Pressmud Compost for Improved Nitrogen and Phosphorus Content Employing Bacillus Strains
Abstract
:1. Introduction
2. Results
2.1. Moisture Content
2.2. Temperature Variation
2.3. pH of the Compost
2.4. Electrical Conductivity (EC)
2.5. Organic Matter (%)
2.6. Waste Mass Degradation
2.7. Total Nitrogen (N) Content
2.8. Phosphorus Concentration
2.9. FT-IR Analysis of Compost
2.9.1. FT-IR Spectrum of E2 Compost
2.9.2. FT-IR Spectrum of E3 Compost
2.9.3. FT-IR Spectrum of E1 Compost
3. Discussion
4. Material and Methods
4.1. Preparation of Consortia
4.2. Inoculum Preparation
4.3. Compost Formation
4.4. Physiochemical Characteristics of Compost
4.4.1. Moisture Content
4.4.2. Variation in Temperature
4.4.3. Determination of pH Value
4.4.4. Electrical Conductivity
4.4.5. Organic Matter (OM)
4.4.6. Waste Mass Degradation
4.4.7. Determination of Nitrogen in Sample
4.4.8. Analysis of Phosphorus in Compost
4.4.9. FTIR Analysis of Compost
5. Conclusions and Future Suggestions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Government of Pakistan. Ecnomice Survey of Pakistan 2014–15; Ministry of Food, Agriculture and Livestock (Fedral Bureau of Statistics): Islamabad, Pakistan, 2015; pp. 23–44. [Google Scholar]
- Rafique, E.; Gill, S.M.; Ahmed, H.; Hussain, G.S.; Raza, M.M. Mapping nitrogen status in soil and foliage of cotton producing area of southern Punjab, Pakistan. Pak. J. Bot. 2023, 55, 2275–2281. [Google Scholar] [CrossRef] [PubMed]
- Pawlak, K.; Kołodziejczak, M. The role of agriculture in ensuring food security in developing countries: Considerations in the context of the problem of sustainable food production. Sustainability 2020, 12, 5488. [Google Scholar] [CrossRef]
- Skrzypczak, D.; Trzaska, K.; Mironiuk, M.; Mikula, K.; Izydorczyk, G.; Polomska, X.; Wisliewski, J.; Mielko, N.K.; Mustakas, K.; Chojnacka, K. Recent innovations in fertilization with treated digestate from food waste to recover nutrients for arid agricultural fields. Environ. Sci. Pollut. Res. 2023, 31, 41563–41585. [Google Scholar] [CrossRef]
- Perera, G.G.; Wijesekara, J.P.; Subhashini, P.; Ekanayake, K.V.; Rashid, M.R. EcoGrowAdviser: Organic fertiliser recommendation system to enhance organic fertilization process-a case from Sri Lankan farming industry. Int. J. Agric. Ext. 2024, 12, 35–49. [Google Scholar]
- Bokhtiar, S.M.; Roksana, S.; Moslehuddin, A.Z.M. Soil fertility and productivity of sugarcane influenced by enriched pressmud compost with chemical fertilizers. SAARC J. Agric. 2015, 13, 183–197. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Iqbal, A. Sugarcane production, economics and industry in Pakistan. Am. J. Agric. Environ. Sci. 2014, 14, 1470–1477. [Google Scholar]
- Bokhtiar, S.M.; Sakurai, K. Effects of pressmud compost and chemical fertilizers on soil fertility and the yield and quality of sugarcane. Plant Soil 2005, 272, 207–217. [Google Scholar]
- Kumar, S.; Verma, N.K.; Bhardwaj, A.K. Recycling sugar industry waste through composting to produce organic fertilizer for sugarcane. Int. J. Recycl. Org. Waste Agric. 2018, 7, 349–357. [Google Scholar]
- Tallapragada, P.; Gudimi, M. Phosphate solubility and biocontrol activity of Trichoderma harzianum. Turk. J. Biol. 2011, 35, 593–600. [Google Scholar] [CrossRef]
- Rakkiyappan, P.; Malathi, S.; Radhamani, S. Effect of pressmud on soil nutrient status and yield of sugarcane in Erode district of Tamil Nadu. Agric. Rev. 2012, 33, 46–49. [Google Scholar]
