Green Roof Systems within the Framework of a Circular Economy: A Scoping Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Information Source
2.2. Search Method
3. Results and Discussion
3.1. Literature Development
3.2. Strategies to Promote Circular Economy and Green Roofs
3.3. Theme Co-Occurrence Analysis
3.4. Alternative Materials in the Green Roof Layers in Relation to the Circular Economy Analysis
Extension of the Useful Life of Materials | Development of New Materials from Waste | Recycling and Reuse | Recovery of Agricultural Organic Waste | Recycling of Construction Materials |
---|---|---|---|---|
[86,107] W,D—Cork | [108,109] S—Technosol | [110] S—Silica sand, expanded aggregates, filtered manure, bark chunks, and crushed wood | [111] S—Butcher waste and recycled cardboard pellets mixed with soil | [112] S—A mix of limestone and siliceous waste aggregate |
[113] S—Hydrophilic perlite-based polymer | [76,77,78,79,80,81,83,114] S—Biochar | [93] SD—Coconut fibre, bamboo and high-density PET waste | [92,93] SD—Coconut coir/bamboo stems and nodes, PET bottle tops and bottoms | [94] S—Coarse tuff, fine tuff, medium tuff, peat, perlite, lightweight expanded clay aggregates, coconut coir |
[99,115] D—Recycled rubber | [102] SD—Coal bottom ash (CBA) and fly-ash-based aggregates (FAAs) | [82] S—Commercial substrate mixed with recycled glass | [116] S—Soil microbial communities | [117] S—Compost mixed with clay soil and compost with crushed bricks |
[118] D—Rubber crumbs and volcanic gravel | [119] S—Local soil, peat soil vermiculite, and perlite | [85,101] S—Cork | [100] S—Contaminated river sediments | [120] S—Construction waste |
[98] D—Rubber crumbs, polyurethane, and volcanic gravel | [121] D—Pollytag®, lightweight expanded clay aggregates, chalcedony, serpentinite, and crushed autoclaved aerated concrete | [122] S—Lightweight dredged material aggregate | [123] D—Clay with bagasse, diatomaceous earth, wastewater sludge | [124] S—Crushed brick and crushed tiles combined with green compost waste |
[125] S—Rubber combined with rooflite material and glass beads | [126] W—Paint residues | [95] S—Coconut and perlite mix | [127] SD—Crushed concrete mixed with compost and crushed fir bark, expanded clay aggregate, and reed bed | |
[84] S—Wastewater treatment plant sludge and biochar | [96] MS—PET waste | [128] S—Sargassum biomass | [129] S—Crushed concrete, crushed bricks, sawdust, and municipal waste compost | |
[87,88,90] S—Hydrogel | [130] MS—Polymeric waste | [131] S—Worm humus | [132] S—Crushed porcelain and expanded glass combined with municipal waste | |
[133] S—Kaolin | [97] S—Sewage sludge pellets and compost made from organic waste | [97] S—Sewage sludge pellets and compost made from organic waste | [134] S—Crushed red and yellow bricks, clay granules, paper ash, limestone granules, crushed concrete | |
[89] S—Hydrogel and perlite | [135] S—Silica waste, byproducts of metallic ferrosilicon alloys, cellulose, foundry sand, and organic waste | [91] S—Brown algae, perlite, vermiculite, sand, crushed brick, coconut fibre, and T. conoides | [136] S—Fine recycled waste | |
[103,137] S—Waste from the brick industry | [129]—S—Crushed concrete, crushed bricks, sawdust, and municipal waste compost | [138] S—Foamed glass and crushed porcelain | ||
[137] S—Wastewater sludge | [139] S—Coarse burlap, fine burlap, composted green waste, almond shell, and pistachio shell | [140] S—Green waste compost, and crushed bricks | ||
[141] D—Recycled rubber | [94] S—Coarse tuff, fine tuff, medium tuff, peat, perlite, lightweight expanded clay aggregates, coconut coir | [142,143] S—Lightweight expanded clay | ||
[144] S—Recycled brick | ||||
[145] S—Recycled construction materials | ||||
[146] SD—Waste construction material |
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Delivering on Air Quality, Climate Change and Health; World Health Organization: Geneva, Switzerland, 2016; pp. 1–6. [Google Scholar]
- Naciones Unidas. Objetivos de Desarrollo Sostenible. Available online: https://www.un.org/sustainabledevelopment/es/ (accessed on 7 October 2020).
- Naciones Unidas; Caribe, C. E. para A.L. y el La Agenda 2030 y Los Objetivos de Desarrollo Sostenible: Una Oportunidad Para América Latina y El Caribe. Objetivos, Metas e Indicadores Mundiales; CEPAL: Santiago, Chile, 2019. [Google Scholar]
- Organización de las Naciones Unidas (ONU). Agenda Para El Desarrollo Sostenible. In Comunidad y Salud; Organización de las Naciones Unidas (ONU): New York, NY, USA, 2015. [Google Scholar]
- Programa de las Naciones Unidas para el Desarrollo (PNUD) Objetivo 11: Ciudades y Comunidades Sostenibles. Available online: https://www.mx.undp.org/content/mexico/es/home/sustainable-development-goals/goal-11-sustainable-cities-and-communities.html (accessed on 1 March 2022).
- Naciones Unidas, United Nations. Statistics Division. Available online: https://unstats.un.org/sdgs/report/2019/goal-11/ (accessed on 7 August 2020).
