Valuable Ca/P Sources Obtained from Tuna Species’ By-Products Derived from Industrial Processing: Physicochemical and Features of Skeleton Fractions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Recovery Yields and Proximal Composition
2.2. Physicochemical Characterization
3. Materials and Methods
3.1. Tuna Skeleton Substrates and Processing
3.2. Chemical Analysis
3.3. Physicochemical Characterization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture 2020. In Sustainability in Action; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Coppola, D.; Lauritano, C.; Esposito, F.P.; Riccio, G.; Rizzo, C.; de Pascale, D. Fish Waste: From Problem to Valuable Resource. Mar. Drugs 2021, 19, 116. [Google Scholar] [CrossRef] [PubMed]
- Gamarro, E.G.; Orawattanamateekul, W.; Sentina, J.; Gopal, T.K.S. By-Products of Tuna Processing. In GLOBEFISH Research Programme; FAO: Rome, Italy, 2013; Volume 112. [Google Scholar]
- Unnikrishnan, P.; Kizhakkethil, B.P.; George, J.C.; Aliyamveetil Abubacker, Z.; Ninan, G.; Chandragiri Nagarajarao, R. Antioxidant Peptides from Dark Meat of Yellowfin Tuna (Thunnus albacares): Process Optimization and Characterization. Waste Biomass Valorization 2021, 12, 1845–1860. [Google Scholar] [CrossRef]
- Vázquez, J.A.; Pedreira, A.; Durán, S.; Cabanelas, D.; Souto-Montero, P.; Martínez, P.; Mulet, M.; Pérez-Martín, R.I.; Valcarcel, J. Biorefinery for Tuna Head Wastes: Production of Protein Hydrolysates, High-Quality Oils, Minerals and Bacterial Peptones. J. Clean. Prod. 2022, 357, 131909. [Google Scholar] [CrossRef]
- Ideia, P.; Pinto, J.; Ferreira, R.; Figueiredo, L.; Spínola, V.; Castilho, P.C. Fish Processing Industry Residues: A Review of Valuable Products Extraction and Characterization Methods. Waste Biomass Valorization 2020, 11, 3223–3246. [Google Scholar] [CrossRef]
- Yang, X.R.; Zhao, Y.Q.; Qiu, Y.T.; Chi, C.F.; Wang, B. Preparation and Characterization of Gelatin and Antioxidant Peptides from Gelatin Hydrolysate of Skipjack Tuna (Katsuwonus pelamis) Bone Stimulated by in Vitro Gastrointestinal Digestion. Mar. Drugs 2019, 17, 78. [Google Scholar] [CrossRef] [PubMed]
- Toppe, J.; Albrektsen, S.; Hope, B.; Aksnes, A. Chemical Composition, Mineral Content and Amino Acid and Lipid Profiles in Bones from Various Fish Species. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2007, 146, 395–401. [Google Scholar] [CrossRef]
- Glimcher, M.J. Bone: Nature of the Calcium Phosphate Crystals and Cellular, Structural, and Physical Chemical Mechanisms in Their Formation. Rev. Miner. Geochem. 2006, 64, 223–282. [Google Scholar] [CrossRef]
- Gnanasekaran, R.; Yuvaraj, D.; Muthu, C.M.M.; Ashwin, R.; Kaarthikeyan, K.; Kumar, V.V.; Ramalingam, R.J.; Al-Lohedan, H.; Reddy, K. Extraction and Characterization of Biocompatible Hydroxyapatite (Hap) from Red Big Eye Fish Bone: Potential for Biomedical Applications and Reducing Biowastes. Sustain. Chem. Environ. 2024, 7, 100142. [Google Scholar] [CrossRef]
- Shavandi, A.; Hou, Y.; Carne, A.; McConnell, M.; Bekhit, A.E. din A. Marine Waste Utilization as a Source of Functional and Health Compounds. Adv. Food Nutr. Res. 2019, 87, 187–254. [Google Scholar] [CrossRef]
