Impact of Aging and Recycling on Optical Properties of Cardboard for Circular Economy
Abstract
:1. Introduction
2. Materials and Methods
- ΔL* represents the change in L* value (brightness).
- Δa* represents the change in the position of the color on the red–green axis.
- Δb* represents the change in the position of the color on the yellow–blue axis.
- ΔISO WI* represents the change in CIE whiteness.
- β0 is the intercept (constant).
- β1 is a coefficient that represents the effect of time on the change in brightness.
- β2 is the coefficient representing the effect of the treatment on the brightness change.
- ϵ is a model error or residual.
- Y dependent variable (ΔL, Δa, Δb, ΔCIE WI).
- X1 i X2 independent variables (Time i Treatment).
- β0, β1, β2 regression coefficients.
- ϵ is the model error.
3. Results
4. Discussion of Statistical Analysis of Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Çiçekler, M.; Tutus, A. Overcoming barriers to paper recycling: A review of challenges and solutions. Int. Conf. Sci. Innov. Stud. 2023, 1, 60–67. [Google Scholar] [CrossRef]
- Milios, L.; Esmailzadeh Davani, A.; Yu, Y. Sustainability Impact Assessment of Increased Plastic Recycling and Future Pathways of Plastic Waste Management in Sweden. Recycling 2018, 3, 33. [Google Scholar] [CrossRef]
- Pivnenko, K.; Laner, D.; Astrup, T.F. Material Cycles and Chemicals: Dynamic Material Flow Analysis of Contaminants in Paper Recycling. Environ. Sci. Technol. 2016, 50, 12302–12311. [Google Scholar] [CrossRef] [PubMed]
- Ghinea, C.; Petraru, M.; Simion, I.M.; Sobariu, D.; Bressers, J.T.A.; Gavrilescu, M. Life cycle assessment of waste management and recycled paper systems. Environ. Eng. Manag. J. 2014, 13, 2073–2085. [Google Scholar] [CrossRef]
- Wolska, W.; Małachowska, E. Paper recycling as an element of sustainable development. Ann. WULS For. Wood Technol. 2023, 123, 66–75. [Google Scholar] [CrossRef]
- Velis, C.A.; Vrancken, K.C.M. Which material ownership and responsibility in a circular economy? Waste Manag. Res. 2015, 33, 773–774. [Google Scholar] [CrossRef]
- de Gier, A.; Gottlieb, S.C.; Buser, M. Categorizing construction waste: Closing the gap between European waste regulation and management practices. Sustain. Futures 2024, 7, 100194. [Google Scholar] [CrossRef]
- Faraca, G.; Martinez-Sanchez, V.; Astrup, T.F. Environmental life cycle cost assessment: Recycling of hard plastic waste collected at Danish recycling centres. Resour. Conserv. Recycl. 2019, 143, 277–287. [Google Scholar] [CrossRef]
- Mauchauffé, R.; Lee, S.J.; Han, I.; Kim, S.H.; Moon, S.Y. Improved de-inking of inkjet-printed paper using environmentally friendly atmospheric pressure low temperature plasma for paper recycling. Sci. Rep. 2019, 9, 14046. [Google Scholar] [CrossRef]
- Sönmez, S.; Sood, S.; Li, K.; Salam, A. Effect of progressive deinking and reprinting on inkjet-printed paper. Nord. Pulp Pap. Res. J. 2022, 38, 65–72. [Google Scholar] [CrossRef]
- European Commission. Waste Management and Recycling in the European Union. 2023. Available online: https://ec.europa.eu/environment/waste/index.htm (accessed on 8 September 2024).
- Eunomia Research & Consulting. Global Recycling League Table—Phase One Report. 2023. Available online: https://www.eunomia.co.uk/ (accessed on 8 September 2024).
- Swiss Federal Office for the Environment. Recycling in Switzerland: Achievements and Challenges. 2022. Available online: https://www.bafu.admin.ch/ (accessed on 8 September 2024).
- Austrian Federal Ministry for Climate Action. Austrian Waste Management and Recycling Programs. 2023. Available online: https://www.bmk.gv.at/ (accessed on 8 September 2024).
