Improving the Decision-Making for Sustainable Demolition Waste Management by Combining a Building Information Modelling-Based Life Cycle Sustainability Assessment Framework and Hybrid Multi-Criteria Decision-Aiding Approach
Abstract
:1. Introduction
2. Literature Review
2.1. Sustainability Assessment Methodologies at the Building’s End-of-Life (EoL) Stage
2.2. BIM-Enabled Life Cycle Sustainability Assessment
2.3. Coupling LCSA with MCDA to Improve the Decision-Making
3. Results
3.1. Goal and Scope Definition
3.2. Criteria and Alternatives Description
3.3. Life Cycle Inventory Analysis and Impact Assessment
3.4. Results Interpretation Using the AHP-TOPSIS Method
4. Materials and Methods
4.1. Identification of Required LCA Parameters and Data for Developing the External Database
4.2. Developing an Integrated Workflow for Implementing DWM Life Cycle Sustainability Assessment in the BIM-Based Environment
- Step 1: LCA- and DWM-related parameter creation.
- Step 2: Linking the LCA values to BIM elements and materials.
- Step 3: BIM-based inventory analysis and LCIA.
- Step 4: Result interpretation using Multi-Criteria Decision-Aiding.
4.3. Development of the BIM-Based Decision-Aiding Framework Using the Dynamo Visual Scripting
4.4. Case Study Validation
5. Discussion
5.1. Benefits and Limitations of This Study
5.2. Contribution to Knowledge
5.3. Future Recommendations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Klein, T.; Anderegg, W.R.L. A Vast Increase in Heat Exposure in the 21st Century Is Driven by Global Warming and Urban Population Growth. Sustain. Cities Soc. 2021, 73, 103098. [Google Scholar] [CrossRef]
- Han, D.; Kalantari, M.; Rajabifard, A. Building Information Modeling (BIM) for Construction and Demolition Waste Management in Australia: A Research Agenda. Sustainability 2021, 13, 12983. [Google Scholar] [CrossRef]
- Xu, J.; Shi, Y.; Xie, Y.; Zhao, S. A BIM-Based Construction and Demolition Waste Information Management System for Greenhouse Gas Quantification and Reduction. J. Clean. Prod. 2019, 229, 308–324. [Google Scholar] [CrossRef]
- Bovea, M.D.; Powell, J.C. Developments in Life Cycle Assessment Applied to Evaluate the Environmental Performance of Construction and Demolition Wastes. Waste Manag. 2016, 50, 151–172. [Google Scholar] [CrossRef]
- Ghisellini, P.; Ripa, M.; Ulgiati, S. Exploring Environmental and Economic Costs and Benefits of a Circular Economy Approach to the Construction and Demolition Sector. A Literature Review. J. Clean. Prod. 2018, 178, 618–643. [Google Scholar] [CrossRef]
- Llatas, C.; Soust-Verdaguer, B.; Passer, A. Implementing Life Cycle Sustainability Assessment during Design Stages in Building Information Modelling: From Systematic Literature Review to a Methodological Approach. Build. Environ. 2020, 182, 107164. [Google Scholar] [CrossRef]
- Sun, J.; Paasch, J.M.; Paulsson, J.; Tarandi, V.; Harrie, L. A BIM-Based Approach to Design a Lifecycle 3D Property Formation Process: A Swedish Case Study. Land Use Policy 2023, 131, 106712. [Google Scholar] [CrossRef]
- Filho, M.V.A.P.M.; da Costa, B.B.F.; Najjar, M.; Figueiredo, K.V.; de Mendonça, M.B.; Haddad, A.N. Sustainability Assessment of a Low-Income Building: A BIM-LCSA-FAHP-Based Analysis. Buildings 2022, 12, 181. [Google Scholar] [CrossRef]
- Fichter, E.; Richter, V.; Frisch, J.; van Treeck, C. Automatic Generation of Second Level Space Boundary Geometry from IFC Models. In Building Simulation; International Building Performance Simulation Association: Rapid City, SD, USA, 2022; pp. 1083–1090. [Google Scholar]
- Carvalho, J.P.; Bragança, L.; Mateus, R. A Systematic Review of the Role of BIM in Building Sustainability Assessment Methods. Appl. Sci. 2020, 10, 4444. [Google Scholar] [CrossRef]