- Abrams, S.A. Calcium Absorption in Infants and Small Children: Methods of Determination and Recent Findings. Nutrients 2010, 2, 474–480. [Google Scholar] [CrossRef]
- Cormick, G.; Belizán, J.M. Calcium Intake and Health. Nutrients 2019, 11, 1606. [Google Scholar] [CrossRef] [PubMed]
- Albrektsen, S.; Østbye, T.K.; Pedersen, M.; Ytteborg, E.; Ruyter, B.; Ytrestøyl, T. Dietary Impacts of Sulphuric Acid Extracted Fish Bone Compounds on Astaxanthin Utilization and Muscle Quality in Atlantic Salmon (Salmo salar). Aquaculture 2018, 495, 255–266. [Google Scholar] [CrossRef]
- Dorozhkin, S.V. Bioceramics of Calcium Orthophosphates. Biomaterials 2010, 31, 1465–1485. [Google Scholar] [CrossRef]
- Suntornsaratoon, P.; Charoenphandhu, N.; Krishnamra, N. Fortified Tuna Bone Powder Supplementation Increases Bone Mineral Density of Lactating Rats and Their Offspring. J. Sci. Food Agric. 2018, 98, 2027–2034. [Google Scholar] [CrossRef]
- Fijoł, N.; Abdelhamid, H.N.; Pillai, B.; Hall, S.A.; Thomas, N.; Mathew, A.P. 3D-Printed Monolithic Biofilters Based on a Polylactic Acid (PLA)-Hydroxyapatite (HAp) Composite for Heavy Metal Removal from an Aqueous Medium. RSC Adv. 2021, 11, 32408–32418. [Google Scholar] [CrossRef]
- Wang, F.; Chen, Y.; Dong, Y.; Zhang, H.; Yun, R.; Liu, Z. Removal of Fluoride from Geothermal Water by Waste-Synthesized Al(OH)3-HAP@ZMS Composite Adsorbent: Sorption Capability and Mechanism. Water Air Soil Pollut. 2023, 234, 411. [Google Scholar] [CrossRef]
- Yin, P.; Chen, Y.; Wang, Y.; Chi, Y.; Li, B.; Xu, M.; Song, H.; Chen, C. Hydroxyl Modified Nano Calcium Phosphate, a Novel Adsorbent for Denitrogenation of Fuel: Synthesis, Characterization and Adsorptive Performance for Quinoline. J. Environ. Chem. Eng. 2023, 11, 110374. [Google Scholar] [CrossRef]
- Cui, X.; Cao, X.; Xue, W.; Xu, L.; Cui, Z.; Zhao, R.; Ni, S.Q. Integrative Effects of Microbial Inoculation and Amendments on Improved Crop Safety in Industrial Soils Co-Contaminated with Organic and Inorganic Pollutants. Sci. Total Environ. 2023, 873, 162202. [Google Scholar] [CrossRef] [PubMed]
- Carella, F.; Seck, M.; Esposti, L.D.; Diadiou, H.; Maienza, A.; Baronti, S.; Vignaroli, P.; Vaccari, F.P.; Iafisco, M.; Adamiano, A. Thermal Conversion of Fish Bones into Fertilizers and Biostimulants for Plant Growth-A Low Tech Valorization Process for the Development of Circular Economy in Least Developed Countries. J. Environ. Chem. Eng. 2021, 9, 104815. [Google Scholar] [CrossRef]
- Radziemska, M.; Vaverková, M.D.; Adamcová, D.; Brtnický, M.; Mazur, Z. Valorization of Fish Waste Compost as a Fertilizer for Agricultural Use. Waste Biomass Valorization 2019, 10, 2537–2545. [Google Scholar] [CrossRef]
- Ar, Y. The Disappearing Nutrient. Nature 2009, 461, 716–718. [Google Scholar]
- Ozyhar, T.; Tschannen, C.; Thoemen, H.; Zoppe, J.O. Evaluating the Use of Calcium Hydrogen Phosphate Dihydrate as a Mineral-Based Fire Retardant for Application in Melamine-Urea-Formaldehyde (MUF)-Bonded Wood-Based Composite Materials. Fire Mater. 2022, 46, 595–604. [Google Scholar] [CrossRef]
- Sane, A.R.; Pham Minh, D.; Semlal, N.; Boulif, R.; Toussaint, C.; Germeau, A.; Nzihou, A. Clay/Phosphate-Based Ceramic Materials for Thermal Energy Storage—Part I: Effect of Synthetic Phosphate Content on Microstructure, Thermo-Physical and Thermo-Mechanical Properties. Open Ceram. 2023, 14, 100346. [Google Scholar] [CrossRef]