- Liu, D.; Duan, Y.; Wang, S.; Gong, M.; Dai, H. Improvement of Oil and Water Barrier Properties of Food Packaging Paper by Coating with Microcrystalline Wax Emulsion. Polymers 2022, 14, 1786. [Google Scholar] [CrossRef] [PubMed]
- Geffertova, J.; Geffert, A.; Deliiski, N. The effect of light on the changes of white office paper. Key Eng. Mater. 2016, 688, 104–111. [Google Scholar] [CrossRef]
- Małachowska, E.; Pawcenis, D.; Dańczak, J.; Paczkowska, J.; Przybysz, K. Paper Ageing: The Effect of Paper Chemical Composition on Hydrolysis and Oxidation. Polymers 2021, 13, 1029. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Linvill, E.; Östlund, S. The combined effects of moisture and temperature on the mechanical response of paper. Exp. Mech. 2014, 54, 1329–1341. [Google Scholar] [CrossRef]
- Vibert, C.; Fayolle, B.; Ricard, D.; Dupont, A.-L. Decoupling hydrolysis and oxidation of cellulose in permanent paper aged under atmospheric conditions. Carbohydr. Polym. 2023, 310, 120727. [Google Scholar] [CrossRef]
- Oetari, A.; Natalius, A.; Komalasari, D.; Susetyo-Salim, T.; Sjamsuridzal, W. Fungal deterioration of old manuscripts of European paper origin. AIP Conf. Proc. 2018, 2023, 020156. [Google Scholar] [CrossRef]
- Lazzari, M.; López-Morán, T. Aging of a Poly (vinyl acetate)-Based White Glue and Its Durability in Contemporary Artworks. Polymers 2024, 16, 1712. [Google Scholar] [CrossRef]
- Ahn, K.; Rosenau, T.; Potthast, A. The influence of alkaline reserve on the aging behavior of book papers. Cellulose 2013, 20, 1989–2001. [Google Scholar] [CrossRef]
- Zhang, H.; Zhai, P.; Wang, Q.; Li, Y.; Tang, A. The Effect of Aluminum Ions on the Acidification and Aging of Paper. IOP Conf. Ser. Mater. Sci. Eng. 2020, 735, 012053. [Google Scholar] [CrossRef]
- Choi, K.-H.; Lee, J.-H.; Cho, B.-U. Effects of Optical Brightening Agents on Aging Characteristics of Paper. J. Korea TAPPI 2014, 46, 87–93. [Google Scholar] [CrossRef]
- Chu, C.; Nel, P. Characterisation and deterioration of mineral papers. AICCM Bull. 2019, 40, 37–49. [Google Scholar] [CrossRef]
- Gunathilake, K.M.D.; Ratnayake, R.R.; Kulasooriya, S.A.; Karunaratne, D.N. Evaluation of cellulose degrading efficiency of some fungi and bacteria and their biofilms. J. Natl. Sci. Found. Sri Lanka 2013, 41, 155–163. [Google Scholar] [CrossRef]
- Gupta, P.; Samant, K.; Sahu, A. Isolation of cellulose-degrading bacteria and determination of their cellulolytic potential. Int. J. Microbiol. 2012, 2012, 578925. [Google Scholar] [CrossRef]
- Mosca Conte, A.; Pulci, O.; Del Sole, R.; Knapik, A.; Bagniuk, J.; Lojewska, J.; Teodonio, L.; Missori, M. Experimental and theoretical study of the yellowing of ancient paper. E J. Surf. Sci. Nanotechnol. 2012, 10, 569–574. [Google Scholar] [CrossRef]
- Rosenau, T.; Potthast, A.; Milacher, W.; Hofinger, A.; Kosma, P. Isolation and identification of residual chromophores in cellulosic materials. Polymer 2004, 45, 6437–6443. [Google Scholar] [CrossRef]
- Martínez, J.R.; Nieto-Villena, A.; de la Cruz-Mendoza, J.Á.; Ortega-Zarzosa, G.; Lobo Guerrero, A. Monitoring the natural aging degradation of paper by fluorescence. J. Cult. Herit. 2017, 26, 22–27. [Google Scholar] [CrossRef]
- Zervos, S.; Moropoulou, A. Methodology and criteria for the evaluation of paper conservation interventions: A literature review. Restaurator 2006, 27, 219–274. [Google Scholar] [CrossRef]
- Area, M.C.; and Cheradame, H. Paper aging and degradation: Recent findings and research methods. Bioresources 2011, 6, 5307–5337. [Google Scholar] [CrossRef]