- Island Press. Millennium Ecosystem Assessment. In Ecosystems and Human Well-Being: A Framework for Assessment; Island Press: Washington, DC, USA, 2003. [Google Scholar]
- Taguchi, V.; Weiss, P.; Gulliver, J.; Klein, M.; Hozalski, R.; Baker, L.; Finlay, J.; Keeler, B.; Nieber, J. It Is Not Easy Being Green: Recognizing Unintended Consequences of Green Stormwater Infrastructure. Water 2020, 12, 522. [Google Scholar] [CrossRef]
- Norton, B.A.; Coutts, A.M.; Livesley, S.J.; Harris, R.J.; Hunter, A.M.; Williams, N.S.G. Planning for Cooler Cities: A Framework to Prioritise Green Infrastructure to Mitigate High Temperatures in Urban Landscapes. Landsc. Urban Plan. 2015, 134, 127–138. [Google Scholar] [CrossRef]
- Tzoulas, K.; Korpela, K.; Venn, S.; Yli-Pelkonen, V.; Kaźmierczak, A.; Niemela, J.; James, P. Promoting Ecosystem and Human Health in Urban Areas Using Green Infrastructure: A Literature Review. Landsc. Urban Plan. 2007, 81, 167–178. [Google Scholar] [CrossRef]
- Chiesura, A. The Role of Urban Parks for the Sustainability of Cities. Landsc. Urban Plan. 2004, 68, 129–138. [Google Scholar] [CrossRef]
- Maas, J.; Verheij, R.A.; Groenewegen, P.P.; De Vries, S.; Spreeuwenberg, P. Green Space, Urbanity, and Health: How Strong Is the Relation? J. Epidemiol. Community Health 2006, 60, 587–592. [Google Scholar] [CrossRef] [PubMed]
- Castleton, H.F.; Stovin, V.; Beck, S.B.M.; Davison, J.B. Green Roofs; Building Energy Savings and the Potential for Retrofit. Energy Build. 2010, 42, 1582–1591. [Google Scholar] [CrossRef]
- Urbano-López De Meneses, B. Naturación Urbana, Un Desafío a La Urbanización. Rev. Chapingo Ser. Cienc. For. Y Del. Ambiente 2013, 19, 225–235. [Google Scholar] [CrossRef]
- Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban Greening to Cool Towns and Cities: A Systematic Review of the Empirical Evidence. Landsc. Urban Plan. 2010, 97, 147–155. [Google Scholar] [CrossRef]
- North America Inc. Green Roofs for Healthy Cities. In How Your Community Will Benefit from Adopting Green Roof Policy; North America Inc.: Coral Gables, FL, USA, 2015. [Google Scholar]
- MacIvor, J.S.; Lundholm, J. Performance Evaluation of Native Plants Suited to Extensive Green Roof Conditions in a Maritime Climate. Ecol. Eng. 2011, 37, 407–417. [Google Scholar] [CrossRef]
- Lundholm, J.T. Green Roof Plant Species Diversity Improves Ecosystem Multifunctionality. J. Appl. Ecol. 2015, 52, 726–734. [Google Scholar] [CrossRef]
- Thuring, C.; Grant, G. The Biodiversity of Temperate Extensive Green Roofs—A Review of Research and Practice. Isr. J. Ecol. Evol. 2016, 62, 44–57. [Google Scholar] [CrossRef]
- Joshi, M.Y.; Teller, J. Urban Integration of Green Roofs: Current Challenges and Perspectives. Sustainability 2021, 13, 12378. [Google Scholar] [CrossRef]
- Oberndorfer, E.; Lundholm, J.; Bass, B.; Coffman, R.R.; Doshi, H.; Dunnett, N.; Gaffin, S.; Köhler, M.; Liu, K.K.Y.; Rowe, B. Green Roofs as Urban Ecosystems: Ecological Structures, Functions, and Services. Bioscience 2007, 57, 823–833. [Google Scholar] [CrossRef]
- Mesimäki, M.; Hauru, K.; Lehvävirta, S. Do Small Green Roofs Have the Possibility to Offer Recreational and Experiential Benefits in a Dense Urban Area? A Case Study in Helsinki, Finland. Urban For. Urban Green. 2019, 40, 114–124. [Google Scholar] [CrossRef]
- Harada, Y.; Whitlow, T.H.; Bassuk, N.L.; Russell-anelli, J. Rooftop Farm Soils for Sustainable Water and Nitrogen Management. Front. Sustain. Food Syst. 2020, 4, 123. [Google Scholar] [CrossRef]
- Elmqvist, T.; Goodness, J.; Marcotullio, P.J.; Parnell, S.; Sendstad, M.; Wilkinson, C.; Fragkias, M.; Güneralp, B.; McDonald, R.I.; Schewenius, M.; et al. Urban Ecosystem Services. In Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities: A Global Assessment; Springer: Berlin/Heidelberg, Germany, 2013; pp. 175–255. [Google Scholar]
- Dvorak, B.; Volder, A. Green Roof Vegetation for North American Ecoregions: A Literature Review. Landsc. Urban Plan. 2010, 96, 197–213. [Google Scholar] [CrossRef]
- Brenneisen, S. Green Roofs. How Nature Returns to the City. Acta Hortic. 2004, 643, 289–293. [Google Scholar] [CrossRef]
- Meng, L.; Wen, K.H.; Brewin, R.; Wu, Q. Knowledge Atlas on the Relationship between Urban Street Space and Residents’ Health-a Bibliometric Analysis Based on Vos Viewer and Cite Space. Sustainability 2020, 12, 2384. [Google Scholar] [CrossRef]
- Savini, F. The Circular Economy of Waste: Recovery, Incineration and Urban Reuse. J. Environ. Plan. Manag. 2021, 64, 2114–2132. [Google Scholar] [CrossRef]
- Salmenperä, H.; Pitkänen, K.; Kautto, P.; Saikku, L. Critical Factors for Enhancing the Circular Economy in Waste Management. J. Clean. Prod. 2021, 280, 124339. [Google Scholar] [CrossRef]
- Schützenhofer, S.; Kovacic, I.; Rechberger, H.; Mack, S. Improvement of Environmental Sustainability and Circular Economy through Construction Waste Management for Material Reuse. Sustainability 2022, 14, 11087. [Google Scholar] [CrossRef]