- Ahmed, T.; Noman, M.; Qi, Y.; Shahid, M.; Hussain, S.; Masood, H.A.; Li, B. Fertilization of Microbial Composts: A Technology for Improving Stress Resilience in Plants. Plants 2023, 12, 3550. [Google Scholar] [CrossRef] [PubMed]
- Rashid, M.I.; Saleem, M.; Azam, F. Bioavailability of Nutrients in Biofortified Compost: The Role of Microbial Strains. Appl. Soil Ecol. 2016, 107, 61–70. [Google Scholar]
- Zinati, G.M.; Li, Y.; Bryan, H.H.; Mylavarapu, R.S.; Codallo, M. Distribution and fractionation of phosphorus, cadmium, nickel, and lead in calcareous soils amended with composts. J. Environ. Health Part B 2004, 39, 209–223. [Google Scholar] [CrossRef]
- Jalali, M.; Arfania, H. Distribution and fractionation of cadmium, copper, lead, nickel, and zinc in a calcareous sandy soil receiving municipal solid waste. Environ. Monit. Assess. 2011, 173, 241–250. [Google Scholar] [CrossRef]
- Alengebawy, A.; El-Masry, M.A.; El-Shafei, M. Composting of Organic Wastes: Heavy Metals and Nutrient Dynamics. Environ. Sci. Pollut. Res. 2021, 28, 18456–18468. [Google Scholar]
- Orr, C.H.; James, A.; Leifert, C.; Cooper, J.M.; Cummings, S.P. Diversity and activity of free-living nitrogen-fixing bacteria and total bacteria in organic and conventionally managed soils. Appl. Environ. Microbiol. 2011, 77, 911–919. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.; Zhao, J. Thermophilic Nitrogen-Fixing Bacteria in Composting: Enhancements in Nutrient Dynamics and Soil Health. J. Soil Sci. Plant Nutr. 2024, 24, 199–213. [Google Scholar]
- Zaka, M.A.; Hussain, N.; Sarwar, G.; Malik, M.R.; Ahmad, I.; Gill, K.H. Fertility status of Sargodha district soils. Pak. J. Sci. Res. 2004, 56, 69–75. [Google Scholar]
- Son, H.J.; Park, G.T.; Cha, M.S.; Heo, M.S. Solubilization of insoluble inorganic phosphates by a novel salt-and pH-tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere. Bioresour. Technol. 2006, 97, 204–210. [Google Scholar] [CrossRef]
- Ramos Cabrera, E.V.; Delgado Espinosa, Z.Y.; Solis Pino, A.F. Use of Phosphorus-Solubilizing Microorganisms as a Biotechnological Alternative: A Review. Microorganisms 2024, 12, 1591. [Google Scholar] [CrossRef]
- Gonawala, M.K.; Jardosh, H. Influence of C/N Ratio on Composting Efficiency: A Review. J. Environ. Manag. 2018, 215, 127–135. [Google Scholar]
- Méndez-Matías, A.; Robles, C.; Ruiz-Vega, J.; Castañeda-Hidalgo, E. Composting agroindustrial waste inoculated with lignocellulosic fungi and modifying the C/N ratio. Rev. Mex. Cienc. Agrícolas 2018, 9, 271–280. [Google Scholar]
- Rich, S.J.; Bharti, S. Effect of Compost on Soil pH and Nutrient Dynamics. Asian J. Agric. Biol. 2015, 3, 1–7. [Google Scholar]
- Obileke, T.A.; Akinyemi, O.A.; Olaniyi, A.A. Electrical Conductivity as an Indicator of Compost Quality: Implications for Microbial Activity. Int. J. Recycl. Org. Waste Agric. 2021, 10, 1–9. [Google Scholar]
- Ayilara, M.S.; Babalola, O.O. Bioremediation of environmental wastes: The role of microorganisms. Front. Agron. 2023, 5, 1183691. [Google Scholar] [CrossRef]
- Noorjahan, A. The Role of Environmental Factors in Microbial Biodegradation: A Comprehensive Review. J. Microbiol. Biodegrad. 2014, 5, 85–92. [Google Scholar]
- Tao, R.; Zhang, J.; Zhu, W.; Fang, W. Phosphorus solubilizing activity and phosphate metabolism of Bacillus megaterium in composted waste. Bioresour. Technol. 2008, 99, 4435–4442. [Google Scholar]