- Ciofini, D.; Osticioli, I.; Micheli, S.; Montalbano, L. Laser removal of mold and foxing stains from paper artifacts: Preliminary investigation. In Proceedings of the SPIE—The International Society for Optical Engineering, San Diego, CA, USA, 1 July 2013; p. 9065. [Google Scholar] [CrossRef]
- Meng, Q.; Li, X.; Geng, J.; Liu, C.; Ben, S. A biological cleaning agent for removing mold stains from paper artifacts. Herit. Sci. 2023, 11, 243. [Google Scholar] [CrossRef]
- Daniels, V. The discolouration of paper on ageing. Pap. Conserv. 1988, 12, 93–100. [Google Scholar] [CrossRef]
- Hubbe, M.; Venditti, R.; Rojas, O.J. What happens to cellulosic fibers during papermaking and recycling? A review. BioResources 2007, 2, 739–788. [Google Scholar]
- Kumar, A.; Dutt, D. A comparative study of conventional chemical deinking and environment-friendly bio-deinking of mixed office wastepaper. Sci. Afr. 2021, 12, e00793. [Google Scholar] [CrossRef]
- Potthast, A.; Rosenau, T.; Kosma, P. Analysis of oxidized functionalities in cellulose. BioResources 2006, 1, 19–44. [Google Scholar] [CrossRef]
- Małachowska, E.; Dubowik, M.; Boruszewski, P.; Łojewska, J.; Przybysz, P. Influence of lignin content in cellulose pulp on paper durability. Sci. Rep. 2020, 10, 19998. [Google Scholar] [CrossRef]
- Lattuati-Derieux, A.; Bonnassies-Termes, S.; Lavédrine, B. Identification of volatile organic compounds emitted by a naturally aged book using solid-phase microextraction/gas chromatography/mass spectrometry. J. Chromatogr. A 2004, 1026, 9–18. [Google Scholar] [CrossRef]
- Hajji, L.; Boukir, A.; Assouik, J.; Pessanha, S.; Figueirinhas, J.L.; Carvalho, M.L. Artificial aging paper to assess long-term effects of conservative treatment. Monitoring by infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), and energy dispersive X-ray fluorescence (EDXRF). Microchem. J. 2016, 124, 646–656. [Google Scholar] [CrossRef]
- Małachowska, E.; Dubowik, M.; Boruszewski, P.; Przybysz, P. Accelerated ageing of paper: Effect of lignin content and humidity on tensile properties. Herit. Sci. 2021, 9, 132. [Google Scholar] [CrossRef]
- Strlič, M.; Kralj Cigić, I.; Možir, A.; De Bruin, G.; Kolar, J.; Cassar, M. The effect of volatile organic compounds and hypoxia on paper degradation. Polym. Degrad. Stab. 2011, 96, 08–615. [Google Scholar] [CrossRef]
- Bartl, B.; Mašková, L.; Paulusová, H.; Smolík, J.; Bartlová, L.; Vodička, P. The effect of dust particles on cellulose degradation. Stud. Conserv. 2016, 61, 203–208. [Google Scholar] [CrossRef]
- Lee, K.; Inaba, M. Accelerated ageing test of naturally aged paper (part IV). Jpn. Tappi J. 2017, 71, 1204–1214. [Google Scholar] [CrossRef]
- Coppola, F.; Modelli, A.; Cigić, I.K.; Mahgoub, H.; Strlič, M. Investigation of the degradation of contemporary papers aged at different conditions of temperature and relative humidity. In Proceedings of the 3rd International SEAHA Conference, Brighton, UK, 19–20 June 2017. [Google Scholar]
- Coppola, F.; Modelli, A. Oxidative degradation of non-recycled and recycled paper. Cellulose 2020, 27, 8977–8987. [Google Scholar] [CrossRef]
- Bicchieri, M.; Monti, M.; Piantanida, G.; Sodo, A. Effects of gamma irradiation on deteriorated paper. Radiat. Phys. Chem. 2016, 125, 21–26. [Google Scholar] [CrossRef]
- Coppola, F.; Fiorillo, F.; Modelli, A.; Montanari, M.; Vandini, M. Effects of γ-ray treatment on paper. Polym. Degrad. Stab. 2018, 150, 25–30. [Google Scholar] [CrossRef]
- Łojewski, T.; Zięba, K.; Knapik, A.; Bagniuk, J.; Lubańska, A.; Łojewska, J. Evaluating paper degradation progress. Cross-linking between chromatographic, spectroscopic and chemical results. Appl. Phys. A 2010, 100, 809–821. [Google Scholar] [CrossRef]
- Tétreault, J.; Bégin, P.; Paris-Lacombe, S.; Dupont, A.-L. Modelling considerations for the degradation of cellulosic paper. Cellulose 2019, 26, 2013–2033. [Google Scholar] [CrossRef]