- Murray, A.; Skene, K.; Haynes, K. The Circular Economy: An Interdisciplinary Exploration of the Concept and Application in a Global Context. J. Bus. Ethics 2017, 140, 369–380. [Google Scholar] [CrossRef]
- Gregson, N.; Crang, M.; Fuller, S.; Holmes, H.; Gregson, N.; Crang, M.; Fuller, S.; Interrogating, H.H.; Gregson, N.; Crang, M.; et al. Interrogating the Circular Economy: The Moral Economy of Resource Recovery in the EU Interrogating the Circular Economy : The Moral Economy of Resource Recovery in the EU. Econ. Soc. 2015, 44, 218–243. [Google Scholar] [CrossRef]
- Roleders, V.; Oriekhova, T.; Zaharieva, G. Circular Economy as a Model of Achieving Sustainable Development. Probl. Ekorozwoju 2022, 17, 178–185. [Google Scholar] [CrossRef]
- Horbal, N.; Mazuryk, M.; Mykytyn, O. Implementation of Circular Economy on the Basis of European Experience. Manag. Entrep. Ukr. Stages Form. Probl. Dev. 2021, 2021, 280–289. [Google Scholar] [CrossRef]
- Konietzko, J.; Bocken, N.; Hultink, E.J. Circular Ecosystem Innovation: An Initial Set of Principles. J. Clean. Prod. 2020, 253, 119942. [Google Scholar] [CrossRef]
- Berardi, U.; GhaffarianHoseini, A.H.; GhaffarianHoseini, A. State-of-the-Art Analysis of the Environmental Benefits of Green Roofs. Appl. Energy 2014, 115, 411–428. [Google Scholar] [CrossRef]
- Francis, L.F.M.; Jensen, M.B. Benefits of Green Roofs: A Systematic Review of the Evidence for Three Ecosystem Services. Urban For. Urban Green. 2017, 28, 167–176. [Google Scholar] [CrossRef]
- Nguyen, C.N.; Muttil, N.; Tariq, M.A.U.R.; Ng, A.W.M. Quantifying the Benefits and Ecosystem Services Provided by Green Roofs—A Review. Water 2022, 14, 68. [Google Scholar] [CrossRef]
- Ramírez, W.; Bolaños Silva, T. Revisión Sobre El Papel de Los Techos Verdes En La Remoción de Carbono Atmosférico En El Neotrópico. NodoArquitectura. Ciudad. Medio Ambiente 2012, 6, 7–18. [Google Scholar]
- Mentens, J.; Raes, D.; Hermy, M. Green Roofs as a Tool for Solving the Rainwater Runoff Problem in the Urbanized 21st Century? Landsc. Urban Plan. 2006, 77, 217–226. [Google Scholar] [CrossRef]
- Van Mechelen, C.; Dutoit, T.; Hermy, M. Adapting Green Roof Irrigation Practices for a Sustainable Future: A Review. Sustain. Cities Soc. 2015, 19, 74–90. [Google Scholar] [CrossRef]
- Blank, L.; Vasl, A.; Schindler, B.Y.; Kadas, G.J.; Blaustein, L. Horizontal and Vertical Island Biogeography of Arthropods on Green Roofs: A Review. Urban. Ecosyst. 2017, 20, 911–917. [Google Scholar] [CrossRef]
- Chow, M.F.; Bakar, M.F.A.; Wong, J.K. An Overview of Plant Species and Substrate Materials or Green Roof System in Tropical Climate Urban Environment. AIP Conf. Proc. 2018, 2030, 020004. [Google Scholar] [CrossRef]
- Liberalesso, T.; Oliveira Cruz, C.; Matos Silva, C.; Manso, M. Green Infrastructure and Public Policies: An International Review of Green Roofs and Green Walls Incentives. Land. Use Policy 2020, 96, 104693. [Google Scholar] [CrossRef]
- Blank, L.; Vasl, A.; Levy, S.; Grant, G.; Kadas, G.; Dafni, A.; Blaustein, L. Directions in Green Roof Research: A Bibliometric Study. Build. Environ. 2013, 66, 23–28. [Google Scholar] [CrossRef]
- Vijayaraghavan, K. Green Roofs: A Critical Review on the Role of Components, Benefits, Limitations and Trends. Renew. Sustain. Energy Rev. 2016, 57, 740–752. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Int. J. Surg. 2010, 8, 336–341. [Google Scholar] [CrossRef]
- Nascimento, D.L.M.; Alencastro, V.; Quelhas, O.L.G.; Caiado, R.G.G.; Garza-Reyes, J.A.; Lona, L.R.; Tortorella, G. Exploring Industry 4.0 Technologies to Enable Circular Economy Practices in a Manufacturing Context: A Business Model Proposal. J. Manuf. Technol. Manag. 2019, 30, 607–627. [Google Scholar] [CrossRef]
- Royo, M.; Chulvi, V.; Mulet, E.; Ruiz-Pastor, L. Analysis of Parameters about Useful Life Extension in 70 Tools and Methods Related to Eco-Design and Circular Economy. J. Ind. Ecol. 2023, 27, 562–586. [Google Scholar] [CrossRef]
- Cobo, S.; Levis, J.W.; Dominguez-Ramos, A.; Irabien, A. Economics of Enhancing Nutrient Circularity in an Organic Waste Valorization System. Environ. Sci. Technol. 2019, 53, 6123–6132. [Google Scholar] [CrossRef]
- Santagata, R.; Ripa, M.; Genovese, A.; Ulgiati, S. Food Waste Recovery Pathways: Challenges and Opportunities for an Emerging Bio-Based Circular Economy. A Systematic Review and an Assessment. J. Clean. Prod. 2021, 286, 125490. [Google Scholar] [CrossRef]
- European Environment Agency. Circular Economy Country Profile—Portugal (ETC CE Report. 2022/5—Portugal); European Environment Agency: Copenhagen, Denmark, 2022. [Google Scholar]
- de Ferreira, A.C.; Fuso-Nerini, F. A Framework for Implementing and Tracking Circular Economy in Cities: The Case of Porto. Sustainability 2019, 11, 1813. [Google Scholar] [CrossRef]
- República Portuguesa Gestão de Resíduos e Transição Para Uma Economia Circular. Available online: https://www.fundoambiental.pt/apoios-2023/gestao-de-residuos-e-transicao-para-uma-economia-circular/se-lo-verde-2023.aspx (accessed on 6 December 2023).