- Santos, R.; Costa, A.A.; Silvestre, J.D.; Pyl, L. Integration of LCA and LCC Analysis within a BIM-Based Environment. Autom. Constr. 2019, 103, 127–149. [Google Scholar] [CrossRef]
- Di Maria, A.; Eyckmans, J.; Van Acker, K. Downcycling versus Recycling of Construction and Demolition Waste: Combining LCA and LCC to Support Sustainable Policy Making. Waste Manag. 2018, 75, 3–21. [Google Scholar] [CrossRef]
- Soust-Verdaguer, B.; Bernardino Galeana, I.; Llatas, C.; Montes, M.V.; Hoxha, E.; Passer, A. How to Conduct Consistent Environmental, Economic, and Social Assessment during the Building Design Process. A BIM-Based Life Cycle Sustainability Assessment Method. J. Build. Eng. 2022, 45, 103516. [Google Scholar] [CrossRef]
- Santos, R.; Aguiar Costa, A.; Silvestre, J.D.; Pyl, L. Development of a BIM-Based Environmental and Economic Life Cycle Assessment Tool. J. Clean. Prod. 2020, 265, 121705. [Google Scholar] [CrossRef]
- Liu, J.; Huang, Z.; Wang, X. Economic and Environmental Assessment of Carbon Emissions from Demolition Waste Based on LCA and LCC. Sustainability 2020, 12, 6683. [Google Scholar] [CrossRef]
- Iodice, S.; Garbarino, E.; Cerreta, M.; Tonini, D. Sustainability Assessment of Construction and Demolition Waste Management Applied to an Italian Case. Waste Manag. 2021, 128, 83–98. [Google Scholar] [CrossRef] [PubMed]
- Roussat, N.; Dujet, C.; Méhu, J. Choosing a Sustainable Demolition Waste Management Strategy Using Multicriteria Decision Analysis. Waste Manag. 2009, 29, 12–20. [Google Scholar] [CrossRef]
- Gálvez-Martos, J.L.; Styles, D.; Schoenberger, H.; Zeschmar-Lahl, B. Construction and Demolition Waste Best Management Practice in Europe. Resour. Conserv. Recycl. 2018, 136, 166–178. [Google Scholar] [CrossRef]
- Duran, X.; Lenihan, H.; O’Regan, B. A Model for Assessing the Economic Viability of Construction and Demolition Waste Recycling—The Case of Ireland. Resour. Conserv. Recycl. 2006, 46, 302–320. [Google Scholar] [CrossRef]
- Ding, T.; Xiao, J.; Tam, V.W.Y. A Closed-Loop Life Cycle Assessment of Recycled Aggregate Concrete Utilization in China. Waste Manag. 2016, 56, 367–375. [Google Scholar] [CrossRef]
- Invidiata, A.; Lavagna, M.; Ghisi, E. Selecting Design Strategies Using Multi-Criteria Decision Making to Improve the Sustainability of Buildings. Build. Environ. 2018, 139, 58–68. [Google Scholar] [CrossRef]
- Zanghelini, G.M.; Cherubini, E.; Soares, S.R. How Multi-Criteria Decision Analysis (MCDA) Is Aiding Life Cycle Assessment (LCA) in Results Interpretation. J. Clean. Prod. 2018, 172, 609–622. [Google Scholar] [CrossRef]
- Iqbal, M.; Ma, J.; Ahmad, N.; Ullah, Z.; Ahmed, R.I. Uptake and Adoption of Sustainable Energy Technologies: Prioritizing Strategies to Overcome Barriers in the Construction Industry by Using an Integrated AHP-TOPSIS Approach. Adv. Sustain. Syst. 2021, 5, 2100026. [Google Scholar] [CrossRef]
- UN. United Nations Transforming Our World: The 2030 Agenda for Sustainable Development; A/RES/70/1; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Kaewunruen, S.; Teuffel, P.; Donmez Cavdar, A.; Valta, O.; Tambovceva, T.; Bajare, D. Comparisons of Stakeholders’ Influences, Inter-Relationships, and Obstacles for Circular Economy Implementation on Existing Building Sectors. Sci. Rep. 2024, 14, 11046. [Google Scholar] [CrossRef]
- Mozaffari, M.; Bemani, A.; Erfani, M.; Yarami, N.; Siyahati, G. Integration of LCSA and GIS-Based MCDM for Sustainable Landfill Site Selection: A Case Study. Environ. Monit. Assess. 2023, 195, 510. [Google Scholar] [CrossRef]
- Arvidsson, R.; Hildenbrand, J.; Baumann, H.; Islam, K.M.N.; Parsmo, R. A Method for Human Health Impact Assessment in Social LCA: Lessons from Three Case Studies. Int. J. Life Cycle Assess. 2018, 23, 690–699. [Google Scholar] [CrossRef]