- Neevel, J.G.; Brückle, I. The impact of ink components on the ageing of paper: A review. Herit. Sci. 2019, 7, 28. [Google Scholar]
- Scholz, G.; Jäschke, S.; Löwe, T. Degradation of organic pigments: Mechanisms and implications for conservation. J. Cult. Herit. 2017, 23, 102–108. [Google Scholar] [CrossRef]
- Núñez, A.; Vega, J.; Vilar, J. The use of non-destructive spectroscopic techniques in the study of aging and degradation of printing inks. Microchem. J. 2020, 155, 104732. [Google Scholar] [CrossRef]
- Corregidor, V.; Viegas, R.; Ferreira, L.M.; Alves, L.C. Study of Iron Gall Inks, Ingredients and Paper Composition Using Non-Destructive Techniques. Heritage 2019, 2, 2691–2703. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Wang, Y. Photodegradation of organic dyes in the presence of TiO2 nanoparticles: Influence of dye molecular structure. J. Hazard. Mater. 2015, 286, 188–194. [Google Scholar] [CrossRef]
- Leona, M.; Stenger, J.; Ferloni, E. Application of surface-enhanced Raman scattering techniques to the ultrasensitive identification of natural dyes in works of art. J. Raman Spectrosc. 2011, 42, 13–20. [Google Scholar] [CrossRef]
- Spiridonov, I.; Boeva, R. Evaluation of the influence of artificial UV ageing of printed images. In Proceedings of the U Zborniku radova 11th International Symposium on Graphic Engineering and Design, Novi Sad, Serbia, 3–5 November 2022. [Google Scholar] [CrossRef]
- He, Z.; Zhang, R.; Fang, S.; Jiang, F. Research on the measurement method of printing ink content based on spectrum. Optik 2021, 243, 167389. [Google Scholar] [CrossRef]
- Favini; Shiro Alga Carta. Technical Data Sheet. Available online: www.favini.comgs/finepapers/features-applications (accessed on 22 May 2024).
- Technical Specification Kromopak™ Code No 12172. Available online: www.antalis.to/medias/pdf (accessed on 22 May 2024).
- ISO 12040:1997; Graphic Technology, Prints and Printing Inks, Assessment of Light Fastness Using Filtered Xenon Arc Light. International Organization for Standardization: London, UK, 1997. Available online: https://www.iso.org/standard/2121.html (accessed on 22 May 2024).
- INGEDE INGEDE 11; Assessment of Print Product Recyclability. Deinkability Test. Introduction. International Association of the Deinking Industry: Munich, Germany, 2012. Available online: https://www.ingede.com/methods/ingede-method11-2018pdf (accessed on 12 April 2024).
- ISO 5269-2; Pulp-Preparation of Laboratory Sheets for Optical Testing. Part 2. Rapid Köthernmethods. International Organization for Standardization: London, UK, 2002. Available online: https://www.iso.org/standard/39341.html (accessed on 22 May 2024).
- ISO/CIE 11664-1:2019; Colorimetry—Part 1: CIE Standard Colorimetric Observers. International Organization for Standardization: London, UK, 2019. Available online: https://www.iso.org/standard/74164.html (accessed on 22 May 2024).
- ISO/CIE 11664-2:2022|EN ISO/CIE 11664-2:2022; Colorimetry, Part 2: CIE Standard Illuminants. International Organization for Standardization: London, UK, 2022. Available online: https://www.iso.org/standard/77215.html (accessed on 22 May 2024).
- ISO/CIE 11664-4:2019|EN ISO/CIE 11664-4:2019; Colorimetry, Part 4: CIE 1976 L*a*b* Colour Space. International Organization for Standardization: London, UK, 2019. Available online: https://www.iso.org/standard/74166.html (accessed on 22 May 2024).
- ISO/CIE 11664-3:2019; Colorimetry—Part 3: CIE Tristimulus Values. International Organization for Standardization: London, UK, 2019. Available online: https://www.iso.org/standard/74165.html (accessed on 22 May 2024).