- Pineda-Martos, R.; Calheiros, C.S.C. Nature-Based Solutions in Cities—Contribution of the Portuguese National Association of Green Roofs to Urban Circularity. Circ. Econ. Sustain. 2021, 1, 1019–1035. [Google Scholar] [CrossRef]
- Calheiros, C.S.C.; Castiglione, B.; Palha, P. Chapter 14—Nature-Based Solutions for Socially and Environmentally Responsible New Cities: The Contribution of Green Roofs. In Circular Economy and Sustainability—Volume 2: Environmental Engineering; Stefanakis, A., Nikolaou, I., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 235–255. ISBN 978-0-12-821664-4. [Google Scholar]
- República Portuguesa Despacho n.° 8745/2020, de 11 de Setembro 2020. Available online: https://diariodarepublica.pt/dr/detalhe/despacho/8745-2020-142602680 (accessed on 6 December 2023).
- Council of Ministers. ROAD MAP towards the Transition to Circular Economy; Poland. 2019. Available online: https://www.gov.pl/attachment/d6975935-4b24-4be3-96f1-09c51589958a (accessed on 6 December 2023).
- Interreg CENTRAL EUROPE News. Available online: https://www.interreg-central.eu/news/polands-roadmap-towards-the-transition-to-the-circular-economy/ (accessed on 7 December 2023).
- European Union European Circular Economy Stakeholder Platform. Available online: https://circulareconomy.europa.eu/platform/en/strategies/polands-circular-economy-roadmap#:~:text=The aim of Poland’s Roadmap,will enable Poland to take (accessed on 7 December 2023).
- Zielińska, A. Comparative Analysis of Circular Economy Implementation in Poland and Other European Union Countries. J. Int. Stud. 2019, 12, 337–347. [Google Scholar] [CrossRef]
- Sysoiev, O. trends of professional training in circular economy in the republic of poland. Contin. Prof. Educ. Theory Pract. 2022, 3, 84–89. [Google Scholar] [CrossRef]
- Wolańska, K.; Weber, M. National and Local Regulations and Programs Are Stimulating the Green Roof Industry in Poland. Available online: https://livingarchitecturemonitor.com/articles/national-and-local-regulations-and-programs-are-stimulating-the-green-roof-industry-in-poland-fa22 (accessed on 7 December 2023).
- U.S. Environmental Protection Agency (EPA). Building a Circular Economy for All: Progress Toward Transformative Change; U.S. Environmental Protection Agency (EPA): Washington, DC, USA, 2022. [Google Scholar]
- Green Roofs for Healthy Cities. Policy Resources. Available online: https://static1.squarespace.com/static/58e3eecf2994ca997dd56381/t/65484bf81e7bb17aaa3e4563/1699236880900/Green+Roof+and+Wall+Policy+Guide+2023.pdf (accessed on 8 December 2023).
- European Environment Agency. Circular Economy Country Profile—Spain; European Environment Agency: Copenhagen, Denmark, 2022; Available online: https://www.eionet.europa.eu/etcs/etc-ce/products/etc-ce-products/etc-ce-report-5-2022-country-profiles-on-circular-economy/spain-ce-country-profile-2022_for-publication.pdf (accessed on 9 December 2023).
- Ministerio de Economía Industria y Competitividad Circular Economy Spanish Strategy “España Circular 2030.” Exacutive Summary. 2018, 66p. Available online: https://www.miteco.gob.es/content/dam/miteco/es/calidad-y-evaluacion-ambiental/temas/economia-circular/espanacircular2030_def1_tcm30-509532_mod_tcm30-509532.pdf (accessed on 9 December 2023).
- Fundació de la Jardineria i el Paisatge. NTJ 11C: Cubiertas Verdes: Ajardinamientos Especiales; Fundació de la Jardineria i el Paisatge: Barcelona, Spain, 2012; ISBN 978-84-96564-02-2. [Google Scholar]
- Ayuntamiento de Madrid. Plan Rehabilita Madrid 2023 Guía Rápida Para el Ciudadano; Ayuntamiento de Madrid: Madrid, Spain, 2023; Available online: https://transforma.madrid.es/wp-content/uploads/2023/02/Guia-rapida-para-la-ciudadania-Adapta-2023.pdf (accessed on 9 December 2023).
- Ajuntament de Barcelona. Plan Del Verde y de La Biodiversidad de Barcelona 2020; Ajuntament de Barcelona: Barcelona, Spain, 2013; Available online: https://ajuntament.barcelona.cat/ecologiaurbana/sites/default/files/PlanVerde_2020.pdf (accessed on 9 December 2023).
- Feng, K.; Lam, C.Y. An Overview of Circular Economy in China: How the Current Challenges Shape the Plans for the Future. Chin. Econ. 2021, 54, 355–371. [Google Scholar] [CrossRef]
- Zhu, J.; Fan, C.; Shi, H.; Shi, L. Efforts for a Circular Economy in China: A Comprehensive Review of Policies. J. Ind. Ecol. 2019, 23, 110–118. [Google Scholar] [CrossRef]
- He, Q.; Wu, Z.; Li, S.; Li, H.; Wang, Y. Two Decades of the Evolution of China’s Green Building Policy: Insights from Text Mining. Build. Res. Inf. 2023, 51, 158–178. [Google Scholar] [CrossRef]
- Lohry, G. Cities. Available online: https://chinadialogue.net/en/cities/5625-beijing-needs-a-green-roof-revolution/ (accessed on 5 December 2023).