- Luthin, A.; Traverso, M.; Crawford, R.H. Assessing the Social Life Cycle Impacts of Circular Economy. J. Clean. Prod. 2023, 386, 135725. [Google Scholar] [CrossRef]
- Wang, J.; Wei, J.; Liu, Z.; Huang, C.; Du, X. Life Cycle Assessment of Building Demolition Waste Based on Building Information Modeling. Resour. Conserv. Recycl. 2022, 178, 106095. [Google Scholar] [CrossRef]
- Liu, S.; Qian, S. Evaluation of Social Life-Cycle Performance of Buildings: Theoretical Framework and Impact Assessment Approach. J. Clean. Prod. 2019, 213, 792–807. [Google Scholar] [CrossRef]
- Llatas, C.; Angulo Fornos, R.; Bizcocho, N.; Cortés Albalá, I.; Falcón Ganfornina, R.; Galeana, I.; Garcia-Martinez, A.; Gómez De Cózar, J.C.; López Alonso, S.; Meda, P.; et al. Towards a Life Cycle Sustainability Assessment Method for the Quantification and Reduction of Impacts of Buildings Life Cycle. IOP Conf. Ser. Earth Environ. Sci. 2019, 323, 012107. [Google Scholar] [CrossRef]
- Cheng, B.; Li, J.; Tam, V.W.Y.; Yang, M.; Chen, D. A BIM-LCA Approach for Estimating the Greenhouse Gas Emissions of Large-Scale Public Buildings: A Case Study. Sustainability 2020, 12, 685. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, X.; Cui, C.; Skitmore, M. BIM-Based Approach for the Integrated Assessment of Life Cycle Carbon Emission Intensity and Life Cycle Costs. Build. Environ. 2022, 226, 109691. [Google Scholar] [CrossRef]
- Hussain, M.; Zheng, B.; Chi, H.L.; Hsu, S.C. Automated and Continuous BIM-Based Life Cycle Carbon Assessment for Infrastructure Design Projects. Resour. Conserv. Recycl. 2023, 190, 106848. [Google Scholar] [CrossRef]
- Mayanti, B.; Songok, J.; Helo, P. Multi-Objective Optimization to Improve Energy, Economic and, Environmental Life Cycle Assessment in Waste-to-Energy Plant. Waste Manag. 2021, 127, 147–157. [Google Scholar] [CrossRef]
- Milutinović, B.; Stefanović, G.; Đekić, P.S.; Mijailović, I.; Tomić, M. Environmental Assessment of Waste Management Scenarios with Energy Recovery Using Life Cycle Assessment and Multi-Criteria Analysis. Energy 2017, 137, 917–926. [Google Scholar] [CrossRef]
- Dahiya, D.; Laishram, B. Energy Analysis of High-Rise Residential Buildings under Demolition Using Controlled Explosion: An Indian Case Study. J. Clean. Prod. 2023, 426, 139190. [Google Scholar] [CrossRef]
- Mohammed, A.B. Applying BIM to Achieve Sustainability throughout a Building Life Cycle towards a Sustainable BIM Model. Int. J. Constr. Manag. 2019, 22, 148–165. [Google Scholar] [CrossRef]
- Taelman, S.; Sanjuan-Delmás, D.; Tonini, D.; Dewulf, J. An Operational Framework for Sustainability Assessment Including Local to Global Impacts: Focus on Waste Management Systems. Resour. Conserv. Recycl. X 2019, 2, 100005. [Google Scholar] [CrossRef]
- Han, D.; Kalantari, M.; Rajabifard, A. Identifying and Prioritizing Sustainability Indicators for China’s Assessing Demolition Waste Management Using Modified Delphi–Analytic Hierarchy Process Method. Waste Manag. Res. 2023, 41, 1649–1660. [Google Scholar] [CrossRef] [PubMed]
- Llatas, C.; Bizcocho, N.; Soust-Verdaguer, B.; Montes, M.V.; Quiñones, R. An LCA-Based Model for Assessing Prevention versus Non-Prevention of Construction Waste in Buildings. Waste Manag. 2021, 126, 608–622. [Google Scholar] [CrossRef]
- Obrecht, T.P.; Röck, M.; Hoxha, E.; Passer, A. BIM and LCA Integration: A Systematic Literature Review. Sustainability 2020, 12, 5534. [Google Scholar] [CrossRef]
- LLatas, C.; Soust-Verdaguer, B.; Hollberg, A.; Palumbo, E.; Quiñones, R. BIM-Based LCSA Application in Early Design Stages Using IFC. Autom. Constr. 2022, 138, 104259. [Google Scholar] [CrossRef]