- Nam, P.V.; Hoa, N.; Van; Trung, T.S. Properties of Hydroxyapatites Prepared from Different Fish Bones: A Comparative Study. Ceram. Int. 2019, 45, 20141–20147. [Google Scholar] [CrossRef]
- Boutinguiza, M.; Pou, J.; Comesaña, R.; Lusquiños, F.; De Carlos, A.; León, B. Biological Hydroxyapatite Obtained from Fish Bones. Mater. Sci. Eng. C 2012, 32, 478–486. [Google Scholar] [CrossRef]
- Venkatesan, J.; Qian, Z.J.; Ryu, B.; Thomas, N.V.; Kim, S.K. A Comparative Study of Thermal Calcination and an Alkaline Hydrolysis Method in the Isolation of Hydroxyapatite from Thunnus obesus Bone. Biomed. Mater. 2011, 6, 035003. [Google Scholar] [CrossRef]
- Sousa, S.C.; Vázquez, J.A.; Pérez-Martín, R.I.; Carvalho, A.P.; Gomes, A.M. Valorization of By-Products from Commercial Fish Species: Extraction and Chemical Properties of Skin Gelatins. Molecules 2017, 22, 1545. [Google Scholar] [CrossRef]
- Wang, L.; An, X.; Yang, F.; Xin, Z.; Zhao, L.; Hu, Q. Isolation and Characterisation of Collagens from the Skin, Scale and Bone of Deep-Sea Redfish (Sebastes mentella). Food Chem. 2008, 108, 616–623. [Google Scholar] [CrossRef] [PubMed]
- Szpak, P. Fish Bone Chemistry and Ultrastructure: Implications for Taphonomy and Stable Isotope Analysis. J. Archaeol. Sci. 2011, 38, 3358–3372. [Google Scholar] [CrossRef]
- Tabarestani, S.; Maghsoudlou, Y.; Motamedzadegan, A.; Mahoonak, S.; Rostamzad, H. Study on Some Properties of Acid-Soluble Collagens Isolated from Fish Skin and Bones of Rainbow Trout (Onchorhynchus mykiss). Int. Food Res. J. 2012, 19, 251–257. [Google Scholar]
- Blanco, M.; Sotelo, C.G.; Pérez-Martín, R.I. New Strategy to Cope with Common Fishery Policy Landing Obligation: Collagen Extraction from Skins and Bones of Undersized Hake (Merluccius merluccius). Polymers 2019, 11, 1485. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.R.; Wang, B.; Chi, C.F.; Zhang, Q.H.; Gong, Y.D.; Tang, J.J.; Luo, H.Y.; Ding, G.F. Isolation and Characterization of Acid Soluble Collagens and Pepsin Soluble Collagens from the Skin and Bone of Spanish Mackerel (Scomberomorous niphonius). Food Hydrocoll. 2013, 31, 103–113. [Google Scholar] [CrossRef]
- Valcarcel, J.; Fraguas, J.; Hermida-Merino, C.; Hermida-Merino, D.; Piñeiro, M.M.; Vázquez, J.A. Production and Physicochemical Characterization of Gelatin and Collagen Hydrolysates from Turbot Skin Waste Generated by Aquaculture Activities. Mar. Drugs 2021, 19, 491. [Google Scholar] [CrossRef] [PubMed]
- Valcarcel, J.; Hermida-Merino, C.; Piñeiro, M.M.; Hermida-Merino, D.; Vázquez, J.A. Extraction and Characterization of Gelatin from Skin By-Products of Seabream, Seabass and Rainbow Trout Reared in Aquaculture. Int. J. Mol. Sci. 2021, 22, 12104. [Google Scholar] [CrossRef]
- Ruhdal, J.P.; Hammer, K. Minimal Requirements for Exponential Growth of Lactococcus lactis. Appl. Environ. Microbiol. 1993, 59, 4363–4366. [Google Scholar]
- Hou, Y.; Yin, Y.; Wu, G. Dietary Essentiality of “Nutritionally Non-Essential Amino Acids” for Animals and Humans. Exp. Biol. Med. 2015, 240, 997–1007. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Wu, G. Nutritionally Essential Amino Acids. Adv. Nutr. 2018, 9, 849–851. [Google Scholar] [CrossRef]