- ISO 11475:2017; Paper and Board—Determination of CIE Whiteness, D65/10 Degrees. International Organization for Standardization: London, UK, 2017. Available online: https://www.iso.org/standard/63614.html (accessed on 22 May 2024).
- ISO 2471:2008; Paper and Board—Determination of Opacity (Paper Backing)—Diffuse Reflectance Method. International Organization for Standardization: London, UK, 2008. Available online: https://www.iso.org/standard/39771.html (accessed on 22 May 2024).
- T 425 Om-06; Opacity Of Paper (15/D Geometry, Illuminant A/2º, 89% Reflectance Backing And Paper Backing). American National Standards Institute: Washington, DC, USA, 2016. Available online: https://webstore.ansi.org/standards/tappi/425om06 (accessed on 22 May 2024).
Printing Substrate | Process Stage | Non-Aged | Aged 7 Days | Aged 14 Days | Aged 28 Days | Aged 56 Days | Aged 112 Days |
---|---|---|---|---|---|---|---|
Alga carta | Before flotation | AC_0_BF | AC_7_BF | AC_14_BF | AC_28_BF | AC_56_BF | AC_112BF |
After flotation | AC_0_AF | AC_7_AF | AC_14_AF | AC_28_AF | AC_56_AF | AC_112_AF | |
Kromopak | Before flotation | K_0_BF | K_7_BF | K_14_BF | K_28_BF | K_56_BF | K_112_BF |
After flotation | K_0_AF | K_7_AF | K_14_AF | K_28_AF | K_56_AF | K_112_AF |
Parameters | Standards |
---|---|
Chromatic coefficients L*, a*, b* (light source D65) | ISO/CIE 11664-1:2019 [65], ISO/CIE 11664-2:20 [66], ISO/CIE 11664-4:2019 [67] |
Chromatic coefficients L*, a*, b* (UVEX light source) | ISO/CIE 11664-3:2019 [68] |
CIE witness | ISO 11475:2017 [69] |
Opacity | ISO 2471:2008 [70], T 425 Om-06 [71] |
Parameters | Value |
---|---|
R-squared | 0.968 |
Probability (F-statistic) | 2.00 × 10−7 |
Treatment [T.K] | −1.0444 |
Time | −0.0026 |
Probability (Omnibus) | 0.027 |
Durbin–Watson | 0.859 |
Jarque–Bera (JB) | 3.331 |
Parameters | Value |
---|---|
R-squared | 0.973 |
Probability (F-statistic) | 8.06 × 10−8 |
Treatment [T.K] | −1.7572 |
Time | −0.0057 |
Probability (Omnibus) | 0.148 |
Durbin–Watson | 0.967 |
Jarque–Bera (JB) | 1.426 |
Parameters | Value |
---|---|
R-squared | 0.968 |
Probability (F-statistic) | 3.05 × 10−8 |
Treatment [T.K] | 9.2122 |
Time | 0.0234 |
Probability (Omnibus) | 0.114 |
Durbin–Watson | 1.038 |
Jarque–Bera (JB) | 1.716 |
Parameters | Value |
---|---|
R-squared | 0.87 |
Probability (F-statistic) | 0.000103 |
Treatment [T.K] | −7.1077 |
Time | −0.0460 |
Probability (Omnibus) | 0.041 |
Durbin–Watson | 0.867 |
Jarque–Bera (JB) | 3.157 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mirković, I.B.; Bolanča, Z.; Medek, G. Impact of Aging and Recycling on Optical Properties of Cardboard for Circular Economy. Recycling 2024, 9, 112. https://doi.org/10.3390/recycling9060112
Mirković IB, Bolanča Z, Medek G. Impact of Aging and Recycling on Optical Properties of Cardboard for Circular Economy. Recycling. 2024; 9(6):112. https://doi.org/10.3390/recycling9060112
Chicago/Turabian StyleMirković, Ivana Bolanča, Zdenka Bolanča, and Goran Medek. 2024. "Impact of Aging and Recycling on Optical Properties of Cardboard for Circular Economy" Recycling 9, no. 6: 112. https://doi.org/10.3390/recycling9060112
APA StyleMirković, I. B., Bolanča, Z., & Medek, G. (2024). Impact of Aging and Recycling on Optical Properties of Cardboard for Circular Economy. Recycling, 9(6), 112. https://doi.org/10.3390/recycling9060112