- Boje, C.; Hahn Menacho, Á.J.; Marvuglia, A.; Benetto, E.; Kubicki, S.; Schaubroeck, T.; Navarrete Gutiérrez, T. A Framework Using BIM and Digital Twins in Facilitating LCSA for Buildings. J. Build. Eng. 2023, 76, 107232. [Google Scholar] [CrossRef]
- Shin, Y.S.; Cho, K. BIM Application to Select Appropriate Design Alternative with Consideration of LCA and LCCA. Math. Probl. Eng. 2015, 2015, 281640. [Google Scholar] [CrossRef]
- Röck, M.; Hollberg, A.; Habert, G.; Passer, A. LCA and BIM: Visualization of Environmental Potentials in Building Construction at Early Design Stages. Build. Environ. 2018, 140, 153–161. [Google Scholar] [CrossRef]
- Santos, R.; Costa, A.A.; Silvestre, J.D.; Vandenbergh, T.; Pyl, L. BIM-Based Life Cycle Assessment and Life Cycle Costing of an Office Building in Western Europe. Build. Environ. 2020, 169, 106568. [Google Scholar] [CrossRef]
- van Eldik, M.A.; Vahdatikhaki, F.; dos Santos, J.M.O.; Visser, M.; Doree, A. BIM-Based Environmental Impact Assessment for Infrastructure Design Projects. Autom. Constr. 2020, 120, 103379. [Google Scholar] [CrossRef]
- Tam, V.W.; Zhou, Y.; Illankoon, C.; Le, K.N. A Critical Review on BIM and LCA Integration Using the ISO 14040 Framework. Build. Environ. 2022, 213, 108865. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, L.; Zhou, X.; Huang, L.; Sandanayake, M.; Yap, P.S. Recent Technological Advancements in BIM and LCA Integration for Sustainable Construction: A Review. Sustainability 2024, 16, 1340. [Google Scholar] [CrossRef]
- Bueno, C.; Pereira, L.M.; Fabricio, M.M. Life Cycle Assessment and Environmental-Based Choices at the Early Design Stages: An Application Using Building Information Modelling. Archit. Eng. Des. Manag. 2018, 14, 332–346. [Google Scholar] [CrossRef]
- Marrero, M.; Wojtasiewicz, M.; Martínez-Rocamora, A.; Solís-Guzmán, J.; Alba-Rodríguez, M.D. BIM-LCA Integration for the Environmental Impact Assessment of the Urbanization Process. Sustainability 2020, 12, 4196. [Google Scholar] [CrossRef]
- Dauletbek, A.; Zhou, P. BIM-Based LCA as a Comprehensive Method for the Refurbishment of Existing Dwellings Considering Environmental Compatibility, Energy Efficiency, and Profitability: A Case Study in China. J. Build. Eng. 2022, 46, 103852. [Google Scholar] [CrossRef]
- Zhou, Y.; Tam, V.W.; Le, K.N. Developing a Multi-Objective Optimization Model for Improving Building’s Environmental Performance over the Whole Design Process. Build. Environ. 2023, 246, 110996. [Google Scholar] [CrossRef]
- Hermann, B.G.; Kroeze, C.; Jawjit, W. Assessing Environmental Performance by Combining Life Cycle Assessment, Multi-Criteria Analysis and Environmental Performance Indicators. J. Clean. Prod. 2007, 15, 1787–1796. [Google Scholar] [CrossRef]
- Torkayesh, A.E.; Rajaeifar, M.A.; Rostom, M.; Malmir, B.; Yazdani, M.; Suh, S.; Heidrich, O. Integrating Life Cycle Assessment and Multi Criteria Decision Making for Sustainable Waste Management: Key Issues and Recommendations for Future Studies. Renew. Sustain. Energy Rev. 2022, 168, 112819. [Google Scholar] [CrossRef]
- Eghbali-Zarch, M.; Tavakkoli-Moghaddam, R.; Dehghan-Sanej, K.; Kaboli, A. Prioritizing the Effective Strategies for Construction and Demolition Waste Management Using Fuzzy IDOCRIW and WASPAS Methods. Eng. Constr. Archit. Manag. 2022, 29, 1109–1138. [Google Scholar] [CrossRef]
- Boonkanit, P.; Suthiluck, K. Developing a Decision-Making Support System for a Smart Construction and Demolition Waste Transition to a Circular Economy. Sustainability 2023, 15, 9672. [Google Scholar] [CrossRef]
- Anastasiadou, K.; Gavanas, N.; Pyrgidis, C.; Pitsiava-Latinopoulou, M. Identifying and Prioritizing Sustainable Urban Mobility Barriers through a Modified Delphi-Ahp Approach. Sustainability 2021, 13, 386. [Google Scholar] [CrossRef]