- Vázquez, J.A.; Fernández-Compás, A.; Blanco, M.; Rodríguez-Amado, I.; Moreno, H.; Borderías, J.; Pérez-Martín, R.I. Development of Bioprocesses for the Integral Valorisation of Fish Discards. Biochem. Eng. J. 2019, 144, 198–208. [Google Scholar] [CrossRef]
- Vázquez, J.A.; Meduíña, A.; Durán, A.I.; Nogueira, M.; Fernández-Compás, A.; Pérez-Martín, R.I.; Rodríguez-Amado, I. Production of Valuable Compounds and Bioactive Metabolites from By-Products of Fish Discards Using Chemical Processing, Enzymatic Hydrolysis, and Bacterial Fermentation. Mar. Drugs 2019, 17, 139. [Google Scholar] [CrossRef]
- Aguiar, H.; Chiussi, S.; López-Álvarez, M.; González, P.; Serra, J. Structural Characterization of Bioceramics and Mineralized Tissues Based on Raman and XRD Techniques. Ceram. Int. 2018, 44, 495–504. [Google Scholar] [CrossRef]
- Hughes, J.M.; Cameron, M.; Crowley, K.D. Structural Variations in Natural F, OH, and Cl Apatites. Am. Mineral. 1989, 74, 870–876. [Google Scholar]
- Hughes, J.M.; Jolliff, B.L.; Rakovan, J. The Crystal Chemistry of Whitlockite and Merrillite and the Dehydrogenation of Whitlockite to Merrillite. Am. Mineral. 2008, 93, 1300–1305. [Google Scholar] [CrossRef]
- Posset, U.; Löcklin, E.; Thull, R.; Kiefer, W. Vibrational Spectroscopic Study of Tetracalcium Phosphate in Pure Polycrystalline Form and as a Constituent of a Self-Setting Bone Cement. J. Biomed. Mater. Res. 1998, 40, 640–645. [Google Scholar] [CrossRef]
- Penel, G.; Delfosse, C.; Descamps, M.; Leroy, G. Composition of Bone and Apatitic Biomaterials as Revealed by Intravital Raman Microspectroscopy. Bone 2005, 36, 893–901. [Google Scholar] [CrossRef] [PubMed]
- Corno, M.; Busco, C.; Civalleri, B.; Ugliengo, P. Periodic Ab Initio Study of Structural and Vibrational Features of Hexagonal Hydroxyapatite Ca10(PO4)6(OH)2. Phys. Chem. Chem. Phys. 2006, 8, 2464–2472. [Google Scholar] [CrossRef]
- De Aza, P.N.; Guitiá, F.; Santos, C.; De Aza, S.; Cuscó, R.; Artú, L. Vibrational Properties of Calcium Phosphate Compounds. 2. Comparison between Hydroxyapatite and-Tricalcium Phosphate. Chem. Mater. 1997, 9, 916–922. [Google Scholar] [CrossRef]
- Kim, D.H.; Hwang, K.H.; Lee, J.D.; Park, H.C.; Yoon, S.Y. Long and Short Range Order Structural Analysis of In-Situ Formed Biphasic Calcium Phosphates. Biomater. Res. 2015, 19, 14. [Google Scholar] [CrossRef]
- AOAC. (Association of Official Analytical Chemistry). Methods of Analysis, 15th ed.; AOAC: Washington, DC, USA, 1997. [Google Scholar]
- Bligh, E.G.; Dyer, W.J. A Rapid Method of Total Lipid Extraction and Purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Moore, S.; Spackman, D.H.; Stein, W.H. Chromatography of Amino Acids on Sulfonated Polystyrene Resins an Improved System. Anal. Chem. 1958, 30, 1185–1190. [Google Scholar] [CrossRef]
- Duta, L.; Dorcioman, G.; Grumezescu, V. A Review on Biphasic Calcium Phosphate Materials Derived from Fish Discards. Nanomaterials 2021, 11, 2856. [Google Scholar] [CrossRef]
- Icono de Iconic Panda, from Freepik. Desechos Alimentarios. Available online: https://www.freepik.es/icono/desechos-alimentarios_14191536 (accessed on 3 October 2023).