- Dong, J.; Lin, M.; Zuo, J.; Lin, T.; Liu, J.; Sun, C.; Luo, J. Quantitative Study on the Cooling Effect of Green Roofs in a High-Density Urban Area—A Case Study of Xiamen, China. J. Clean. Prod. 2020, 255, 120152. [Google Scholar] [CrossRef]
- Olszewski, M.W.; Eisenman, S.W. Influence of Biochar Amendment on Herb Growth in a Green Roof Substrate. Hortic. Environ. Biotechnol. 2017, 58, 406–413. [Google Scholar] [CrossRef]
- Tan, K.; Wang, J. Substrate Modified with Biochar Improves the Hydrothermal Properties of Green Roofs. Environ. Res. 2023, 216, 114405. [Google Scholar] [CrossRef]
- Kuoppamäki, K.; Hagner, M.; Lehvävirta, S.; Setälä, H. Biochar Amendment in the Green Roof Substrate Affects Runoff Quality and Quantity. Ecol. Eng. 2015, 88, 1–9. [Google Scholar] [CrossRef]
- Huang, S.; Huang, D.; Garg, A.; Jiang, M.; Mei, G.; Pekkat, S. Stormwater Management of Biochar-Amended Green Roofs: Peak Flow and Hydraulic Parameters Using Combined Experimental and Numerical Investigation. Biomass Convers. Biorefinery 2020, 14, 5835–5846. [Google Scholar] [CrossRef]
- Cao, C.T.N.; Farrell, C.; Kristiansen, P.E.; Rayner, J.P. Biochar Makes Green Roof Substrates Lighter and Improves Water Supply to Plants. Ecol. Eng. 2014, 71, 368–374. [Google Scholar] [CrossRef]
- Chen, H.; Ma, J.; Wei, J.; Gong, X.; Yu, X.; Guo, H.; Zhao, Y. Biochar Increases Plant Growth and Alters Microbial Communities via Regulating the Moisture and Temperature of Green Roof Substrates. Sci. Total Environ. 2018, 635, 333–342. [Google Scholar] [CrossRef]
- Chen, C.F.; Kang, S.F.; Lin, J.H. Effects of Recycled Glass and Different Substrate Materials on the Leachate Quality and Plant Growth of Green Roofs. Ecol. Eng. 2018, 112, 10–20. [Google Scholar] [CrossRef]
- Kuoppamäki, K.; Lehvävirta, S. Mitigating Nutrient Leaching from Green Roofs with Biochar. Landsc. Urban Plan. 2016, 152, 39–48. [Google Scholar] [CrossRef]
- Qiu, D.; Peng, H.; Li, T.; Qi, Y. Application of Stabilized Sludge to Extensive Green Roofs in Shanghai: Feasibility and Nitrogen Leaching Control. Sci. Total Environ. 2020, 732, 138898. [Google Scholar] [CrossRef]
- Almeida, R.; Simões, N.; Tadeu, A.; Palha, P.; Almeida, J. Thermal Behaviour of a Green Roof Containing Insulation Cork Board. An Experimental Characterization Using a Bioclimatic Chamber. Build. Environ. 2019, 160, 106179. [Google Scholar] [CrossRef]
- Tadeu, A.; Simões, N.; Almeida, R.; Manuel, C. Drainage and Water Storage Capacity of Insulation Cork Board Applied as a Layer on Green Roofs. Constr. Build. Mater. 2019, 209, 52–65. [Google Scholar] [CrossRef]
- Deska, I.; Mrowiec, M.; Ociepa, E.; Łacisz, K. Investigation of the Influence of Hydrogel Amendment on the Retention Capacities of Green Roofs. Ecol. Chem. Eng. S 2018, 25, 373–382. [Google Scholar] [CrossRef]
- Deska, I.; Mrowiec, M.; Ociepa, E.; Lewandowska, A. Influence of the Hydrogel Amendment on the Water Retention Capacity of Extensive Green Roof Models. J. Ecol. Eng. 2020, 21, 195–204. [Google Scholar] [CrossRef]
- Deska, I.; Mrowiec, M.; Ociepa, E.; Michniewski, M. Impact of the Hydrogel Amendment and the Dry Period Duration on the Green Roof Retention Capacity. Ecol. Chem. Eng. S 2020, 27, 357–371. [Google Scholar] [CrossRef]
- Savi, T.; Marin, M.; Boldrin, D.; Incerti, G.; Andri, S.; Nardini, A. Green Roofs for a Drier World: Effects of Hydrogel Amendment on Substrate and Plant Water Status. Sci. Total Environ. 2014, 490, 467–476. [Google Scholar] [CrossRef]
- Vijayaraghavan, K.; Joshi, U.M. Application of Seaweed as Substrate Additive in Green Roofs: Enhancement of Water Retention and Sorption Capacity. Landsc. Urban Plan. 2015, 143, 25–32. [Google Scholar] [CrossRef]
- Piscitelli, L.; Rivier, P.A.; Mondelli, D.; Miano, T.; Joner, E.J. Assessment of Addition of Biochar to Filtering Mixtures for Potential Water Pollutant Removal. Environ. Sci. Pollut. Res. 2018, 25, 2167–2174. [Google Scholar] [CrossRef]
- Nagase, A. Novel Application and Reused Materials for Extensive Green Roof Substrates and Drainage Layers in Japan—Plant Growth and Moisture Uptake Implementation—. Ecol. Eng. 2020, 153, 105898. [Google Scholar] [CrossRef]
- A’saf, T.S.; Al-Ajlouni, M.G.; Ayad, J.Y.; Othman, Y.A.; St Hilaire, R. Performance of Six Different Soilless Green Roof Substrates for the Mediterranean Region. Sci. Total Environ. 2020, 730, 139182. [Google Scholar] [CrossRef]
- Xu, H.; Yeum, K.J.; Yoon, Y.H.; Ju, J.H. Effect of Hydrophilic Polymer in Three Green Roof Substrates on Growth, Flower Development, and Overwintering of Agastache Rugosa (Korean Mint) without Irrigation. Appl. Ecol. Environ. Res. 2018, 16, 5503–5516. [Google Scholar] [CrossRef]