- Gompf, K.; Traverso, M.; Hetterich, J. Using Analytical Hierarchy Process (AHP) to Introduce Weights to Social Life Cycle Assessment of Mobility Services. Sustainability 2021, 13, 1258. [Google Scholar] [CrossRef]
- Freeman, J.; Chen, T. Green Supplier Selection Using an AHP-Entropy-TOPSIS Framework. Supply Chain. Manag. 2015, 20, 327–340. [Google Scholar] [CrossRef]
- Niu, D.; Wu, G.; Ji, Z.; Wang, D.; Li, Y.; Gao, T. Evaluation of Provincial Carbon Neutrality Capacity of China Based on Combined Weight and Improved Topsis Model. Sustainability 2021, 13, 2777. [Google Scholar] [CrossRef]
- Demircan, B.G.; Yetilmezsoy, K. A Hybrid Fuzzy AHP-TOPSIS Approach for Implementation of Smart Sustainable Waste Management Strategies. Sustainability 2023, 15, 6526. [Google Scholar] [CrossRef]
- Han, D.; Kalantari, M.; Rajabifard, A. The Development of an Integrated BIM-Based Visual Demolition Waste Management Planning System for Sustainability-Oriented Decision-Making. J. Environ. Manag. 2024, 351, 119856. [Google Scholar] [CrossRef] [PubMed]
- Marzouk, M.; Sabbah, M. AHP-TOPSIS Social Sustainability Approach for Selecting Supplier in Construction Supply Chain. Clean. Environ. Syst. 2021, 2, 100034. [Google Scholar] [CrossRef]
- Ahmed, M.; Qureshi, M.N.; Mallick, J.; Ben Kahla, N. Selection of Sustainable Supplementary Concrete Materials Using OSM-AHP-TOPSIS Approach. Adv. Mater. Sci. Eng. 2019, 2019, 2850480. [Google Scholar] [CrossRef]
- Figueiredo, K.; Pierott, R.; Hammad, A.W.A.; Haddad, A. Sustainable Material Choice for Construction Projects: A Life Cycle Sustainability Assessment Framework Based on BIM and Fuzzy-AHP. Build. Environ. 2021, 196, 107805. [Google Scholar] [CrossRef]
- Kamari, A.; Kotula, B.M.; Schultz, C.P.L. A BIM-Based LCA Tool for Sustainable Building Design during the Early Design Stage. Smart Sustain. Built Environ. 2022, 11, 217–244. [Google Scholar] [CrossRef]
- Fazeli, A.; Jalaei, F.; Khanzadi, M.; Banihashemi, S. BIM-Integrated TOPSIS-Fuzzy Framework to Optimize Selection of Sustainable Building Components. Int. J. Constr. Manag. 2022, 22, 1240–1259. [Google Scholar] [CrossRef]
- Carvalho, J.P.; Villaschi, F.S.; Bragança, L. Assessing Life Cycle Environmental and Economic Impacts of Building Construction Solutions with BIM. Sustainability 2021, 13, 8914. [Google Scholar] [CrossRef]
- Li, K.; Duan, T.; Li, Z.; Xiahou, X.; Zeng, N.; Li, Q. Development Path of Construction Industry Internet Platform: An AHP–TOPSIS Integrated Approach. Buildings 2022, 12, 441. [Google Scholar] [CrossRef]
- Safari, K.; AzariJafari, H. Challenges and Opportunities for Integrating BIM and LCA: Methodological Choices and Framework Development. Sustain. Cities Soc. 2021, 67, 102728. [Google Scholar] [CrossRef]
- Khoshand, A.; Khanlari, K.; Abbasianjahromi, H.; Zoghi, M. Construction and Demolition Waste Management: Fuzzy Analytic Hierarchy Process Approach. Waste Manag. Res. 2020, 38, 773–782. [Google Scholar] [CrossRef] [PubMed]
- Akyol, M.; Uçar, E. Carbon Footprint Forecasting Using Time Series Data Mining Methods: The Case of Turkey. Environ. Sci. Pollut. Res. 2021, 28, 38552–38562. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.M.; Saifoddin, A.; Shirmohammadi, R.; Aslani, A. Forecasting of CO2 Emissions in Iran Based on Time Series and Regression Analysis. Energy Rep. 2019, 5, 619–631. [Google Scholar] [CrossRef]
- Dervishaj, A.; Gudmundsson, K. From LCA to Circular Design: A Comparative Study of Digital Tools for the Built Environment. Resour. Conserv. Recycl. 2024, 200, 107291. [Google Scholar] [CrossRef]
- Yan, J.; Lu, Q.; Tang, J.; Chen, L.; Hong, J.; Broyd, T. Digital Tools for Revealing and Reducing Carbon Footprint in Infrastructure, Building, and City Scopes. Buildings 2022, 12, 1097. [Google Scholar] [CrossRef]