- Icono de Eucalyp from Freepik. Icono Matraz. Available online: https://www.freepik.es/icono/matraz_2637054#fromView=search&page=1&position=48&uuid=23fa991c-896b-414a-9cd6-3ef833682cd1 (accessed on 3 October 2023).
- Icono de Eucalyp, from Frepik. Icono Lata Conserva Pescado. Available online: https://www.freepik.es/icono/pder_884662 (accessed on 3 October 2023).
- Icono de Iconic Panda, from Freepik. Icono Estrategia. Available online: https://www.freepik.es/icono/estrategia_11296676 (accessed on 3 October 2023).
Substrate | Procedure | Ys (%) | Yds (%) |
---|---|---|---|
He-SKJ | enzymatic | 30.8 ± 4.0 ab,1 | 13.6 ± 1.8 a,1 |
He-YF | 23.4 ± 8.0 bc,1 | 10.5 ± 1.4 a,1 | |
cS-SKJ | enzymatic | 37.5 ± 5.6 a,1 | 22.9 ± 2.1 b,1 |
cS-YF | 9.9 ± 9.9 c,2 | 5.8 ± 2.3 c,2 | |
V-SKJ | enzymatic | 7.4 ± 4.3 c,1 | 3.4 ± 0.7 d,1 |
V-YF | 5.3 ± 2.6 c,2 | 2.5 ± 1.2 d,2 | |
bA-SKJ | enzymatic | 51.2 ± 1.0 d,1 | 35.2 ± 3.9 ef,1 |
bA-YF | 23.0 ± 0.9 c,2 | 15.4 ± 2.2 a,2 | |
dF-SKJ | chemical | 63.0 ± 2.8 e,1 | 45.0 ± 4.2 f,1 |
dF-YF | 85.7 ± 4.8 f,2 | 59.1 ± 5.1 g,2 | |
cF-SKJ | chemical | 74.2 ± 6.4 g,1 | 32.8 ± 3.9 e,1 |
cF-YF | 89.7 ± 5.4 f,2 | 41.2 ± 3.6 f,2 | |
Sc-SKJ | chemical | 58.3 ± 2.5 e,1 | 32.8 ± 3.9 e,1 |
Sc-YF | 60.2 ± 3.3 e,1 | 35.8 ± 2.1 e,1 |
Wet Basis | Dry Basis | |||||
---|---|---|---|---|---|---|
Tuna Skeleton | Mo (%) | Ash (%) | OM (%) | Ash (%) | Lip (%) | Pr-tN (%) |
He-SKJ | 34.9 ± 1.6 a | 40.6 ± 0.5 a | 24.6 ± 1.3 a | 61.3 ± 1.6 a | 1.8 ± 0.3 a | 36.9 ± 0.9 a |
He-YF | 44.3 ± 0.3 b | 34.7 ± 0.5 b | 21.0 ± 0.5 b | 60.8 ± 1.1 a | 2.2 ± 1.9 b | 37.1 ± 1.8 a |
cS-SKJ | 58.6 ± 1.9 a | 23.4 ± 1.0 a | 17.9 ± 0.3 a | 58.3 ± 0.7 a | 5.9 ± 1.0 a | 35.9 ± 1.2 a |
cS-YF | 54.1 ± 0.9 b | 27.5 ± 1.3 b | 18.4 ± 0.5 a | 60.5 ± 0.4 b | 4.4 ± 2.8 a | 35.1 ± 1.0 a |
V-SKJ | 67.7 ± 1.4 a | 21.5 ± 0.4 a | 10.8 ± 1.0 a | 65.8 ± 1.8 a | 3.2 ± 0.8 a | 31.1 ± 1.2 a |
V-YF | 37.5 ± 5.1 b | 35.8 ± 5.8 b | 26.8 ± 0.7 b | 53.8 ± 2.6 b | 4.1 ± 0.6 a | 42.1 ± 2.1 b |
bA-SKJ | 62.3 ± 1.8 a | 16.6 ± 0.5 a | 21.1 ± 2.3 a | 40.2 ± 1.0 a | 9.8 ± 1.2 a | 50.0 ± 1.4 a |
bA-YF | 39.4 ± 4.7 b | 34.0 ± 3.2 b | 26.6 ± 2.1 b | 52.5 ± 1.6 b | 8.7 ± 0.2 a | 38.8 ± 0.9 b |
