–Fe–B Magnets Using Carbon from Waste Tyres. ACS Sustain. Chem. Eng. 2017, 5, 6201–6208. [Google Scholar] [CrossRef]
- Bian, Y.; Guo, S.; Jiang, L.; Liu, J.; Tang, K.; Ding, W. Recovery of Rare Earth Elements from NdFeB Magnet by VIM-HMS Method. ACS Sustain. Chem. Eng. 2016, 4, 810–818. [Google Scholar] [CrossRef]
- Sinha, M.K.; Pramanik, S.; Kumari, A.; Sahu, S.K.; Prasad, L.B.; Jha, M.K.; Yoo, K.; Pandey, B.D. Recovery of value added products of Sm and Co from waste SmCo magnet by hydrometallurgical route. Sep. Purif. Technol. 2017, 179, 1–12. [Google Scholar] [CrossRef]
- Orefice, M.; Audoor, H.; Li, Z.; Binnemans, K. Solvometallurgical route for the recovery of Sm, Co, Cu and Fe from SmCo permanent magnets. Sep. Purif. Technol. 2019, 219, 281–289. [Google Scholar] [CrossRef]
- Xu, T.; Zhang, X.; Lin, Z.; Lu, B.; Ma, C.; Gao, X. Recovery of rare earth and cobalt from Co-based magnetic scraps. J. Rare Earths 2010, 28, 485–488. [Google Scholar] [CrossRef]
- Sahoo, K.; Nayak, A.K.; Ghosh, M.K.; Sarangi, K. Preparation of Sm2O3 and Co3O4 from SmCo magnet swarf by hydrometallurgical processing in chloride media. J. Rare Earths 2018, 36, 725–732. [Google Scholar] [CrossRef]
- Zhou, K.; Wang, A.; Zhang, D.; Zhang, X.; Yang, T. Sulfuric acid leaching of SmCo alloy waste and separation of samarium from cobalt. Hydrometallurgy 2017, 174, 66–70. [Google Scholar] [CrossRef]
- Wang, J.Z.; Tang, Y.C.; Shen, Y.H. Leaching of Sm, Co, Fe, and Cu from Spent SmCo Magnets Using Organic Acid. Metals 2023, 13, 233. [Google Scholar] [CrossRef]
- Torkaman, R.; Moosavian, M.A.; Mostaedi, M.T.; Safdari, J. Solvent extraction of samarium from aqueous nitrate solution by Cyanex301 and D2EHPA. Hydrometallurgy 2013, 137, 101–107. [Google Scholar] [CrossRef]
- Wang, J.Z.; Hsieh, Y.H.; Tang, Y.C.; Shen, Y.H. Separation of Cobalt, Samarium, Iron, and Copper in the Leaching Solution of Scrap Magnets. Metals 2023, 13, 90. [Google Scholar] [CrossRef]
- Onoda, H.; Kurioka, Y. Selective removal and recovery of samarium from mixed transition metal solution using phosphoric acid. J. Environ. Chem. Eng. 2016, 4, 4536–4539. [Google Scholar] [CrossRef]
- Monhemius, J. Precipitation diagrams for metal hydroxides, sulphides, arsenates and phosphates. Trans. Inst. Min. Metall. 1977, 86, C202–C206. Available online: https://www.researchgate.net/publication/266137129_Precipitation_diagrams_for_metal_hydroxides_sulphides_arsenates_and_phosphates (accessed on 28 August 2023).
- Fan, E.; Yang, J.; Huang, Y.; Lin, J.; Arshad, F.; Wu, F.; Li, L.; Chen, R. Leaching Mechanisms of Recycling Valuable Metals from Spent Lithium-Ion Batteries by a Malonic Acid-Based Leaching System. ACS Appl. Energy Mater. 2020, 3, 8532–8542. [Google Scholar] [CrossRef]
- Li, L.; Fan, E.; Guan, Y.; Zhang, X.; Xue, Q.; Wei, L.; Wu, F.; Chen, R. Sustainable Recovery of Cathode Materials from Spent Lithium-Ion Batteries Using Lactic Acid Leaching System. ACS Sustain. Chem. Eng. 2017, 5, 5224–5233. [Google Scholar] [CrossRef]
- Ackermann, S.; Lazic, B.; Armbruster, T.; Doyle, S.; Grevel, K.D.; Majzlan, J. Thermodynamic and crystallographic properties of kornelite [Fe2(SO4)3·~7.75H2O] and paracoquimbite [Fe2(SO4)3·9H2O]. Am. Mineral. 2009, 94, 1620–1628. [Google Scholar] [CrossRef]
- Majzlan, J.; Botez, C.; Stephens, P.W. The crystal structures of synthetic Fe2(SO4)3(H2O)5 and the type specimen of lausenite. Am. Mineral. 2005, 90, 411–416. [Google Scholar] [CrossRef]