- Hollberg, A.; Genova, G.; Habert, G. Evaluation of BIM-Based LCA Results for Building Design. Autom. Constr. 2020, 109, 102972. [Google Scholar] [CrossRef]
- Röck, M.; Hollberg, A.; Habert, G.; Passer, A. LCA and BIM: Integrated Assessment and Visualization of Building Elements’ Embodied Impacts for Design Guidance in Early Stages. Procedia CIRP 2018, 69, 218–223. [Google Scholar] [CrossRef]
- Volk, R.; Luu, T.H.; Mueller-Roemer, J.S.; Sevilmis, N.; Schultmann, F. Deconstruction Project Planning of Existing Buildings Based on Automated Acquisition and Reconstruction of Building Information. Autom. Constr. 2018, 91, 226–245. [Google Scholar] [CrossRef]
- Hu, D.; Chen, J.; Li, S. Reconstructing Unseen Spaces in Collapsed Structures for Search and Rescue via Deep Learning Based Radargram Inversion. Autom. Constr. 2022, 140, 104380. [Google Scholar] [CrossRef]
- Wang, B.; Wang, Q.; Cheng, J.C.P.; Song, C.; Yin, C. Vision-Assisted BIM Reconstruction from 3D LiDAR Point Clouds for MEP Scenes. Autom. Constr. 2022, 133, 103997. [Google Scholar] [CrossRef]
- Bassier, M.; Vergauwen, M. Unsupervised Reconstruction of Building Information Modeling Wall Objects from Point Cloud Data. Autom. Constr. 2020, 120, 103338. [Google Scholar] [CrossRef]
- Saha, S.; Maity, S.R.; Dey, S.; Dutta, S. Modeling and Combined Application of MOEA/D and TOPSIS to Optimize WEDM Performances of A286 Superalloy. Soft Comput. 2021, 25, 14697–14713. [Google Scholar] [CrossRef]
- Chander, G.P.; Das, S. Hesitant T-Spherical Fuzzy Linear Regression Model Based Decision Making Approach Using Gradient Descent Method. Eng. Appl. Artif. Intell. 2023, 122, 106074. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X. An Automated Project Carbon Planning, Monitoring and Forecasting System Integrating Building Information Model and Earned Value Method. J. Clean. Prod. 2023, 397, 136526. [Google Scholar] [CrossRef]
- Hong, Y.; Hammad, A.W.A.; Akbarnezhad, A.; Arashpour, M. A Neural Network Approach to Predicting the Net Costs Associated with BIM Adoption. Autom. Constr. 2020, 119, 103306. [Google Scholar] [CrossRef]
Alternative 1 | GWP (kg CO2 eq) | EE (MJ) | ADP (MJ) | AP (kg SO2-eq) | LU (Hectare) | LCS (AUD) | TC (AUD) | HT (CTUh) |
Ceilings | 4.52 × 103 | 5.13 × 104 | 5.25 × 104 | 9.45 × 10−2 | 2.41 × 10−3 | 2.34 × 103 | 5.36 × 103 | 3.24 × 10−2 |
Columns | 3.98 × 103 | 4.96 × 104 | 4.89 × 104 | 8.71 × 10−2 | 2.24 × 10−3 | 2.65 × 103 | 4.86 × 103 | 2.87 × 10−2 |
Doors | 1.46 × 103 | 3.88 × 104 | 3.67 × 104 | 4.85 × 10−2 | 8.71 × 10−4 | 1.85 × 103 | 1.60 × 103 | 1.57 × 10−2 |
Windows | 7.56 × 102 | 3.46 × 104 | 2.35 × 104 | 3.67 × 10−2 | 5.62 × 10−4 | 9.50 × 102 | 8.50 × 102 | 8.60 × 10−3 |
Slabs | 6.66 × 103 | 5.62 × 104 | 5.46 × 104 | 1.27 × 100 | 4.45 × 10−3 | 3.46 × 103 | 6.60 × 103 | 4.58 × 10−2 |
Beams | 8.24 × 103 | 5.87 × 104 | 5.82 × 104 | 1.58 × 100 | 5.67 × 10−3 | 4.56 × 103 | 7.24 × 103 | 6.24 × 10−2 |
External walls | 1.68 × 104 | 7.43 × 104 | 9.88 × 104 | 3.18 × 100 | 9.65 × 10−3 | 8.40 × 103 | 1.24 × 104 | 1.27 × 10−1 |
Partition walls | 1.33 × 104 | 6.78 × 104 | 7.81 × 104 | 2.68 × 100 | 7.92 × 10−3 | 7.50 × 103 | 1.06 × 104 | 1.19 × 10−1 |
Roof | 1.03 × 103 | 3.56 × 104 | 3.83 × 104 | 4.30 × 10−2 | 7.63 × 10−4 | 1.56 × 103 | 1.35 × 103 | 1.24 × 10−2 |
Total | 5.67 × 104 | 4.67 × 105 | 4.89 × 105 | 9.02 × 100 | 3.45 × 10−2 | 3.33 × 104 | 5.08 × 104 | 4.51 × 10−1 |
Alternative 2 | GWP (kg CO2 eq) | EE (MJ) | ADP (MJ) | AP (kg SO2-eq) | LU (Hectare) | LCS (AUD) | TC (AUD) | HT (CTUh) |
Ceilings | 8.14 × 103 | 9.24 × 104 | 9.45 × 104 | 1.70 × 10−1 | 4.34 × 10−3 | 1.52 × 103 | 4.02 × 103 | 5.83 × 10−2 |
Columns | 7.16 × 103 | 8.93 × 104 | 8.80 × 104 | 1.57 × 10−1 | 4.03 × 10−3 | 1.72 × 103 | 3.65 × 103 | 5.17 × 10−2 |
Doors | 2.63 × 103 | 6.98 × 104 | 6.61 × 104 | 8.73 × 10−2 | 1.57 × 10−3 | 1.20 × 103 | 1.20 × 103 | 2.83 × 10−2 |