dF-SKJ | 14.2 ± 0.6 a | 56.9 ± 1.3 a | 28.9 ± 0.9 a | 63.8 ± 3.1 a | 5.5 ± 0.1 a | 30.8 ± 1.4 a |
dF-YF | 38.7 ± 5.7 b | 35.0 ± 4.3 b | 26.3 ± 1.0 b | 54.5 ± 1.7 b | 7.2 ± 0.2 b | 38.3 ± 1.9 b |
cF-SKJ | 46.5 ± 2.3 a | 23.7 ± 0.9 a | 29.8 ± 0.6 a | 48.9 ± 2.4 a | 5.9 ± 0.3 a | 45.2 ± 3.4 a |
cF-YF | 52.2 ± 1.1 b | 18.9 ± 1.0 b | 28.9 ± 0.1 b | 40.5 ± 1.1 b | 6.5 ± 0.2 b | 53.0 ± 2.9 b |
Sc-SKJ | 53.1 ± 2.9 a | 14.6 ± 2.3 a | 32.3 ± 0.6 a | 33.0 ± 1.6 a | 25.1 ± 3.2 a | 42.0 ± 1.6 a |
Sc-YF | 50.0 ± 1.6 a | 16.1 ± 0.8 a | 33.9 ± 1.1 a | 34.2 ± 0.7 a | 16.9 ± 2.2 b | 48.1 ± 1.2 b |
Species | Sample | TEAA/TAA (%) | Gly (%) | Pro (%) | OHPro (%) |
---|---|---|---|---|---|
SKJ | He | 27.9 ± 0.7 a,c,1 | 21.0 ± 0.6 a,b,1 | 10.1 ± 0.2 a,1 | 8.5 ± 0.3 a,1 |
cS | 37.7 ± 3.1 b,1 | 13.2 ± 2.5 b,1 | 7.6 ± 0.4 b,1 | 4.8 ± 1.4 b,1 | |
V | 29.8 ± 1.4 a,1 | 19.7 ± 0.1 a,1 | 8.8 ± 0.5 c,1 | 7.5 ± 0.4 c,1 | |
dF | 27.3 ± 0.5 c,1 | 20.9 ± 0.5 c,1 | 10.4 ± 0.3 a,1 | 9.3 ± 0.6 a,1 | |
cF | 27.9 ± 0.4 c,1 | 20.2 ± 0.9 a,c,1 | 10.3 ± 0.4 a,1 | 8.6 ± 0.2 a,1 | |
Sc | 30.0 ± 0.6 d,1 | 19.5 ± 0.7 a,c,1 | 10.2 ± 0.7 a,1 | 7.7 ± 0.6 c,1 | |
bA | 36.0 ± 0.7 b,1 | 13.7 ± 0.6 b,1 | 7.8 ± 0.2 b,1 | 5.4 ± 0.1 b,1 | |
YF | He | 28.1 ± 0.5 a,1 | 21.0 ± 0.6 a,1 | 9.9 ± 0.2 a,1 | 8.4 ± 0.5 a,c,1 |
cS | 30.8 ± 1.0 b,2 | 17.8 ± 0.6 b,2 | 9.0 ± 0.2 b,2 | 7.7 ± 0.2 a,2 | |
V | 32.7 ± 0.2 c,2 | 16.7 ± 0.1 c,2 | 8.5 ± 0.4 b,2 | 6.4 ± 0.4 b,2 | |
dF | 28.9 ± 0.3 a,1 | 19.8 ± 0.2 d,2 | 10.3 ± 0.3 a,1 | 8.6 ± 0.3 c,1 | |
cF | 27.8 ± 0.8 a,1 | 20.8 ± 0.5 a,1 | 11.1 ± 0.4 c,1 | 9.1 ± 0.5 c,1 | |
Sc | 31.0 ± 0.6 b,1 | 17.8 ± 0.7 b,2 | 9.7 ± 0.3 a,1 | 7.6 ± 0.3 a,1 | |
bA | 29.3 ± 0.4 a,2 | 20.0 ± 0.6 a,d,2 | 10.2 ± 0.3 a,2 | 8.2 ± 0.5 a,c,2 |
Calcium Phosphates | Ca (wt.%) | P (wt.%) | Others (ppm) |
---|---|---|---|
He-SKJ | 35.3 | 13.1 | Sr, Zn, Ag, Mn, Fe, Co, Cu, Mo, Th, Pb |
He-YF | 33.8 | 12.7 | Sr, Zn, Ag, Fe, Th |
bA-YF | 34.1 | 12.3 | Sr, Zn, Ag, Mn, Fe, Co, Mo, Th |
bA-SKJ | 33.7 | 12.4 | Sr, Zn, Ag, Mn, Fe, Cu, Mo, Th, Sb |
cF-YF | 33.0 | 10.4 | Cl, Sr, Zn, Ag, Fe, Cu, Mo, Th, Ni |