- Galarza-Molina, S.; Torres, A.; Rengifo, P.; Puentes, A.; Cárcamo-Hernández, E.; Méndez-Fajardo, S.; Devia, C. The Benefits of an Eco-Productive Green Roof in Bogota, Colombia. Indoor Built Environ. 2017, 26, 1135–1143. [Google Scholar] [CrossRef]
- Vannucchi, F.; Pini, R.; Scatena, M.; Benelli, G.; Canale, A.; Bretzel, F. Deinking Sludge in the Substrate Reduces the Fertility and Enhances the Plant Species Richness of Extensive Green Roofs. Ecol. Eng. 2018, 116, 87–96. [Google Scholar] [CrossRef]
- Coma, J.; Pérez, G.; Castell, A.; Solé, C.; Cabeza, L.F. Green Roofs as Passive System for Energy Savings in Buildings during the Cooling Period: Use of Rubber Crumbs as Drainage Layer. Energy Effic. 2014, 7, 841–849. [Google Scholar] [CrossRef]
- Rincón, L.; Coma, J.; Pérez, G.; Castell, A.; Boer, D.; Cabeza, L.F. Environmental Performance of Recycled Rubber as Drainage Layer in Extensive Green Roofs. A Comparative Life Cycle Assessment; Elsevier Ltd.: Amsterdam, The Netherlands, 2014; Volume 74. [Google Scholar]
- Zhang, W.; Zhong, X.; Che, W.; Sun, H.; Zhang, H. A Laboratory Study to Determine the Use of Polluted River Sediment as a Substrate for Extensive Green Roofs. Water Sci. Technol. 2018, 78, 2247–2255. [Google Scholar] [CrossRef]
- Manso, M.; Castro-Gomes, J.; Paulo, B.; Bentes, I.; Teixeira, C.A. Life Cycle Analysis of a New Modular Greening System. Sci. Total Environ. 2018, 627, 1146–1153. [Google Scholar] [CrossRef]
- Pushkar, S. Modeling the Substitution of Natural Materials with Industrial Byproducts in Green Roofs Using Life Cycle Assessments. J. Clean. Prod. 2019, 227, 652–661. [Google Scholar] [CrossRef]
- Bisceglie, F.; Gigante, E.; Bergonzoni, M. Utilization of Waste Autoclaved Aerated Concrete as Lighting Material in the Structure of a Green Roof. Constr. Build. Mater. 2014, 69, 351–361. [Google Scholar] [CrossRef]
- Nußholz, J.L.K.; Rasmussen, F.N.; Whalen, K.; Plepys, A. Material Reuse in Buildings: Implications of a Circular Business Model for Sustainable Value Creation. J. Clean. Prod. 2020, 245, 118546. [Google Scholar] [CrossRef]
- Gutiérrez, C.; Rodríguez, J.F.; Gracia, I.; de Lucas, A.; García, M.T. Reduction of the Carbon Footprint through Polystyrene Recycling: Economical Evaluation. Process Saf. Environ. Prot. 2016, 101, 144–151. [Google Scholar] [CrossRef]
- Gargari, C.; Bibbiani, C.; Fantozzi, F.; Campiotti, C.A. Environmental Impact of Green Roofing: The Contribute of a Green Roof to the Sustainable Use of Natural Resources in a Life Cycle Approach. Agric. Agric. Sci. Procedia 2016, 8, 646–656. [Google Scholar] [CrossRef]
- Simões, N.; Almeida, R.; Tadeu, A.; Brett, M.; Almeida, J. Comparison between Cork-Based and Conventional Green Roof Solutions. Build. Environ. 2020, 175, 106812. [Google Scholar] [CrossRef]
- Hsieh, J.C.; Lou, C.W.; Lin, C.W.; Chen, J.M.; Lin, J.H. Effects of Composition and Density of Nonwoven Fabric on a Soil-Free Growing Medium. J. Ind. Text. 2013, 43, 204–214. [Google Scholar] [CrossRef]
- Grard, B.J.P.; Manouchehri, N.; Aubry, C.; Frascaria-Lacoste, N.; Chenu, C. Potential of Technosols Created with Urban By-Products for Rooftop Edible Production. Int. J. Environ. Res. Public Health 2020, 17, 3210. [Google Scholar] [CrossRef]
- Hill, J.; Sleep, B.; Drake, J.; Fryer, M. The Effect of Intraparticle Porosity and Interparticle Voids on the Hydraulic Properties of Soilless Media. Vadose Zone J. 2019, 18, 1–13. [Google Scholar] [CrossRef]
- Sisco, L.; Monzer, S.; Farajalla, N.; Bashour, I.; Saoud, I.P. Roof Top Gardens as a Means to Use Recycled Waste and A/C Condensate and Reduce Temperature Variation in Buildings. Build. Environ. 2017, 117, 127–134. [Google Scholar] [CrossRef]
- Mickovski, S.B.; Buss, K.; McKenzie, B.M.; Sökmener, B. Laboratory Study on the Potential Use of Recycled Inert Construction Waste Material in the Substrate Mix for Extensive Green Roofs. Ecol. Eng. 2013, 61, 706–714. [Google Scholar] [CrossRef]
- Ju, J.H.; Xu, H.; Yeum, K.J.; Yoon, Y.H. Effects of Hydrophilic Polymer on the Survival, Growth, and Flowering Characteristics of Pineapple Sage (Salvia Elegans) in Unirrigated Green Roofs. Appl. Ecol. Environ. Res. 2020, 18, 3887–3896. [Google Scholar] [CrossRef]
- Qianqian, Z.; Liping, M.; Huiwei, W.; Long, W. Analysis of the Effect of Green Roof Substrate Amended with Biochar on Water Quality and Quantity of Rainfall Runoff. Environ. Monit. Assess. 2019, 191, 304. [Google Scholar] [CrossRef]