Windows | 1.36 × 103 | 6.22 × 104 | 4.22 × 104 | 6.61 × 10−2 | 1.01 × 10−3 | 6.18 × 102 | 6.38 × 102 | 1.55 × 10−2 |
Slabs | 1.20 × 104 | 1.01 × 105 | 9.82 × 104 | 2.29 × 100 | 8.01 × 10−3 | 2.25 × 103 | 4.95 × 103 | 8.24 × 10−2 |
Beams | 1.48 × 104 | 1.06 × 105 | 1.05 × 105 | 2.85 × 100 | 1.02 × 10−2 | 2.96 × 103 | 5.43 × 103 | 1.12 × 10−1 |
External walls | 3.03 × 104 | 1.34 × 105 | 1.78 × 105 | 5.72 × 100 | 1.74 × 10−2 | 5.46 × 103 | 9.26 × 103 | 2.28 × 10−1 |
Partition walls | 2.39 × 104 | 1.22 × 105 | 1.41 × 105 | 4.82 × 100 | 1.43 × 10−2 | 4.88 × 103 | 7.92 × 103 | 2.14 × 10−1 |
Roof | 1.86 × 103 | 6.41 × 104 | 6.89 × 104 | 7.74 × 10−2 | 1.37 × 10−3 | 1.01 × 103 | 1.01 × 103 | 2.22 × 10−2 |
Total | 1.02 × 105 | 8.40 × 105 | 8.81 × 105 | 1.62 × 101 | 6.22 × 10−2 | 2.16 × 104 | 3.81 × 104 | 8.12 × 10−1 |
Alternative 3 | GWP (kg CO2 eq) | EE (MJ) | ADP (MJ) | AP (kg SO2-eq) | LU (Hectare) | LCS (AUD) | TC (AUD) | HT (CTUh) |
Ceilings | 1.81 × 104 | 2.57 × 105 | 2.89 × 105 | 4.73 × 10−1 | 1.35 × 10−2 | 5.20 × 102 | 2.14 × 103 | 1.94 × 10−1 |
Columns | 1.59 × 104 | 2.48 × 105 | 2.69 × 105 | 4.36 × 10−1 | 1.25 × 10−2 | 5.89 × 102 | 1.95 × 103 | 1.72 × 10−1 |
Doors | 5.84 × 103 | 1.94 × 105 | 2.02 × 105 | 2.43 × 10−1 | 4.88 × 10−3 | 4.11 × 102 | 6.40 × 102 | 9.42 × 10−2 |
Windows | 3.02 × 103 | 1.73 × 105 | 1.29 × 105 | 1.84 × 10−1 | 3.15 × 10−3 | 2.11 × 102 | 3.40 × 102 | 5.16 × 10−2 |
Slabs | 2.66 × 104 | 2.81 × 105 | 3.00 × 105 | 6.37 × 100 | 2.49 × 10−2 | 7.69 × 102 | 2.64 × 103 | 2.75 × 10−1 |
Beams | 3.30 × 104 | 2.94 × 105 | 3.20 × 105 | 7.91 × 100 | 3.18 × 10−2 | 1.01 × 103 | 2.89 × 103 | 3.74 × 10−1 |
External walls | 6.73 × 104 | 3.72 × 105 | 5.43 × 105 | 1.59 × 101 | 5.40 × 10−2 | 1.87 × 103 | 4.94 × 103 | 7.60 × 10−1 |
Partition walls | 5.30 × 104 | 3.39 × 105 | 4.29 × 105 | 1.34 × 101 | 4.44 × 10−2 | 1.67 × 103 | 4.23 × 103 | 7.12 × 10−1 |
Roof | 4.14 × 103 | 1.78 × 105 | 2.11 × 105 | 2.15 × 10−1 | 4.27 × 10−3 | 3.47 × 102 | 5.40 × 102 | 7.41 × 10−2 |
Total | 2.27 × 105 | 2.33 × 106 | 2.69 × 106 | 4.51 × 101 | 1.93 × 10−1 | 7.39 × 103 | 2.03 × 104 | 2.71 × 100 |
Alternative 4 | GWP (kg CO2 eq) | EE (MJ) | ADP (MJ) | AP (kg SO2-eq) | LU (Hectare) | LCS (AUD) | TC (AUD) | HT (CTUh) |
Ceilings | 5.88 × 103 | 6.67 × 104 | 6.83 × 104 | 1.23 × 10−1 | 3.37 × 10−3 | 1.99 × 103 | 4.07 × 103 | 3.89 × 10−2 |
Columns | 5.17 × 103 | 6.45 × 104 | 6.36 × 104 | 1.13 × 10−1 | 3.14 × 10−3 | 2.25 × 103 | 3.70 × 103 | 3.44 × 10−2 |
Doors | 1.90 × 103 | 5.04 × 104 | 4.77 × 104 | 6.31 × 10−2 | 1.22 × 10−3 | 1.57 × 103 | 1.22 × 103 | 1.88 × 10−2 |
Windows | 9.83 × 102 | 4.49 × 104 | 3.05 × 104 | 4.77 × 10−2 | 7.87 × 10−4 | 8.08 × 102 | 6.46 × 102 | 1.03 × 10−2 |
Slabs | 8.66 × 103 | 7.31 × 104 | 7.09 × 104 | 1.66 × 100 | 6.23 × 10−3 | 2.94 × 103 | 5.02 × 103 | 5.49 × 10−2 |
Beams | 1.07 × 104 | 7.63 × 104 | 7.57 × 104 | 2.06 × 100 | 7.94 × 10−3 | 3.88 × 103 | 5.50 × 103 | 7.49 × 10−2 |
External walls | 2.19 × 104 | 9.66 × 104 | 1.28 × 105 | 4.13 × 100 | 1.35 × 10−2 | 7.14 × 103 | 9.39 × 103 | 1.52 × 10−1 |
Partition walls | 1.72 × 104 | 8.82 × 104 | 1.02 × 105 | 3.48 × 100 | 1.11 × 10−2 | 6.38 × 103 | 8.03 × 103 | 1.42 × 10−1 |
Roof | 1.34 × 103 | 4.63 × 104 | 4.98 × 104 | 5.59 × 10−2 | 1.07 × 10−3 | 1.33 × 103 | 1.03 × 103 | 1.48 × 10−2 |
Total | 7.37 × 104 | 6.07 × 105 | 6.36 × 105 | 1.17 × 101 | 4.84 × 10−2 | 2.83 × 104 | 3.86 × 104 | 5.42 × 10−1 |
Imported LCIA results in TOPSIS matrix | ||||||||
Weight | 0.3203 | 0.1608 | 0.0866 | 0.121 | 0.1352 | 0.0539 | 0.0654 | 0.0568 |
Criteria | GWP | EE | ADP | AP | LU | LCS | TC | HT |
DWM Alternative 1 | 56,730 | 466,924 | 489,476 | 9.023 | 0.0345 | 33,271 | 50,769 | 0.45131 |