cF-SKJ | 32.9 | 12.1 | Sr, Zn, Ag, Fe, Mo, Th |
dF-YF | 34.6 | 12.1 | Cl, Sr, Zn, Ag, Fe, Co, Cu, Mo, Th, Ti |
dF-SKJ | 34.4 | 12.2 | Sr, Zn, Ag, Fe, Co, Mo, Th, |
Sc-SKJ | 34.7 | 12.0 | Sr, Zn, Ag, Fe, Cu, Mo, Ti, Se |
Sc-YF | 33.1 | 11.9 | Sr, Zn, Ag, Fe, Mo, Th |
cS-SKJ | 34.9 | 12.0 | Sr, Zn, Ag, Fe, Th |
cS-YF | 36.0 | 12.6 | Sr, Zn, Ag, Fe, Cu, Mo, Th |
V-SKJ | 30.3 | 14.5 | Mg (3.1 wt.%) Sr, Zn, Ag, Mn, Fe, Mo, Pb, Cd, Sb |
V-YF | 30.5 | 13.5 | Sr, Zn, Ag, Fe, Cu, Mo, Th, Cd, Rb |
Calcium Phosphate Structure | Tuna Skeleton |
---|---|
Hydroxyapatite | bA-YF |
cF-YF | |
cF-SKJ | |
dF-YF | |
dF-SKJ | |
cS-SKJ | |
cS-YF | |
Sc-YF | |
Whitlockite/β-TCP | V-SKJ |
V-YF | |
Hydroxyapatite and Whitlockite/β-TCP | Sc-SKJ |
bA-SKJ | |
He-SKJ | |
He-YF |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Álvarez, M.; Souto-Montero, P.; Durán, S.; Pérez-Davila, S.; Vázquez, J.A.; González, P.; Serra, J. Valuable Ca/P Sources Obtained from Tuna Species’ By-Products Derived from Industrial Processing: Physicochemical and Features of Skeleton Fractions. Recycling 2024, 9, 109. https://doi.org/10.3390/recycling9060109
López-Álvarez M, Souto-Montero P, Durán S, Pérez-Davila S, Vázquez JA, González P, Serra J. Valuable Ca/P Sources Obtained from Tuna Species’ By-Products Derived from Industrial Processing: Physicochemical and Features of Skeleton Fractions. Recycling. 2024; 9(6):109. https://doi.org/10.3390/recycling9060109
Chicago/Turabian StyleLópez-Álvarez, Miriam, Paula Souto-Montero, Salvador Durán, Sara Pérez-Davila, José Antonio Vázquez, Pío González, and Julia Serra. 2024. "Valuable Ca/P Sources Obtained from Tuna Species’ By-Products Derived from Industrial Processing: Physicochemical and Features of Skeleton Fractions" Recycling 9, no. 6: 109. https://doi.org/10.3390/recycling9060109
APA StyleLópez-Álvarez, M., Souto-Montero, P., Durán, S., Pérez-Davila, S., Vázquez, J. A., González, P., & Serra, J. (2024). Valuable Ca/P Sources Obtained from Tuna Species’ By-Products Derived from Industrial Processing: Physicochemical and Features of Skeleton Fractions. Recycling, 9(6), 109. https://doi.org/10.3390/recycling9060109