- Majzlan, J.; Navrotsky, A.; Mccleskey, R.B.; Alpers, C.N. Thermodynamic properties and crystal structure refinement of ferricopiapite, coquimbite, rhomboclase, and Fe2(SO4)3(H2O)5. Eur. J. Mineral. 2006, 18, 175–186. [Google Scholar] [CrossRef]
- Denisenko, Y.G.; Sedykh, A.E.; Basova, S.A.; Atuchin, V.V.; Molokeev, M.S.; Aleksandrovsky, A.S.; Krylov, A.S.; Oreshonkov, A.S.; Khritokhin, N.A.; Salnikova, E.I.; et al. Exploration of the structural, spectroscopic and thermal properties of double sulfate monohydrate NaSm(SO4)2·H2O and its thermal decomposition product NaSm(SO4)2. Adv. Powder Technol. 2021, 32, 3943–3953. [Google Scholar] [CrossRef]
- Deng, Y.; Zhang, Y.; Ding, Y. Recovery of rare earths in different media with novel dicarboxylate based ionic liquid and application to recycle SmCo magnets. Hydrometallurgy 2022, 210, 105844. [Google Scholar] [CrossRef]
- Wang, J.Z.; Lin, H.H.; Tang, Y.C.; Shen, Y.H. Recovery of Calcium from Reaction Fly Ash. Sustainability 2023, 15, 2428. [Google Scholar] [CrossRef]
No. | Temp. | Time | Na2SO4 | Sm | Co | Fe | Cu |
---|---|---|---|---|---|---|---|
Unit | °C | min | (w/v)% | % | % | % | % |
1 | 70 | 20 | 6 | 17.69 | 0.09 | 0.64 | 0 |
2 | 70 | 40 | 9 | 90.88 | 2.05 | 3.51 | 1.13 |
3 | 70 | 60 | 12 | 99.19 | 2.31 | 6.06 | 0.88 |
4 | 80 | 20 | 9 | 90.22 | 1.78 | 5.74 | 0.84 |
5 | 80 | 40 | 12 | 99.31 | 2.85 | 4.31 | 0.84 |
6 | 80 | 60 | 6 | 44.63 | 1.25 | 2.71 | 0 |
7 | 90 | 20 | 12 | 99.40 | 3.03 | 4.78 | 1.34 |
8 | 90 | 40 | 6 | 48.59 | 0 | 0 | 0 |
9 | 90 | 60 | 9 | 95.60 | 0 | 3.19 | 0 |
Sm | Effect Factor | Temperature | Time | Na2SO4 |
K1 | 69.25% | 69.10% | 36.97% | |
K2 | 78.05% | 79.60% | 92.23% | |
K3 | 81.20% | 79.81% | 99.30% | |
Extreme Deviation | 11.94% | 10.70% | 62.33% | |
Priority Order | Na2SO4 > Temperature > Time |
No. | This Study | Zhou et al. [33] |
---|---|---|
Temp. | 70 °C | 80 °C |
Time | 50 min | 60 min |
Molar ratio | 6.69:1 | 4:1 |
Leachate | HNO3 | H2SO4 |
Ions in the leachate | Sm, Co, Fe, and Cu | Sm and Co |
The precipitation rate of Sm | 96.11% | 93.4% |
No. | This Study | Wang et al. [36] |
---|---|---|
Temp. | 25 °C | 60 °C |
Time | 1 min | 60 min |
Molar ratio | 1.5:1 | 1:1 |
Leachate | HNO3 | H2SO4 |
The precipitation rate of Co | 98.15% | 96.20% |
Element | Sm | Co | Fe | Cu | Zr |
---|---|---|---|---|---|
The weight percent of element (wt.%) | 22.70 | 51.08 | 14.51 | 5.12 | 4.31 |
Metal concentration in leachate (ppm) | 15,756 | 31,088 | 8762 | 3174 | - |
No. | Temp. | Time | Na2SO4 |
---|---|---|---|
Unit | °C | min | (w/v)% |
1 | 70 | 20 | 6 |
2 | 80 | 40 | 9 |
3 | 90 | 60 | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.-Z.; Tang, Y.-C.; Shen, Y.-H. Experimental Study on the Separation of Selected Metal Elements (Sm, Co, Fe, and Cu) from Nitric Acid Leachate Using Specific Precipitants. Recycling 2024, 9, 111. https://doi.org/10.3390/recycling9060111
Wang J-Z, Tang Y-C, Shen Y-H. Experimental Study on the Separation of Selected Metal Elements (Sm, Co, Fe, and Cu) from Nitric Acid Leachate Using Specific Precipitants. Recycling. 2024; 9(6):111. https://doi.org/10.3390/recycling9060111
Chicago/Turabian StyleWang, Jian-Zhi, Yi-Chin Tang, and Yun-Hwei Shen. 2024. "Experimental Study on the Separation of Selected Metal Elements (Sm, Co, Fe, and Cu) from Nitric Acid Leachate Using Specific Precipitants" Recycling 9, no. 6: 111. https://doi.org/10.3390/recycling9060111
APA StyleWang, J. -Z., Tang, Y. -C., & Shen, Y. -H. (2024). Experimental Study on the Separation of Selected Metal Elements (Sm, Co, Fe, and Cu) from Nitric Acid Leachate Using Specific Precipitants. Recycling, 9(6), 111. https://doi.org/10.3390/recycling9060111