DWM Alternative 2 | 102,114 | 840,463 | 881,057 | 16.241 | 0.0622 | 21,626 | 38,077 | 0.81236 |
DWM Alternative 3 | 226,920 | 2334,620 | 2692,118 | 45.115 | 0.1934 | 7394 | 20,308 | 2.70786 |
DWM Alternative 4 | 73,749 | 607,008 | 636,319 | 11.730 | 0.0484 | 28,280 | 38,584 | 0.54157 |
Normalised TOPSIS matrix | ||||||||
Criteria | GWP | EE | ADP | AP | LU | LCS | TC | HT |
DWM Alternative 1 | 0.7865 | 0.8202 | 0.8337 | 0.8202 | 0.8368 | 0.6751 | 0.3406 | 0.8451 |
DWM Alternative 2 | 0.6156 | 0.6763 | 0.7007 | 0.6763 | 0.7063 | 0.4388 | 0.5055 | 0.7212 |
DWM Alternative 3 | 0.1458 | 0.1010 | 0.0856 | 0.1010 | 0.0863 | 0.1500 | 0.7363 | 0.0706 |
DWM Alternative 4 | 0.7224 | 0.7662 | 0.7839 | 0.7662 | 0.7716 | 0.5738 | 0.4989 | 0.8141 |
Weighted normalised TOPSIS matrix | ||||||||
Criteria | GWP | EE | ADP | AP | LU | LCS | TC | HT |
DWM Alternative 1 | 0.2519 | 0.1319 | 0.0722 | 0.0992 | 0.1131 | 0.0364 | 0.0223 | 0.0480 |
DWM Alternative 2 | 0.1972 | 0.1088 | 0.0607 | 0.0818 | 0.0955 | 0.0237 | 0.0331 | 0.0410 |
DWM Alternative 3 | 0.0467 | 0.0162 | 0.0074 | 0.0122 | 0.0117 | 0.0081 | 0.0482 | 0.0040 |
DWM Alternative 4 | 0.2314 | 0.1232 | 0.0679 | 0.0927 | 0.1043 | 0.0309 | 0.0326 | 0.0462 |
Ideal best and ideal worst value in each impact category | ||||||||
V+ | 0.2519 | 0.1319 | 0.0722 | 0.0992 | 0.1131 | 0.0364 | 0.0482 | 0.0480 |
V− | 0.0467 | 0.0162 | 0.0074 | 0.0122 | 0.0117 | 0.0081 | 0.0223 | 0.0040 |
DWM sustainability scores ranking | ||||||||
Alternatives ranking | Si+ | Si− | Sustainability score | Rank | ||||
DWM Alternative 1 | 0.0259 | 0.2833 | 91.63 | 1 | ||||
DWM Alternative 2 | 0.0687 | 0.2183 | 76.07 | 3 | ||||
DWM Alternative 3 | 0.2833 | 0.0259 | 8.37 | 4 | ||||
DWM Alternative 4 | 0.0302 | 0.2582 | 89.54 | 2 |
Dimensions | Sustainability Indicators | Assessment Methods | Unit | Data Sources |
---|---|---|---|---|
Environmental | Global Warming Potential | CML-IA | kg CO2-eq | Ecoinvent database |
Energy Efficiency | Original model | MJ | Ecoinvent database | |
Abiotic Depletion Potential | CML-IA | MJ | Ecoinvent database | |
Acidification Potential | CML-IA | kg SO2-eq | Ecoinvent database | |
Land Use | Original model | Hectare/year | Case study, site visits | |
Economic | Total Project Cost | Original model | AUD/ton | Site visits, interviews |
Landfill Cost Saving | Original model | AUD/ton | Site visits, interviews | |
Social | Human Toxicity | USEtox | CTUh */kg | Ecoinvent database |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, D.; Rajabifard, A. Improving the Decision-Making for Sustainable Demolition Waste Management by Combining a Building Information Modelling-Based Life Cycle Sustainability Assessment Framework and Hybrid Multi-Criteria Decision-Aiding Approach. Recycling 2024, 9, 70. https://doi.org/10.3390/recycling9040070
Han D, Rajabifard A. Improving the Decision-Making for Sustainable Demolition Waste Management by Combining a Building Information Modelling-Based Life Cycle Sustainability Assessment Framework and Hybrid Multi-Criteria Decision-Aiding Approach. Recycling. 2024; 9(4):70. https://doi.org/10.3390/recycling9040070
Chicago/Turabian StyleHan, Dongchen, and Abbas Rajabifard. 2024. "Improving the Decision-Making for Sustainable Demolition Waste Management by Combining a Building Information Modelling-Based Life Cycle Sustainability Assessment Framework and Hybrid Multi-Criteria Decision-Aiding Approach" Recycling 9, no. 4: 70. https://doi.org/10.3390/recycling9040070
APA StyleHan, D., & Rajabifard, A. (2024). Improving the Decision-Making for Sustainable Demolition Waste Management by Combining a Building Information Modelling-Based Life Cycle Sustainability Assessment Framework and Hybrid Multi-Criteria Decision-Aiding Approach. Recycling, 9(4), 70. https://doi.org/10.3390/recycling9040070