- Crampton, M.; Ryan, A.; Eckert, C.; Baker, K.H.; Herson, D.S. Effects of Leachate from Crumb Rubber and Zinc in Green Roofs on the Survival, Growth, and Resistance Characteristics of Salmonella Enterica Subsp. Enterica Serovar Typhimurium. Appl. Environ. Microbiol. 2014, 80, 2804–2810. [Google Scholar] [CrossRef]
- Molineux, C.J.; Gange, A.C.; Newport, D.J. Using Soil Microbial Inoculations to Enhance Substrate Performance on Extensive Green Roofs. Sci. Total Environ. 2017, 580, 846–856. [Google Scholar] [CrossRef]
- Ondoño, S.; Bastida, F.; Moreno, J.L. Microbiological and Biochemical Properties of Artificial Substrates: A Preliminary Study of Its Application as Technosols or as a Basis in Green Roof Systems. Ecol. Eng. 2014, 70, 189–199. [Google Scholar] [CrossRef]
- Kazemi, M.; Courard, L. Modelling Thermal and Humidity Transfers within Green Roof Systems: Effect of Rubber Crumbs and Volcanic Gravel. Adv. Build. Energy Res. 2020, 16, 296–321. [Google Scholar] [CrossRef]
- Zhang, W.; Zhong, X.; Che, W. Nutrient Leaching from Extensive Green Roofs with Different Substrate Compositions: A Laboratory Study. Water Sci. Technol. 2018, 77, 1007–1014. [Google Scholar] [CrossRef]
- Naranjo, A.; Colonia, A.; Mesa, J.; Maury-Ramírez, A. Evaluation of Semi-Intensive Green Roofs with Drainage Layers Made out of Recycled and Reused Materials. Coatings 2020, 10, 525. [Google Scholar] [CrossRef]
- Karczmarczyk, A.; Baryla, A.; Bus, A. Effect of P-Reactive Drainage Aggregates on Green Roof Runoff Quality. Water 2014, 6, 2575–2589. [Google Scholar] [CrossRef]
- Liu, R.; Coffman, R. Lightweight Aggregate Made from Dredged Material in Green Roof Construction for Stormwater Management. Materials 2016, 9, 611. [Google Scholar] [CrossRef]
- Farías, R.D.; García, C.M.; Palomino, T.C.; Arellano, M.M. Effects of Wastes from the Brewing Industry in Lightweight Aggregates Manufactured with Clay for Green Roofs. Materials 2017, 10, 527. [Google Scholar] [CrossRef]
- Graceson, A.; Hare, M.; Hall, N.; Monaghan, J. Use of Inorganic Substrates and Composted Green Waste in Growing Media for Green Roofs. Biosyst. Eng. 2014, 124, 1–7. [Google Scholar] [CrossRef]
- Solano, L.; Ristvey, A.G.; Lea-Cox, J.D.; Cohan, S.M. Sequestering Zinc from Recycled Crumb Rubber in Extensive Green Roof Media. Ecol. Eng. 2012, 47, 284–290. [Google Scholar] [CrossRef]
- Nehdi, M.L.; Soliman, A.M. Novel Green Roofing Membrane System Made with Recycled Leftover Paint. Green. Mater. 2013, 1, 231–241. [Google Scholar] [CrossRef]
- Jauni, M.; Kuoppamäki, K.; Hagner, M.; Prass, M.; Suonio, T.; Fransson, A.M.; Lehvävirta, S. Alkaline Habitat for Vegetated Roofs? Ecosystem Dynamics in a Vegetated Roof with Crushed Concrete-Based Substrate. Ecol. Eng. 2020, 157, 105970. [Google Scholar] [CrossRef]
- Vijayaraghavan, K.; Raja, F.D. Pilot-Scale Evaluation of Green Roofs with Sargassum Biomass as an Additive to Improve Runoff Quality. Ecol. Eng. 2015, 75, 70–78. [Google Scholar] [CrossRef]
- Eksi, M.; Sevgi, O.; Akburak, S.; Yurtseven, H.; Esin, İ. Assessment of Recycled or Locally Available Materials as Green Roof Substrates. Ecol. Eng. 2020, 156, 105966. [Google Scholar] [CrossRef]
- Ragaert, K.; Huysveld, S.; Vyncke, G.; Hubo, S.; Veelaert, L.; Dewulf, J.; Du Bois, E. Design from Recycling: A Complex Mixed Plastic Waste Case Study. Resour. Conserv. Recycl. 2020, 155, 104646. [Google Scholar] [CrossRef]
- Jusselme, M.D.; Pruvost, C.; Motard, E.; Giusti-Miller, S.; Dajoz, I.; Mora, P. Increasing the Ability of a Green Roof to Provide Ecosystem Services by Adding Organic Matter and Earthworms. Appl. Soil Ecol. 2019, 143, 61–69. [Google Scholar] [CrossRef]
- Eksi, M.; Rowe, D.B. Green Roof Substrates: Effect of Recycled Crushed Porcelain and Foamed Glass on Plant Growth and Water Retention. Urban For. Urban Green. 2016, 20, 81–88. [Google Scholar] [CrossRef]
- Xu, C.; Liu, Z.; Cai, G.; Zhan, J. Experimental Study on the Retention and Interception Effect of an Extensive Green Roof (GR) with a Substrate Layer Modified with Kaolin. Water 2020, 12, 2151. [Google Scholar] [CrossRef]
- Molineux, C.J.; Gange, A.C.; Connop, S.P.; Newport, D.J. Using Recycled Aggregates in Green Roof Substrates for Plant Diversity. Ecol. Eng. 2015, 82, 596–604. [Google Scholar] [CrossRef]
- Krawczyk, A.; Domagała-Świątkiewicz, I.; Lis-Krzyścin, A.; Daraż, M. Waste Silica as a Valuable Component of Extensive Green-Roof Substrates. Pol. J. Environ. Stud. 2017, 26, 643–653. [Google Scholar] [CrossRef]