- Tiquia, S.M. Microbial Transformation of Nitrogen During Composting. In Microbiology of Composting; Insam, H., Riddech, N., Klammer, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Aslam, S.; Ali, H.; Javed, I.Q. Dual action of chromium-reducing and nitrogen-fixing, Bacillus megaterium-ASNF3 for improved agro-rehabilitation of chromium-stressed soils. 3Biotech 2016, 6, 125–136. [Google Scholar] [CrossRef]
- Aslam, S.; Ali, H.; Javed, I.Q. Production of Cellulases by Bacillusamyloliquefaciens-ASK11 under high chromium Stress. Waste Biomass Valorization 2019, 10, 53–61. [Google Scholar] [CrossRef]
- Amri, M.; Rjeibi, M.R.; Gatrouni, M.; Mateus, D.M.; Asses, N.; Pinho, H.J.; Abbes, C. Isolation, identification, and characterization of phosphate-solubilizing bacteria from Tunisian soils. Microorganisms 2023, 11, 783. [Google Scholar] [CrossRef]
- Sarkar, P.; Chourasia, R. Bioconversion of organic solid wastes into biofortified compost using a microbial consortium. Int. J. Recycl. Org. Waste Agric. 2017, 6, 321–334. [Google Scholar] [CrossRef]
- Bajko, J.; Fišer, J.; Jícha, M. Temperature measurement and performance assessment of the experimental composting bioreactor. EPJ Web Conf. 2018, 180, 02003. [Google Scholar] [CrossRef]
- Ameen, A.; Ahmad, J.; Raza, S. Effect of pH and moisture content on composting of Municipal solid waste. In. J. Sci. Res. 2016, 6, 35–37. [Google Scholar]
- Neves, A.C.; da Costa, P.; de Oliveira Silva, C.A.; Pereira, F.R.; Mol, M.P.G. Analytical methods comparison for pH determination of composting process from green wastes. Environ. Eng. Manag. J. 2021, 20, 133–139. [Google Scholar] [CrossRef]
- Masood, S.; Hussain, A.; Javid, A.; Rashid, M.; Bukahri, S.M.; Ali, W.; Aslam, K. Fungal conversion of chicken-feather waste into biofortified compost. Braz. J. Biol. 2022, 83, e248026. [Google Scholar]
- Sáez-Plaza, P.; Michałowski, T.; Navas, M.J.; Asuero, A.G.; Wybraniec, S. An overview of the Kjeldahl method of nitrogen determination. Part I. Early history, chemistry of the procedure, and titrimetric finish. Crit. Rev. Anal. Chem. 2013, 43, 178–223. [Google Scholar] [CrossRef]
- Yokota, T.; Ito, T.; Saigusa, M. Measurement of total phosphorus and organic phosphorus contents of animal manure composts by the dry combustion method. Soil Sci. Plant Nutr. 2003, 49, 267–272. [Google Scholar] [CrossRef]
- Debicka, M.; Jamroz, E.; Bekier, J.; Cwieląg, P.I.; Kocowicz, A. The Influence of Municipal Solid Waste Compost on the Tranformations of Phosphorus Forms in Soil. Agronomy 2023, 13, 1234. [Google Scholar] [CrossRef]
- Lin, Y.H.; Lin, Y.Z.; Lin, Y.H. Preliminary design for establishing compost maturity by using the spectral characteristics of five organic fertilizers. Sci. Rep. 2022, 12, 15721. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sajid, U.; Aslam, S.; Hussain, A.; Mumtaz, T.; Kousar, S. Pressmud Compost for Improved Nitrogen and Phosphorus Content Employing Bacillus Strains. Recycling 2024, 9, 104. https://doi.org/10.3390/recycling9060104
Sajid U, Aslam S, Hussain A, Mumtaz T, Kousar S. Pressmud Compost for Improved Nitrogen and Phosphorus Content Employing Bacillus Strains. Recycling. 2024; 9(6):104. https://doi.org/10.3390/recycling9060104
Chicago/Turabian StyleSajid, Uzma, Sumaira Aslam, Ali Hussain, Tamseela Mumtaz, and Safina Kousar. 2024. "Pressmud Compost for Improved Nitrogen and Phosphorus Content Employing Bacillus Strains" Recycling 9, no. 6: 104. https://doi.org/10.3390/recycling9060104
APA StyleSajid, U., Aslam, S., Hussain, A., Mumtaz, T., & Kousar, S. (2024). Pressmud Compost for Improved Nitrogen and Phosphorus Content Employing Bacillus Strains. Recycling, 9(6), 104. https://doi.org/10.3390/recycling9060104