- López-Uceda, A.; Galvín, A.P.; Ayuso, J.; Jiménez, J.R.; Vanwalleghem, T.; Peña, A. Risk Assessment by Percolation Leaching Tests of Extensive Green Roofs with Fine Fraction of Mixed Recycled Aggregates from Construction and Demolition Waste. Environ. Sci. Pollut. Res. 2018, 25, 36024–36034. [Google Scholar] [CrossRef]
- Luo, H.; Liu, X.; Anderson, B.C.; Zhang, K.; Li, X.; Huang, B.; Li, M.; Mo, Y.; Fan, L.; Shen, Q.; et al. Carbon Sequestration Potential of Green Roofs Using Mixed-Sewage-Sludge Substrate in Chengdu World Modern Garden City. Ecol. Indic. 2015, 49, 247–259. [Google Scholar] [CrossRef]
- Matlock, J.M.; Rowe, D.B. The Suitability of Crushed Porcelain and Foamed Glass as Alternatives to Heat-Expanded Shale in Green Roof Substrates: An Assessment of Plant Growth, Substrate Moisture, and Thermal Regulation. Ecol. Eng. 2016, 94, 244–254. [Google Scholar] [CrossRef]
- Xue, M.; Farrell, C. Use of Organic Wastes to Create Lightweight Green Roof Substrates with Increased Plant-Available Water. Urban For. Urban Green. 2020, 48, 126569. [Google Scholar] [CrossRef]
- Willaredt, M.; Nehls, T. Investigation of Water Retention Functions of Artificial Soil-like Substrates for a Range of Mixing Ratios of Two Components. J. Soils Sediments 2020, 21, 2118–2129. [Google Scholar] [CrossRef]
- Pérez, G.; Vila, A.; Rincón, L.; Solé, C.; Cabeza, L.F. Use of Rubber Crumbs as Drainage Layer in Green Roofs as Potential Energy Improvement Material. Appl. Energy 2012, 97, 347–354. [Google Scholar] [CrossRef]
- Huang, Y.Y.; Ma, T.J. Using Edible Plant and Lightweight Expanded Clay Aggregate (LECA) to Strengthen the Thermal Performance of Extensive Green Roofs in Subtropical Urban Areas. Energies 2019, 12, 424. [Google Scholar] [CrossRef]
- Huang, Y.Y.; Ma, T.J.; Wang, Y.S.; Wang, C.K. The Application of Non-Crassulacean Acid Metabolism Edible Plant and Lightweight Expanded Clay Aggregate to Achieve Joint Benefits of Thermal Insulation Mitigation and Passive Cooling Strengthening of Extensive Green Roofs in Subtropical Regions. Sol. Energy 2020, 201, 944–964. [Google Scholar] [CrossRef]
- Ye, J.; Liu, C.; Zhao, Z.; Li, Y.; Yu, S. Heavy Metals in Plants and Substrate from Simulated Extensive Green Roofs. Ecol. Eng. 2013, 55, 29–34. [Google Scholar] [CrossRef]
- Porcaro, M.; Ruiz de Adana, M.; Comino, F.; Peña, A.; Martín-Consuegra, E.; Vanwalleghem, T. Long Term Experimental Analysis of Thermal Performance of Extensive Green Roofs with Different Substrates in Mediterranean Climate. Energy Build. 2019, 197, 18–33. [Google Scholar] [CrossRef]
- Fan, L.; Wang, J.; Liu, X.; Luo, H.; Zhang, K.; Fu, X.; Li, M.; Li, X.; Jiang, B.; Chen, J.; et al. Whether the Carbon Emission from Green Roofs Can Be Effectively Mitigated by Recycling Waste Building Material as Green Roof Substrate during Five-Year Operation? Environ. Sci. Pollut. Res. 2020, 27, 40893–40906. [Google Scholar] [CrossRef]
- Vila, A.; Pérez, G.; Solé, C.; Fernández, A.I.; Cabeza, L.F. Use of Rubber Crumbs as Drainage Layer in Experimental Green Roofs. Build. Environ. 2012, 48, 101–106. [Google Scholar] [CrossRef]
- Pérez, G.; Coma, J.; Solé, C.; Castell, A.; Cabeza, L.F. Green Roofs as Passive System for Energy Savings When Using Rubber Crumbs as Drainage Layer. Energy Procedia 2012, 30, 452–460. [Google Scholar] [CrossRef]
- Bozorg, S.; Lehvävirta, S.; Häkkinen, T. Life Cycle Assessment of Layers of Green Roofs. J. Clean. Prod. 2015, 90, 153–162. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cervantes-Nájera, A.L.; Martínez-Rodríguez, M.-C.; Campos-Villegas, L.E.; Bello-Yañez, X.V.; Brenneisen, S. Green Roof Systems within the Framework of a Circular Economy: A Scoping Review. Recycling 2024, 9, 69. https://doi.org/10.3390/recycling9040069
Cervantes-Nájera AL, Martínez-Rodríguez M-C, Campos-Villegas LE, Bello-Yañez XV, Brenneisen S. Green Roof Systems within the Framework of a Circular Economy: A Scoping Review. Recycling. 2024; 9(4):69. https://doi.org/10.3390/recycling9040069
Chicago/Turabian StyleCervantes-Nájera, Ana Laura, María-Concepción Martínez-Rodríguez, Lorena Elizabeth Campos-Villegas, Xochitl Virginia Bello-Yañez, and Stephan Brenneisen. 2024. "Green Roof Systems within the Framework of a Circular Economy: A Scoping Review" Recycling 9, no. 4: 69. https://doi.org/10.3390/recycling9040069
APA StyleCervantes-Nájera, A. L., Martínez-Rodríguez, M. -C., Campos-Villegas, L. E., Bello-Yañez, X. V., & Brenneisen, S. (2024). Green Roof Systems within the Framework of a Circular Economy: A Scoping Review. Recycling, 9(4), 69. https://doi.org/10.3390/recycling9040069